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6.3 Gram–Schmidt Process; QR-Decomposition
In many problems involving vector spaces, the problem solver is free to choose any basis for
the vector space that seems appropriate. In inner product spaces, the solution of a problem
can often be simplified by choosing a basis in which the vectors are orthogonal to one
another. In this section we will show how such bases can be obtained.

Orthogonal and
Orthonormal Sets

Recall from Section 6.2 that two vectors in an inner product space are said to beorthogonal
if their inner product is zero. The following definition extends the notion of orthogonality
to sets of vectors in an inner product space.

DEFINITION 1 A set of two or more vectors in a real inner product space is said to be
orthogonal if all pairs of distinct vectors in the set are orthogonal. An orthogonal set
in which each vector has norm 1 is said to be orthonormal.

EXAMPLE 1 An Orthogonal Set in R3

Let
v1 = (0, 1, 0), v2 = (1, 0, 1), v3 = (1, 0, −1)

and assume that R3 has the Euclidean inner product. It follows that the set of vectors
S = {v1, v2, v3} is orthogonal since 〈v1, v2〉 = 〈v1, v3〉 = 〈v2, v3〉 = 0.

It frequently happens that one has found a set of orthogonal vectors in an inner
product space but what is actually needed is a set of orthonormal vectors. A simple way
to convert an orthogonal set of nonzero vectors into an orthonormal set is to multiply
each vector v in the orthogonal set by the reciprocal of its length to create a vector of
norm 1 (called a unit vector). To see why this works, suppose that v is a nonzero vector
in an inner product space, and let

u = 1
‖v‖v (1)

Then it follows from Theorem 6.1.1(b) with k = ‖v‖ that

Note that Formula (1) is iden-
tical to Formula (4) of Sec-
tion 3.2, but whereas For-
mula (4) was valid only for vec-
tors in Rn with the Euclidean
inner product, Formula (1) is
valid in general inner product
spaces.

‖u‖ =
∥∥∥∥

1
‖v‖v

∥∥∥∥ =
∣∣∣∣

1
‖v‖

∣∣∣∣ ‖v‖ = 1
‖v‖‖v‖ = 1

This process of multiplying a vector v by the reciprocal of its length is called normalizing v.
We leave it as an exercise to show that normalizing the vectors in an orthogonal set of
nonzero vectors preserves the orthogonality of the vectors and produces an orthonormal
set.

EXAMPLE 2 Constructing an Orthonormal Set

The Euclidean norms of the vectors in Example 1 are

‖v1‖ = 1, ‖v2‖ =
√

2, ‖v3‖ =
√

2

Consequently, normalizing u1, u2, and u3 yields

u1 = v1

‖v1‖
= (0, 1, 0), u2 = v2

‖v2‖
=

(
1√
2
, 0,

1√
2

)
,

u3 = v3

‖v3‖
=

(
1√
2
, 0, − 1√

2

)

0
=

0
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We leave it for you to verify that the set S = {u1, u2, u3} is orthonormal by showing that

〈u1, u2〉 = 〈u1, u3〉 = 〈u2, u3〉 = 0 and ‖u1‖ = ‖u2‖ = ‖u3‖ = 1

InR2 any two nonzero perpendicular vectors are linearly independent because neither
is a scalar multiple of the other; and in R3 any three nonzero mutually perpendicular
vectors are linearly independent because no one lies in the plane of the other two (and
hence is not expressible as a linear combination of the other two). The following theorem
generalizes these observations.

THEOREM 6.3.1 If S = {v1, v2, . . . , vn} is an orthogonal set of nonzero vectors in an
inner product space, then S is linearly independent.

Proof Assume that
k1v1 + k2v2 + · · · + knvn = 0 (2)

To demonstrate that S = {v1, v2, . . . , vn} is linearly independent, we must prove that
k1 = k2 = · · · = kn = 0.

For each vi in S, it follows from (2) that

〈k1v1 + k2v2 + · · · + knvn, vi〉 = 〈0, vi〉 = 0

or, equivalently,
k1〈v1, vi〉 + k2〈v2, vi〉 + · · · + kn〈vn, vi〉 = 0

From the orthogonality of S it follows that 〈vj , vi〉 = 0 when j &= i, so this equation
reduces to

ki〈vi , vi〉 = 0

Since the vectors in S are assumed to be nonzero, it follows from the positivity axiom

Since an orthonormal set is or-
thogonal, and since its vectors
are nonzero (norm 1), it fol-
lows from Theorem 6.3.1 that
every orthonormal set is lin-
early independent.

for inner products that 〈vi , vi〉 &= 0. Thus, the preceding equation implies that each ki in
Equation (2) is zero, which is what we wanted to prove.

In an inner product space, a basis consisting of orthonormal vectors is called an
orthonormal basis, and a basis consisting of orthogonal vectors is called an orthogonal
basis. A familiar example of an orthonormal basis is the standard basis for Rn with the
Euclidean inner product:

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

EXAMPLE 3 An Orthonormal Basis for Pn
Recall from Example 7 of Section 6.1 that the standard inner product of the polynomials

p = a0 + a1x + · · · + anx
n and q = b0 + b1x + · · · + bnx

n

is
〈p, q〉 = a0b0 + a1b1 + · · · + anbn

and the norm of p relative to this inner product is

‖p‖ =
√

〈p, p〉 =
√

a2
0 + a2

1 + · · · + a2
n

You should be able to see from these formulas that the standard basis

S =
{
1, x, x2, . . . , xn

}

is orthonormal with respect to this inner product.
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EXAMPLE 4 An Orthonormal Basis

In Example 2 we showed that the vectors

u1 = (0, 1, 0), u2 =
(

1√
2
, 0,

1√
2

)
, and u3 =

(
1√
2
, 0, − 1√

2

)

form an orthonormal set with respect to the Euclidean inner product on R3. By Theorem
6.3.1, these vectors form a linearly independent set, and since R3 is three-dimensional,
it follows from Theorem 4.5.4 that S = {u1, u2, u3} is an orthonormal basis for R3.

Coordinates Relative to
Orthonormal Bases

One way to express a vector u as a linear combination of basis vectors

S = {v1, v2, . . . , vn}
is to convert the vector equation

u = c1v1 + c2v2 + · · · + cnvn

to a linear system and solve for the coefficients c1, c2, . . . , cn. However, if the basis
happens to be orthogonal or orthonormal, then the following theorem shows that the
coefficients can be obtained more simply by computing appropriate inner products.

THEOREM 6.3.2

(a) If S = {v1, v2, . . . , vn} is an orthogonal basis for an inner product space V, and if
u is any vector in V, then

u = 〈u, v1〉
‖v1‖2

v1 + 〈u, v2〉
‖v2‖2

v2 + · · · + 〈u, vn〉
‖vn‖2

vn (3)

(b) If S = {v1, v2, . . . , vn} is an orthonormal basis for an inner product space V, and
if u is any vector in V, then

u = 〈u, v1〉v1 + 〈u, v2〉v2 + · · · + 〈u, vn〉vn (4)

Proof (a) Since S = {v1, v2, . . . , vn} is a basis for V, every vector u in V can be expressed
in the form

u = c1v1 + c2v2 + · · · + cnvn

We will complete the proof by showing that

ci = 〈u, vi〉
‖vi‖2

(5)

for i = 1, 2, . . . , n. To do this, observe first that

〈u, vi〉 = 〈c1v1 + c2v2 + · · · + cnvn, vi〉
= c1〈v1, vi〉 + c2〈v2, vi〉 + · · · + cn〈vn, vi〉

Since S is an orthogonal set, all of the inner products in the last equality are zero except
the ith, so we have

〈u, vi〉 = ci〈vi , vi〉 = ci‖vi‖2

Solving this equation for ci yields (5), which completes the proof.

Proof (b) In this case, ‖v1‖ = ‖v2‖ = · · · = ‖vn‖ = 1, so Formula (3) simplifies to For-
mula (4).
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Using the terminology and notation from Definition 2 of Section 4.4, it follows from
Theorem 6.3.2 that the coordinate vector of a vector u in V relative to an orthogonal
basis S = {v1, v2, . . . , vn} is

(u)S =
( 〈u, v1〉

‖v1‖2
,
〈u, v2〉
‖v2‖2

, . . . ,
〈u, vn〉
‖vn‖2

)
(6)

and relative to an orthonormal basis S = {v1, v2, . . . , vn} is

(u)S = (〈u, v1〉, 〈u, v2〉, . . . , 〈u, vn〉) (7)

EXAMPLE 5 A CoordinateVector Relative to an Orthonormal Basis

Let
v1 = (0, 1, 0), v2 =

(
− 4

5 , 0, 3
5

)
, v3 =

( 3
5 , 0, 4

5

)

It is easy to check that S = {v1, v2, v3} is an orthonormal basis for R3 with the Euclidean
inner product. Express the vector u = (1, 1, 1) as a linear combination of the vectors in
S, and find the coordinate vector (u)S .

Solution We leave it for you to verify that

〈u, v1〉 = 1, 〈u, v2〉 = − 1
5 , and 〈u, v3〉 = 7

5

Therefore, by Theorem 6.3.2 we have

u = v1 − 1
5 v2 + 7

5 v3

that is,
(1, 1, 1) = (0, 1, 0) − 1

5

(
− 4

5 , 0, 3
5

)
+ 7

5

( 3
5 , 0, 4

5

)

Thus, the coordinate vector of u relative to S is

(u)S = (〈u, v1〉, 〈u, v2〉, 〈u, v3〉) =
(
1, − 1

5 ,
7
5

)

EXAMPLE 6 An Orthonormal Basis from an Orthogonal Basis

(a) Show that the vectors

w1 = (0, 2, 0), w2 = (3, 0, 3), w3 = (−4, 0, 4)

form an orthogonal basis for R3 with the Euclidean inner product, and use that
basis to find an orthonormal basis by normalizing each vector.

(b) Express the vector u = (1, 2, 4) as a linear combination of the orthonormal basis
vectors obtained in part (a).

Solution (a) The given vectors form an orthogonal set since

〈w1, w2〉 = 0, 〈w1, w3〉 = 0, 〈w2, w3〉 = 0

It follows from Theorem 6.3.1 that these vectors are linearly independent and hence form
a basis for R3 by Theorem 4.5.4. We leave it for you to calculate the norms of w1, w2,
and w3 and then obtain the orthonormal basis

v1 = w1

‖w1‖
= (0, 1, 0), v2 = w2

‖w2‖
=

(
1√
2
, 0,

1√
2

)
,

v3 = w3

‖w3‖
=

(
− 1√

2
, 0,

1√
2

)

*
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Solution (b) It follows from Formula (4) that

u = 〈u, v1〉v1 + 〈u, v2〉v2 + 〈u, v3〉v3

We leave it for you to confirm that

〈u, v1〉 = (1, 2, 4) · (0, 1, 0) = 2

〈u, v2〉 = (1, 2, 4) ·
(

1√
2
, 0,

1√
2

)
= 5√

2

〈u, v3〉 = (1, 2, 4) ·
(

− 1√
2
, 0,

1√
2

)
= 3√

2

and hence that

(1, 2, 4) = 2(0, 1, 0) + 5√
2

(
1√
2
, 0,

1√
2

)
+ 3√

2

(
− 1√

2
, 0,

1√
2

)

Orthogonal Projections Many applied problems are best solved by working with orthogonal or orthonormal
basis vectors. Such bases are typically found by starting with some simple basis (say a
standard basis) and then converting that basis into an orthogonal or orthonormal basis.
To explain exactly how that is done will require some preliminary ideas about orthogonal
projections.

In Section 3.3 we proved a result called the Projection Theorem (see Theorem 3.3.2)
that dealt with the problem of decomposing a vector u in Rn into a sum of two terms,
w1 and w2, in which w1 is the orthogonal projection of u on some nonzero vector a and
w2 is orthogonal to w1 (Figure 3.3.2). That result is a special case of the following more
general theorem, which we will state without proof.

THEOREM 6.3.3 ProjectionTheorem

If W is a finite-dimensional subspace of an inner product space V, then every vector u
in V can be expressed in exactly one way as

u = w1 + w2 (8)

where w1 is in W and w2 is in W⊥.

The vectors w1 and w2 in Formula (8) are commonly denoted by

w1 = projW u and w2 = projW⊥ u (9)

These are called the orthogonal projection of u on W and the orthogonal projection of u
on W⊥, respectively. The vector w2 is also called the component of u orthogonal to W .
Using the notation in (9), Formula (8) can be expressed as

u = projW u + projW⊥ u (10)

(Figure 6.3.1). Moreover, since projW⊥u = u − projW u, we can also express Formula

W⊥

W
0

u projW⊥ u

projW u

Figure 6.3.1

(10) as

u = projW u + (u − projW u) (11)

*
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The following theorem provides formulas for calculating orthogonal projections.

Although Formulas (12) and
(13) are expressed in terms of
orthogonal and orthonormal
basis vectors, the resulting vec-
tor projW u does not depend on
the basis vectors that are used.

THEOREM 6.3.4 Let W be a finite-dimensional subspace of an inner product space V .

(a) If {v1, v2, . . . , vr} is an orthogonal basis for W, and u is any vector in V, then

projW u = 〈u, v1〉
‖v1‖2

v1 + 〈u, v2〉
‖v2‖2

v2 + · · · + 〈u, vr〉
‖vr‖2

vr (12)

(b) If {v1, v2, . . . , vr} is an orthonormal basis for W, and u is any vector in V, then

projW u = 〈u, v1〉v1 + 〈u, v2〉v2 + · · · + 〈u, vr〉vr (13)

Proof (a) It follows from Theorem 6.3.3 that the vector u can be expressed in the form
u = w1 + w2, where w1 = projW u is in W and w2 is in W⊥; and it follows from Theo-
rem 6.3.2 that the component projW u = w1 can be expressed in terms of the basis vectors
for W as

projW u = w1 = 〈w1, v1〉
‖v1‖2

v1 + 〈w1, v2〉
‖v2‖2

v2 + · · · + 〈w1, vr〉
‖vr‖2

vr (14)

Since w2 is orthogonal to W , it follows that

〈w2, v1〉 = 〈w2, v2〉 = · · · = 〈w2, vr〉 = 0

so we can rewrite (14) as

projW u = w1 = 〈w1 + w2, v1〉
‖v1‖2

v1 + 〈w1 + w2, v2〉
‖v2‖2

v2 + · · · + 〈w1 + w2, vr〉
‖vr‖2

vr

or, equivalently, as

projW u = w1 = 〈u, v1〉
‖v1‖2

v1 + 〈u, v2〉
‖v2‖2

v2 + · · · + 〈u, vr〉
‖vr‖2

vr

Proof (b) In this case, ‖v1‖ = ‖v2‖ = · · · = ‖vr‖ = 1, so Formula (14) simplifies to
Formula (13).

EXAMPLE 7 Calculating Projections

Let R3 have the Euclidean inner product, and let W be the subspace spanned by the
orthonormal vectors v1 = (0, 1, 0) and v2 =

(
− 4

5 , 0, 3
5

)
. From Formula (13) the or-

thogonal projection of u = (1, 1, 1) on W is

projW u = 〈u, v1〉v1 + 〈u, v2〉v2

= (1)(0, 1, 0) +
(
− 1

5

) (
− 4

5 , 0, 3
5

)

=
( 4

25 , 1, − 3
25

)

The component of u orthogonal to W is

projW⊥ u = u − projW u = (1, 1, 1) −
( 4

25 , 1, − 3
25

)
=

( 21
25 , 0, 28

25

)

Observe that projW⊥ u is orthogonal to both v1 and v2, so this vector is orthogonal to
each vector in the space W spanned by v1 and v2, as it should be.

A Geometric Interpretation
of Orthogonal Projections

If W is a one-dimensional subspace of an inner product space V, say span{a}, then
Formula (12) has only the one term

projW u = 〈u, a〉
‖a‖2

a

In the special case where V is R3 with the Euclidean inner product, this is exactly For-
mula (10) of Section 3.3 for the orthogonal projection of u along a. This suggests that

Y



370 Chapter 6 Inner Product Spaces

we can think of (12) as the sum of orthogonal projections on “axes” determined by the
basis vectors for the subspace W (Figure 6.3.2).

Figure 6.3.2

W

u

v2

v1

projW u

projv2
u

projv1
u

0

The Gram–Schmidt Process We have seen that orthonormal bases exhibit a variety of useful properties. Our next the-
orem, which is the main result in this section, shows that every nonzero finite-dimensional
vector space has an orthonormal basis. The proof of this result is extremely important
since it provides an algorithm, or method, for converting an arbitrary basis into an
orthonormal basis.

THEOREM 6.3.5 Every nonzero finite-dimensional inner product space has an ortho-
normal basis.

Proof Let W be any nonzero finite-dimensional subspace of an inner product space, and
suppose that {u1, u2, . . . , ur} is any basis for W . It suffices to show that W has an orthog-
onal basis since the vectors in that basis can be normalized to obtain an orthonormal
basis. The following sequence of steps will produce an orthogonal basis {v1, v2, . . . , vr}
for W :

Step 1. Let v1 = u1.

Step 2. As illustrated in Figure 6.3.3, we can obtain a vector v2 that is orthogonal to v1

W1

u2

v2 = u2 – projW1
 u2

v1 projW1 u2

Figure 6.3.3

by computing the component of u2 that is orthogonal to the space W1 spanned
by v1. Using Formula (12) to perform this computation, we obtain

v2 = u2 − projW1
u2 = u2 − 〈u2, v1〉

‖v1‖2
v1

Of course, if v2 = 0, then v2 is not a basis vector. But this cannot happen, since
it would then follow from the preceding formula for v2 that

u2 = 〈u2, v1〉
‖v1‖2

v1 = 〈u2, v1〉
‖u1‖2

u1

which implies that u2 is a multiple of u1, contradicting the linear independence
of the basis {u1, u2, . . . , ur}.

Step 3. To construct a vector v3 that is orthogonal to both v1 and v2, we compute the
component of u3 orthogonal to the space W2 spanned by v1 and v2 (Figure 6.3.4).

W2

u3

v3 = u3 – projW2
 u3

v2
v1

projW2 u3

Figure 6.3.4

Using Formula (12) to perform this computation, we obtain

v3 = u3 − projW2
u3 = u3 − 〈u3, v1〉

‖v1‖2
v1 − 〈u3, v2〉

‖v2‖2
v2

As in Step 2, the linear independence of {u1, u2, . . . , ur} ensures that v3 &= 0. We
leave the details for you.

X
-

0

X
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Step 4. To determine a vector v4 that is orthogonal to v1, v2, and v3, we compute the
component of u4 orthogonal to the space W3 spanned by v1, v2, and v3. From (12),

v4 = u4 − projW3
u4 = u4 − 〈u4, v1〉

‖v1‖2
v1 − 〈u4, v2〉

‖v2‖2
v2 − 〈u4, v3〉

‖v3‖2
v3

Continuing in this way we will produce after r steps an orthogonal set of nonzero
vectors {v1, v2, . . . , vr}. Since such sets are linearly independent, we will have produced
an orthogonal basis for the r-dimensional space W . By normalizing these basis vectors
we can obtain an orthonormal basis.

The step-by-step construction of an orthogonal (or orthonormal) basis given in
the foregoing proof is called the Gram–Schmidt process. For reference, we provide the
following summary of the steps.

The Gram–Schmidt Process

To convert a basis {u1, u2, . . . , ur} into an orthogonal basis {v1, v2, . . . , vr}, perform
the following computations:

Step 1. v1 = u1

Step 2. v2 = u2 − 〈u2, v1〉
‖v1‖2

v1

Step 3. v3 = u3 − 〈u3, v1〉
‖v1‖2

v1 − 〈u3, v2〉
‖v2‖2

v2

Step 4. v4 = u4 − 〈u4, v1〉
‖v1‖2

v1 − 〈u4, v2〉
‖v2‖2

v2 − 〈u4, v3〉
‖v3‖2

v3

...

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis
{q1, q2, . . . , qr}, normalize the orthogonal basis vectors.

Jorgen Pederson Gram
(1850–1916)

Historical Note Erhardt Schmidt (1875–1959) was a German mathematician
who studied for his doctoral degree at Göttingen University under David
Hilbert, one of the giants of modern mathematics. For most of his life he taught
at Berlin University where, in addition to making important contributions to
many branches of mathematics, he fashioned some of Hilbert’s ideas into a
general concept, called a Hilbert space—a fundamental structure in the study
of infinite-dimensional vector spaces. He first described the process that bears
his name in a paper on integral equations that he published in 1907.

Historical Note Gram was a Danish actuary whose early education was at vil-
lage schools supplemented by private tutoring. He obtained a doctorate degree
in mathematics while working for the Hafnia Life Insurance Company, where
he specialized in the mathematics of accident insurance. It was in his disser-
tation that his contributions to the Gram–Schmidt process were formulated.
He eventually became interested in abstract mathematics and received a gold
medal from the Royal Danish Society of Sciences and Letters in recognition of
his work. His lifelong interest in applied mathematics never wavered, however,
and he produced a variety of treatises on Danish forest management.

[Image: http://www-history.mcs.st-and.ac.uk/PictDisplay/Gram.html]
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EXAMPLE 8 Using the Gram–Schmidt Process

Assume that the vector space R3 has the Euclidean inner product. Apply the Gram–
Schmidt process to transform the basis vectors

u1 = (1, 1, 1), u2 = (0, 1, 1), u3 = (0, 0, 1)

into an orthogonal basis {v1, v2, v3}, and then normalize the orthogonal basis vectors to
obtain an orthonormal basis {q1, q2, q3}.
Solution

Step 1. v1 = u1 = (1, 1, 1)

Step 2. v2 = u2 − projW1
u2 = u2 − 〈u2, v1〉

‖v1‖2
v1

= (0, 1, 1) − 2
3
(1, 1, 1) =

(
−2

3
,

1
3
,

1
3

)

Step 3. v3 = u3 − projW2
u3 = u3 − 〈u3, v1〉

‖v1‖2
v1 − 〈u3, v2〉

‖v2‖2
v2

= (0, 0, 1) − 1
3
(1, 1, 1) − 1/3

2/3

(
−2

3
,

1
3
,

1
3

)

=
(

0, −1
2
,

1
2

)

Thus,

v1 = (1, 1, 1), v2 =
(

−2
3
,

1
3
,

1
3

)
, v3 =

(
0, −1

2
,

1
2

)

form an orthogonal basis for R3. The norms of these vectors are

‖v1‖ =
√

3, ‖v2‖ =
√

6
3

, ‖v3‖ = 1√
2

so an orthonormal basis for R3 is

q1 = v1

‖v1‖
=

(
1√
3
,

1√
3
,

1√
3

)
, q2 = v2

‖v2‖
=

(
− 2√

6
,

1√
6
,

1√
6

)
,

q3 = v3

‖v3‖
=

(
0, − 1√

2
,

1√
2

)

Remark In the last example we normalized at the end to convert the orthogonal basis into an
orthonormal basis. Alternatively, we could have normalized each orthogonal basis vector as soon
as it was obtained, thereby producing an orthonormal basis step by step. However, that procedure
generally has the disadvantage in hand calculation of producing more square roots to manipulate.
A more useful variation is to “scale” the orthogonal basis vectors at each step to eliminate some of
the fractions. For example, after Step 2 above, we could have multiplied by 3 to produce (−2, 1, 1)
as the second orthogonal basis vector, thereby simplifying the calculations in Step 3.

EXAMPLE 9 Legendre Polynomials

Let the vector space P2 have the inner product

CA L C U L U S R E Q U I R E D

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

Apply the Gram–Schmidt process to transform the standard basis {1, x, x2} for P2 into
an orthogonal basis {φ1(x), φ2(x), φ3(x)}.

- -

-

-

-
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Solution Take u1 = 1, u2 = x, and u3 = x2.

Step 1. v1 = u1 = 1

Step 2. We have

〈u2, v1〉 =
∫ 1

−1
x dx = 0

so

v2 = u2 − 〈u2, v1〉
‖v1‖2

v1 = u2 = x

Step 3. We have

〈u3, v1〉 =
∫ 1

−1
x2 dx = x3

3

]1

−1

= 2
3

〈u3, v2〉 =
∫ 1

−1
x3 dx = x4

4

]1

−1

= 0

‖v1‖2 = 〈v1, v1〉 =
∫ 1

−1
1 dx = x

]1

−1

= 2

so

v3 = u3 − 〈u3, v1〉
‖v1‖2

v1 − 〈u3, v2〉
‖v2‖2

v2 = x2 − 1
3

Thus, we have obtained the orthogonal basis {φ1(x), φ2(x), φ3(x)} in which

φ1(x) = 1, φ2(x) = x, φ3(x) = x2 − 1
3

Remark The orthogonal basis vectors in the last example are often scaled so all three functions
have a value of 1 at x = 1. The resulting polynomials

1, x,
1
2
(3x2 − 1)

which are known as the first three Legendre polynomials, play an important role in a variety of
applications. The scaling does not affect the orthogonality.

Extending Orthonormal
Sets to Orthonormal Bases

Recall from part (b) of Theorem 4.5.5 that a linearly independent set in a finite-dimensional
vector space can be enlarged to a basis by adding appropriate vectors. The following the-
orem is an analog of that result for orthogonal and orthonormal sets in finite-dimensional
inner product spaces.

THEOREM 6.3.6 If W is a finite-dimensional inner product space, then:
(a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal

basis for W .

(b) Every orthonormal set in W can be enlarged to an orthonormal basis for W .

We will prove part (b) and leave part (a) as an exercise.

Proof (b) Suppose that S = {v1, v2, . . . , vs} is an orthonormal set of vectors in W .
Part (b) of Theorem 4.5.5 tells us that we can enlarge S to some basis

S ′ = {v1, v2, . . . , vs , vs+1, . . . , vk}
for W . If we now apply the Gram–Schmidt process to the set S ′, then the vectors
v1, v2, . . . , vs , will not be affected since they are already orthonormal, and the resulting
set

S ′′ = {v1, v2, . . . , vs , v′
s+1, . . . , v′

k}
will be an orthonormal basis for W .

-

-

X
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QR-Decomposition
In recent years a numerical algorithm based on the Gram–Schmidt process, and knownO PT I O NA L

as QR-decomposition, has assumed growing importance as the mathematical foundation
for a wide variety of numerical algorithms, including those for computing eigenvalues of
large matrices. The technical aspects of such algorithms are discussed in textbooks that
specialize in the numerical aspects of linear algebra. However, we will discuss some of
the underlying ideas here. We begin by posing the following problem.

Problem If A is an m × n matrix with linearly independent column vectors, and if
Q is the matrix that results by applying the Gram–Schmidt process to the column
vectors of A, what relationship, if any, exists between A and Q?

To solve this problem, suppose that the column vectors of A are u1, u2, . . . , un and
that Q has orthonormal column vectors q1, q2, . . . , qn. Thus, A and Q can be written
in partitioned form as

A = [u1 | u2 | · · · | un] and Q = [q1 | q2 | · · · | qn]

It follows from Theorem 6.3.2(b) that u1, u2, . . . , un are expressible in terms of the vectors
q1, q2, . . . , qn as

u1 = 〈u1, q1〉q1 + 〈u1, q2〉q2 + · · · + 〈u1, qn〉qn

u2 = 〈u2, q1〉q1 + 〈u2, q2〉q2 + · · · + 〈u2, qn〉qn
...

...
...

...

un = 〈un, q1〉q1 + 〈un, q2〉q2 + · · · + 〈un, qn〉qn

Recalling from Section 1.3 (Example 9) that the j th column vector of a matrix product
is a linear combination of the column vectors of the first factor with coefficients coming
from the j th column of the second factor, it follows that these relationships can be
expressed in matrix form as

[u1 | u2 | · · · | un] = [q1 | q2 | · · · | qn]





〈u1, q1〉 〈u2, q1〉 · · · 〈un, q1〉
〈u1, q2〉 〈u2, q2〉 · · · 〈un, q2〉

...
...

...

〈u1, qn〉 〈u2, qn〉 · · · 〈un, qn〉





or more briefly as
A = QR (15)

where R is the second factor in the product. However, it is a property of the Gram–
Schmidt process that for j ≥ 2, the vector qj is orthogonal to u1, u2, . . . , uj−1. Thus, all
entries below the main diagonal of R are zero, and R has the form

R =





〈u1, q1〉 〈u2, q1〉 · · · 〈un, q1〉
0 〈u2, q2〉 · · · 〈un, q2〉
...

...
...

0 0 · · · 〈un, qn〉




(16)

We leave it for you to show that R is invertible by showing that its diagonal entries
are nonzero. Thus, Equation (15) is a factorization of A into the product of a matrix Q

->Is

->
!
-> Is
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with orthonormal column vectors and an invertible upper triangular matrix R. We call
Equation (15) a QR-decomposition of A. In summary, we have the following theorem.

THEOREM 6.3.7 QR -Decomposition

If A is an m × n matrix with linearly independent column vectors, then A can be fac-
tored as

A = QR

where Q is an m × n matrix with orthonormal column vectors, and R is an n × n

invertible upper triangular matrix.

It is common in numerical
linear algebra to say that a ma-
trix with linearly independent
columns has full column rank.

Recall from Theorem 5.1.5 (the Equivalence Theorem) that a square matrix has
linearly independent column vectors if and only if it is invertible. Thus, it follows from
Theorem 6.3.7 that every invertible matrix has a QR-decomposition.

EXAMPLE 10 QR -Decomposition of a 3 × 3 Matrix

Find a QR-decomposition of

A =




1 0 0
1 1 0
1 1 1





Solution The column vectors of A are

u1 =




1
1
1



, u2 =




0
1
1



, u3 =




0
0
1





Applying the Gram–Schmidt process with normalization to these column vectors yields
the orthonormal vectors (see Example 8)

q1 =





1√
3

1√
3

1√
3



, q2 =





− 2√
6

1√
6

1√
6



, q3 =





0

− 1√
2

1√
2





Thus, it follows from Formula (16) that R is

R =




〈u1, q1〉 〈u2, q1〉 〈u3, q1〉

0 〈u2, q2〉 〈u3, q2〉
0 0 〈u3, q3〉



 =





3√
3

2√
3

1√
3

0 2√
6

1√
6

0 0 1√
2





from which it follows that a QR-decomposition of A is




1 0 0
1 1 0
1 1 1



 =





1√
3

− 2√
6

0
1√
3

1√
6

− 1√
2

1√
3

1√
6

1√
2









3√
3

2√
3

1√
3

0 2√
6

1√
6

0 0 1√
2





A = Q R
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Exercise Set 6.3
1. In each part, determine whether the set of vectors is orthog-

onal and whether it is orthonormal with respect to the Eu-
clidean inner product on R2.

(a) (0, 1), (2, 0)

(b)
(
− 1√

2
, 1√

2

)
,

(
1√
2
, 1√

2

)

(c)
(
− 1√

2
, − 1√

2

)
,

(
1√
2
, 1√

2

)

(d) (0, 0), (0, 1)

2. In each part, determine whether the set of vectors is orthog-
onal and whether it is orthonormal with respect to the Eu-
clidean inner product on R3.

(a)
(

1√
2
, 0, 1√

2

)
,

(
1√
3
, 1√

3
, − 1√

3

)
,

(
− 1√

2
, 0, 1√

2

)

(b)
(

2
3 , − 2

3 ,
1
3

)
,

(
2
3 ,

1
3 , − 2

3

)
,

(
1
3 ,

2
3 ,

2
3

)

(c) (1, 0, 0),
(

0, 1√
2
, 1√

2

)
, (0, 0, 1)

(d)
(

1√
6
, 1√

6
, − 2√

6

)
,

(
1√
2
, − 1√

2
, 0

)

3. In each part, determine whether the set of vectors is orthog-
onal with respect to the standard inner product on P2 (see
Example 7 of Section 6.1).

(a) p1(x) = 2
3 − 2

3 x + 1
3 x

2, p2(x) = 2
3 + 1

3 x − 2
3 x

2,

p3(x) = 1
3 + 2

3 x + 2
3 x

2

(b) p1(x) = 1, p2(x) = 1√
2
x + 1√

2
x2, p3(x) = x2

4. In each part, determine whether the set of vectors is orthog-
onal with respect to the standard inner product on M22 (see
Example 6 of Section 6.1).

(a)
[

1 0
0 0

]
,

[
0 2

3

1
3 − 2

3

]

,

[
0 2

3

− 2
3

1
3

]

,

[
0 1

3

2
3

2
3

]

(b)
[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 1

]
,

[
0 0
1 −1

]

In Exercises 5–6, show that the column vectors of A form an
orthogonal basis for the column space of A with respect to the
Euclidean inner product, and then find an orthonormal basis for
that column space.

5. A =




1 2 0
0 0 5

−1 2 0



 6. A =





1
5 − 1

2
1
3

1
5

1
2

1
3

1
5 0 − 2

3





7. Verify that the vectors

v1 =
(
− 3

5 ,
4
5 , 0

)
, v2 =

(
4
5 ,

3
5 , 0

)
, v3 = (0, 0, 1)

form an orthonormal basis for R3 with respect to the Eu-
clidean inner product, and then use Theorem 6.3.2(b) to ex-
press the vector u = (1, −2, 2) as a linear combination of v1,
v2, and v3.

8. Use Theorem 6.3.2(b) to express the vector u = (3, −7, 4) as
a linear combination of the vectors v1, v2, and v3 in Exercise 7.

9. Verify that the vectors

v1 = (2, −2, 1), v2 = (2, 1, −2), v3 = (1, 2, 2)

form an orthogonal basis for R3 with respect to the Euclidean
inner product, and then use Theorem 6.3.2(a) to express the
vector u = (−1, 0, 2) as a linear combination of v1, v2, and v3.

10. Verify that the vectors

v1 = (1, −1, 2, −1), v2 = (−2, 2, 3, 2),

v3 = (1, 2, 0, −1), v4 = (1, 0, 0, 1)

form an orthogonal basis for R4 with respect to the Euclidean
inner product, and then use Theorem 6.3.2(a) to express the
vector u = (1, 1, 1, 1) as a linear combination of v1, v2, v3,

and v4.

In Exercises 11–14, find the coordinate vector (u)S for the vec-
tor u and the basis S that were given in the stated exercise.

11. Exercise 7 12. Exercise 8

13. Exercise 9 14. Exercise 10

In Exercises 15–18, let R2 have the Euclidean inner product.

(a) Find the orthogonal projection of u onto the line spanned by
the vector v.

(b) Find the component of u orthogonal to the line spanned by
the vector v, and confirm that this component is orthogonal
to the line.

15. u = (−1, 6); v =
(

3
5 ,

4
5

)
16. u = (2, 3); v =

(
5
13 ,

12
13

)

17. u = (2, 3); v = (1, 1) 18. u = (3, −1); v = (3, 4)

In Exercises 19–22, let R3 have the Euclidean inner product.

(a) Find the orthogonal projection of u onto the plane spanned
by the vectors v1 and v2.

(b) Find the component of u orthogonal to the plane spanned
by the vectors v1 and v2, and confirm that this component is
orthogonal to the plane.

19. u = (4, 2, 1); v1 =
(

1
3 ,

2
3 , − 2

3

)
, v2 =

(
2
3 ,

1
3 ,

2
3

)

20. u = (3, −1, 2); v1 =
(

1√
6
, 1√

6
, − 2√

6

)
, v2 =

(
1√
3
, 1√

3
, 1√

3

)

21. u = (1, 0, 3); v1 = (1, −2, 1), v2 = (2, 1, 0)

22. u = (1, 0, 2); v1 = (3, 1, 2), v2 = (−1, 1, 1)

In Exercises 23–24, the vectors v1 and v2 are orthogonal with
respect to the Euclidean inner product on R4. Find the orthogo-
nal projection of b = (1, 2, 0, −2) on the subspace W spanned by
these vectors.

23. v1 = (1, 1, 1, 1), v2 = (1, 1, −1, −1)

24. v1 = (0, 1, −4, −1), v2 = (3, 5, 1, 1)
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In Exercises 25–26, the vectors v1, v2, and v3 are orthonor-
mal with respect to the Euclidean inner product on R4. Find the
orthogonal projection of b = (1, 2, 0, −1) onto the subspace W

spanned by these vectors.

25. v1 =
(

0, 1√
18

, − 4√
18

, − 1√
18

)
, v2 =

(
1
2 ,

5
6 ,

1
6 ,

1
6

)
,

v3 =
(

1√
18

, 0, 1√
18

, − 4√
18

)

26. v1 =
(

1
2 ,

1
2 ,

1
2 ,

1
2

)
, v2 =

(
1
2 ,

1
2 , − 1

2 , − 1
2

)
,

v3 =
(

1
2 , − 1

2 ,
1
2 , − 1

2

)

In Exercises 27–28, let R2 have the Euclidean inner product
and use the Gram–Schmidt process to transform the basis {u1, u2}
into an orthonormal basis. Draw both sets of basis vectors in the
xy-plane.

27. u1 = (1, −3), u2 = (2, 2) 28. u1 = (1, 0), u2 = (3, −5)

In Exercises 29–30, letR3 have the Euclidean inner product and
use the Gram–Schmidt process to transform the basis {u1, u2, u3}
into an orthonormal basis.

29. u1 = (1, 1, 1), u2 = (−1, 1, 0), u3 = (1, 2, 1)

30. u1 = (1, 0, 0), u2 = (3, 7, −2), u3 = (0, 4, 1)

31. Let R4 have the Euclidean inner product. Use the Gram–
Schmidt process to transform the basis {u1, u2, u3, u4} into an
orthonormal basis.

u1 = (0, 2, 1, 0), u2 = (1, −1, 0, 0),

u3 = (1, 2, 0, −1), u4 = (1, 0, 0, 1)

32. Let R3 have the Euclidean inner product. Find an orthonor-
mal basis for the subspace spanned by (0, 1, 2), (−1, 0, 1),
(−1, 1, 3).

33. Let b and W be as in Exercise 23. Find vectors w1 in W and
w2 in W⊥ such that b = w1 + w2.

34. Let b and W be as in Exercise 25. Find vectors w1 in W and
w2 in W⊥ such that b = w1 + w2.

35. Let R3 have the Euclidean inner product. The subspace of
R3 spanned by the vectors u1 = (1, 1, 1) and u2 = (2, 0, −1)
is a plane passing through the origin. Express w = (1, 2, 3)
in the form w = w1 + w2, where w1 lies in the plane and w2 is
perpendicular to the plane.

36. Let R4 have the Euclidean inner product. Express the vector
w = (−1, 2, 6, 0) in the form w = w1 + w2, where w1 is in the
space W spanned by u1 = (−1, 0, 1, 2) and u2 = (0, 1, 0, 1),
and w2 is orthogonal to W .

37. Let R3 have the inner product

〈u, v〉 = u1v1 + 2u2v2 + 3u3v3

Use the Gram–Schmidt process to transform u1 = (1, 1, 1),
u2 = (1, 1, 0), u3 = (1, 0, 0) into an orthonormal basis.

38. Verify that the set of vectors {(1, 0), (0, 1)} is orthogonal with
respect to the inner product 〈u, v〉 = 4u1v1 + u2v2 on R2; then
convert it to an orthonormal set by normalizing the vectors.

39. Find vectors x and y in R2 that are orthonormal with respect
to the inner product 〈u, v〉 = 3u1v1 + 2u2v2 but are not or-
thonormal with respect to the Euclidean inner product.

40. In Example 3 of Section 4.9 we found the orthogonal projec-
tion of the vector x = (1, 5) onto the line through the origin
making an angle of π/6 radians with the positive x-axis. Solve
that same problem using Theorem 6.3.4.

41. This exercise illustrates that the orthogonal projection result-
ing from Formula (12) in Theorem 6.3.4 does not depend on
which orthogonal basis vectors are used.

(a) Let R3 have the Euclidean inner product, and let W be the
subspace of R3 spanned by the orthogonal vectors

v1 = (1, 0, 1) and v2 = (0, 1, 0)

Show that the orthogonal vectors

v′
1 = (1, 1, 1) and v′

2 = (1, −2, 1)

span the same subspace W .

(b) Let u = (−3, 1, 7) and show that the same vector projW u
results regardless of which of the bases in part (a) is used
for its computation.

42. (Calculus required ) Use Theorem 6.3.2(a) to express the fol-
lowing polynomials as linear combinations of the first three
Legendre polynomials (see the Remark following Example 9).

(a) 1 + x + 4x2 (b) 2 − 7x2 (c) 4 + 3x

43. (Calculus required ) Let P2 have the inner product

〈p, q〉 =
∫ 1

0
p(x)q(x) dx

Apply the Gram–Schmidt process to transform the standard
basis S = {1, x, x2} into an orthonormal basis.

44. Find an orthogonal basis for the column space of the matrix

A =





6 1 −5

2 1 1

−2 −2 5

6 8 −7





In Exercises 45–48, we obtained the column vectors of Q by
applying the Gram–Schmidt process to the column vectors of A.
Find a QR-decomposition of the matrix A.

45. A =
[

1 −1
2 3

]
, Q =

[ 1√
5

− 2√
5

2√
5

1√
5

]

46. A =




1 2
0 1
1 4



 , Q =





1√
2

− 1√
3

0 1√
3

1√
2

1√
3
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47. A =




1 0 2
0 1 1
1 2 0



 , Q =





1√
2

− 1√
3

1√
6

0 1√
3

2√
6

1√
2

1√
3

− 1√
6





48. A =




1 2 1
1 1 1
0 3 1



 , Q =





1√
2

√
2

2
√

19
− 3√

19

1√
2

−
√

2
2
√

19
3√
19

0 3
√

2√
19

1√
19





49. Find a QR-decomposition of the matrix

A =





1 0 1
−1 1 1

1 0 1
−1 1 1





50. In the Remark following Example 8 we discussed two alter-
native ways to perform the calculations in the Gram–Schmidt
process: normalizing each orthogonal basis vector as soon as
it is calculated and scaling the orthogonal basis vectors at each
step to eliminate fractions. Try these methods in Example 8.

Working with Proofs

51. Prove part (a) of Theorem 6.3.6.

52. In Step 3 of the proof of Theorem 6.3.5, it was stated that “the
linear independence of {u1, u2, . . . , un} ensures that v3 &= 0.”
Prove this statement.

53. Prove that the diagonal entries of R in Formula (16) are
nonzero.

54. Show that matrix Q in Example 10 has the property
QQT = I3, and prove that every m × n matrix Q with or-
thonormal column vectors has the property QQT = Im.

55. (a) Prove that if W is a subspace of a finite-dimensional vec-
tor space V , then the mapping T : V →W defined by
T (v) = projW v is a linear transformation.

(b) What are the range and kernel of the transformation in
part (a)?

True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) Every linearly independent set of vectors in an inner product
space is orthogonal.

(b) Every orthogonal set of vectors in an inner product space is
linearly independent.

(c) Every nontrivial subspace ofR3 has an orthonormal basis with
respect to the Euclidean inner product.

(d) Every nonzero finite-dimensional inner product space has an
orthonormal basis.

(e) projW x is orthogonal to every vector of W .

(f ) If A is an n × n matrix with a nonzero determinant, then A

has a QR-decomposition.

Working withTechnology

T1. (a) Use the Gram–Schmidt process to find an orthonormal
basis relative to the Euclidean inner product for the column
space of

A =





1 1 1 1

1 0 0 1

0 1 0 2

2 −1 1 1





(b) Use the method of Example 9 to find a QR-decomposition
of A.

T2. Let P4 have the evaluation inner product at the points
−2, −1, 0, 1, 2. Find an orthogonal basis for P4 relative to this
inner product by applying the Gram–Schmidt process to the vec-
tors

p0 = 1, p1 = x, p2 = x2, p3 = x3, p4 = x4

6.4 Best Approximation; Least Squares
There are many applications in which some linear system Ax = b of m equations in n

unknowns should be consistent on physical grounds but fails to be so because of
measurement errors in the entries of A or b. In such cases one looks for vectors that come
as close as possible to being solutions in the sense that they minimize ‖b − Ax‖ with respect
to the Euclidean inner product on Rm. In this section we will discuss methods for finding
such minimizing vectors.

Least Squares Solutions of
Linear Systems

Suppose that Ax = b is an inconsistent linear system of m equations in n unknowns in
which we suspect the inconsistency to be caused by errors in the entries of A or b. Since
no exact solution is possible, we will look for a vector x that comes as “close as possible”
to being a solution in the sense that it minimizes ‖b − Ax‖ with respect to the Euclidean


