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Working withTechnology

T1. (a) Confirm that the following matrix generates an inner
product.

A =





5 8 6 −13

3 −1 0 −9

0 1 −1 0

2 4 3 −5





(b) For the following vectors, use the inner product in part (a) to
compute 〈u, v〉, first by Formula (5) and then by Formula (6).

u =





1

−2

0

3




and v =





0

1

−1

2





T2. Let the vector space P4 have the evaluation inner product at
the points

−2, −1, 0, 1, 2

and let

p = p(x) = x + x3 and q = q(x) = 1 + x2 + x4

(a) Compute 〈p, q〉, ‖p‖, and ‖q‖.

(b) Verify that the identities in Exercises 44 and 45 hold for the
vectors p and q.

T3. Let the vector space M33 have the standard inner product and
let

u = U =




1 −2 3

−2 4 1

3 1 0



 and v = V =




2 −1 0

1 4 3

1 0 2





(a) Use Formula (8) to compute 〈u, v〉, ‖u‖, and ‖v‖.

(b) Verify that the identities in Exercises 44 and 45 hold for the
vectors u and v.

6.2 Angle and Orthogonality in Inner Product Spaces
In Section 3.2 we defined the notion of “angle” between vectors in Rn. In this section we
will extend this idea to general vector spaces. This will enable us to extend the notion of
orthogonality as well, thereby setting the groundwork for a variety of new applications.

Cauchy–Schwarz Inequality Recall from Formula (20) of Section 3.2 that the angle θ between two vectors u and v in
Rn is

θ = cos−1
(

u · v
‖u‖‖v‖

)
(1)

We were assured that this formula was valid because it followed from the Cauchy–
Schwarz inequality (Theorem 3.2.4) that

−1 ≤ u · v
‖u‖‖v‖ ≤ 1 (2)

as required for the inverse cosine to be defined. The following generalization of the
Cauchy–Schwarz inequality will enable us to define the angle between two vectors in any
real inner product space.

THEOREM 6.2.1 Cauchy–Schwarz Inequality

If u and v are vectors in a real inner product space V, then

|〈u, v〉| ≤ ‖u‖‖v‖ (3)

Proof We warn you in advance that the proof presented here depends on a clever trick
that is not easy to motivate.

In the case where u = 0 the two sides of (3) are equal since 〈u, v〉 and ‖u‖ are both
zero. Thus, we need only consider the case where u &= 0. Making this assumption, let

a = 〈u, u〉, b = 2〈u, v〉, c = 〈v, v〉

0 Ot
<u,v>

>

0 0

-
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and let t be any real number. Since the positivity axiom states that the inner product of
any vector with itself is nonnegative, it follows that

0 ≤ 〈tu + v, tu + v〉 = 〈u, u〉t2 + 2〈u, v〉t + 〈v, v〉
= at2 + bt + c

This inequality implies that the quadratic polynomial at2 + bt + c has either no real
roots or a repeated real root. Therefore, its discriminant must satisfy the inequality
b2 − 4ac ≤ 0. Expressing the coefficients a, b, and c in terms of the vectors u and v
gives 4〈u, v〉2 − 4〈u, u〉〈v, v〉 ≤ 0 or, equivalently,

〈u, v〉2 ≤ 〈u, u〉〈v, v〉

Taking square roots of both sides and using the fact that 〈u, u〉 and 〈v, v〉 are nonnegative
yields

|〈u, v〉| ≤ 〈u, u〉1/2〈v, v〉1/2 or equivalently |〈u, v〉| ≤ ‖u‖‖v‖
which completes the proof.

The following two alternative forms of the Cauchy–Schwarz inequality are useful to
know:

〈u, v〉2 ≤ 〈u, u〉〈v, v〉 (4)

〈u, v〉2 ≤ ‖u‖2‖v‖2 (5)

The first of these formulas was obtained in the proof of Theorem 6.2.1, and the second
is a variation of the first.

Angle BetweenVectors Our next goal is to define what is meant by the “angle” between vectors in a real inner
product space. As a first step, we leave it as an exercise for you to use the Cauchy–Schwarz
inequality to show that

−1 ≤ 〈u, v〉
‖u‖‖v‖ ≤ 1 (6)

This being the case, there is a unique angle θ in radian measure for which

cos θ = 〈u, v〉
‖u‖‖v‖ and 0 ≤ θ ≤ π (7)

(Figure 6.2.1). This enables us to define the angle θ between u and v to be

θ = cos−1
( 〈u, v〉

‖u‖‖v‖

)
(8)

Figure 6.2.1
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EXAMPLE 1 Cosine of the Angle BetweenVectors inM22

Let M22 have the standard inner product. Find the cosine of the angle between the
vectors

u = U =
[

1 2

3 4

]

and v = V =
[
−1 0

3 2

]

Solution We showed in Example 6 of the previous section that

〈u, v〉 = 16, ‖u‖ =
√

30, ‖v‖ =
√

14

from which it follows that

cos θ = 〈u, v〉
‖u‖‖v‖ = 16√

30
√

14
≈ 0.78

Properties of Length and
Distance in General Inner

Product Spaces

In Section 3.2 we used the dot product to extend the notions of length and distance to Rn,

and we showed that various basic geometry theorems remained valid (see Theorems 3.2.5,
3.2.6, and 3.2.7). By making only minor adjustments to the proofs of those theorems,
one can show that they remain valid in any real inner product space. For example, here
is the generalization of Theorem 3.2.5 (the triangle inequalities).

THEOREM 6.2.2 If u, v, and w are vectors in a real inner product space V, and if k is
any scalar, then:

(a) ‖u + v‖ ≤ ‖u‖ + ‖v‖ [ Triangle inequality for vectors ]

(b) d(u, v) ≤ d(u, w) + d(w, v) [ Triangle inequality for distances ]

Proof (a)

‖u + v‖2 = 〈u + v, u + v〉
= 〈u, u〉 + 2〈u, v〉 + 〈v, v〉
≤ 〈u, u〉 + 2|〈u, v〉| + 〈v, v〉 [ Property of absolute value ]

≤ 〈u, u〉 + 2‖u‖‖v‖ + 〈v, v〉 [ By (3) ]

= ‖u‖2 + 2‖u‖‖v‖ + ‖v‖2

= (‖u‖ + ‖v‖)2

Taking square roots gives ‖u + v‖ ≤ ‖u‖ + ‖v‖.

Proof (b) Identical to the proof of part (b) of Theorem 3.2.5.

Orthogonality Although Example 1 is a useful mathematical exercise, there is only an occasional need
to compute angles in vector spaces other than R2 and R3. A problem of more interest
in general vector spaces is ascertaining whether the angle between vectors is π/2. You
should be able to see from Formula (8) that if u and v are nonzero vectors, then the angle
between them is θ = π/2 if and only if 〈u, v〉 = 0. Accordingly, we make the following
definition, which is a generalization of Definition 1 in Section 3.3 and is applicable even
if one or both of the vectors is zero.

DEFINITION 1 Two vectors u and v in an inner product space V called orthogonal if
〈u, v〉 = 0.
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As the following example shows, orthogonality depends on the inner product in the
sense that for different inner products two vectors can be orthogonal with respect to one
but not the other.

EXAMPLE 2 Orthogonality Depends on the Inner Product

The vectors u = (1, 1) and v = (1, −1) are orthogonal with respect to the Euclidean
inner product on R2 since

u · v = (1)(1) + (1)(−1) = 0

However, they are not orthogonal with respect to the weighted Euclidean inner product
〈u, v〉 = 3u1v1 + 2u2v2 since

〈u, v〉 = 3(1)(1) + 2(1)(−1) = 1 &= 0

EXAMPLE 3 OrthogonalVectors inM22

If M22 has the inner product of Example 6 in the preceding section, then the matrices

U =
[

1 0
1 1

]
and V =

[
0 2
0 0

]

are orthogonal since

〈U, V 〉 = 1(0) + 0(2) + 1(0) + 1(0) = 0

CA L C U L U S R E Q U I R E D EXAMPLE 4 OrthogonalVectors in P2

Let P2 have the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

and let p = x and q = x2. Then

‖p‖ = 〈p, p〉1/2 =
[ ∫ 1

−1
xx dx

]1/2

=
[∫ 1

−1
x2 dx

]1/2

=
√

2
3

‖q‖ = 〈q, q〉1/2 =
[ ∫ 1

−1
x2x2 dx

]1/2

=
[∫ 1

−1
x4 dx

]1/2

=
√

2
5

〈p, q〉 =
∫ 1

−1
xx2 dx =

∫ 1

−1
x3 dx = 0

Because 〈p, q〉 = 0, the vectors p = x and q = x2 are orthogonal relative to the given
inner product.

In Theorem 3.3.3 we proved the Theorem of Pythagoras for vectors in Euclidean
n-space. The following theorem extends this result to vectors in any real inner product
space.

THEOREM 6.2.3 GeneralizedTheorem of Pythagoras

If u and v are orthogonal vectors in a real inner product space, then

‖u + v‖2 = ‖u‖2 + ‖v‖2
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Proof The orthogonality of u and v implies that 〈u, v〉 = 0, so

‖u + v‖2 = 〈u + v, u + v〉 = ‖u‖2 + 2〈u, v〉 + ‖v‖2

= ‖u‖2 + ‖v‖2

CA L C U L U S R E Q U I R E D EXAMPLE 5 Theorem of Pythagoras in P2

In Example 4 we showed that p = x and q = x2 are orthogonal with respect to the inner
product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

on P2. It follows from Theorem 6.2.3 that

‖p + q‖2 = ‖p‖2 + ‖q‖2

Thus, from the computations in Example 4, we have

‖p + q‖2 =
(√

2
3

)2

+
(√

2
5

)2

= 2
3

+ 2
5

= 16
15

We can check this result by direct integration:

‖p + q‖2 = 〈p + q, p + q〉 =
∫ 1

−1
(x + x2)(x + x2) dx

=
∫ 1

−1
x2 dx + 2

∫ 1

−1
x3 dx +

∫ 1

−1
x4 dx = 2

3
+ 0 + 2

5
= 16

15

Orthogonal Complements In Section 4.8 we defined the notion of an orthogonal complement for subspaces of Rn,
and we used that definition to establish a geometric link between the fundamental spaces
of a matrix. The following definition extends that idea to general inner product spaces.

DEFINITION 2 If W is a subspace of a real inner product space V, then the set of
all vectors in V that are orthogonal to every vector in W is called the orthogonal
complement of W and is denoted by the symbol W⊥.

In Theorem 4.8.6 we stated three properties of orthogonal complements in Rn. The
following theorem generalizes parts (a) and (b) of that theorem to general real inner
product spaces.

THEOREM 6.2.4 If W is a subspace of a real inner product space V, then:

(a) W⊥ is a subspace of V .

(b) W ∩ W⊥ = {0}.

Proof (a) The set W⊥ contains at least the zero vector, since 〈0, w〉 = 0 for every vector
w in W . Thus, it remains to show that W⊥ is closed under addition and scalar multipli-
cation. To do this, suppose that u and v are vectors in W⊥, so that for every vector w in
W we have 〈u, w〉 = 0 and 〈v, w〉 = 0. It follows from the additivity and homogeneity
axioms of inner products that

〈u + v, w〉 = 〈u, w〉 + 〈v, w〉 = 0 + 0 = 0

〈ku, w〉 = k〈u, w〉 = k(0) = 0

which proves that u + v and ku are in W⊥.

X 3

liq
(I)(s

8

X
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Proof (b) If v is any vector in both W and W⊥, then v is orthogonal to itself; that is,
〈v, v〉 = 0. It follows from the positivity axiom for inner products that v = 0.

The next theorem, which we state without proof, generalizes part (c) of Theo-
rem 4.8.6. Note, however, that this theorem applies only to finite-dimensional inner
product spaces, whereas Theorem 4.8.6 does not have this restriction.

THEOREM 6.2.5 IfW is a subspace of a real finite-dimensional inner product space V,

Theorem 6.2.5 implies that
in a finite-dimensional in-
ner product space orthogonal
complements occur in pairs,
each being orthogonal to the
other (Figure 6.2.2).

then the orthogonal complement of W⊥ is W ; that is,

(W⊥)⊥ = W

In our study of the fundamental spaces of a matrix in Section 4.8 we showed that the
W⊥

W

Figure 6.2.2 Each vector in
W is orthogonal to each vector
in W⊥ and conversely.

row space and null space of a matrix are orthogonal complements with respect to the
Euclidean inner product on Rn (Theorem 4.8.7). The following example takes advantage
of that fact.

EXAMPLE 6 Basis for an Orthogonal Complement

Let W be the subspace of R6 spanned by the vectors

w1 = (1, 3, −2, 0, 2, 0), w2 = (2, 6, −5, −2, 4, −3),

w3 = (0, 0, 5, 10, 0, 15), w4 = (2, 6, 0, 8, 4, 18)

Find a basis for the orthogonal complement of W .

Solution The subspace W is the same as the row space of the matrix

A =





1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18





Since the row space and null space of A are orthogonal complements, our problem
reduces to finding a basis for the null space of this matrix. In Example 4 of Section 4.7
we showed that

v1 =





−3
1
0
0
0
0





, v2 =





−4
0

−2
1
0
0





, v3 =





−2
0
0
0
1
0





form a basis for this null space. Expressing these vectors in comma-delimited form (to
match that of w1, w2, w3, and w4), we obtain the basis vectors

v1 = (−3, 1, 0, 0, 0, 0), v2 = (−4, 0, −2, 1, 0, 0), v3 = (−2, 0, 0, 0, 1, 0)

You may want to check that these vectors are orthogonal to w1, w2, w3, and w4 by
computing the necessary dot products.

X
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Exercise Set 6.2
In Exercises 1–2, find the cosine of the angle between the vec-

tors with respect to the Euclidean inner product.
1. (a) u = (1, −3), v = (2, 4)

(b) u = (−1, 5, 2), v = (2, 4, −9)

(c) u = (1, 0, 1, 0), v = (−3, −3, −3, −3)

2. (a) u = (−1, 0), v = (3, 8)

(b) u = (4, 1, 8), v = (1, 0, −3)

(c) u = (2, 1, 7, −1), v = (4, 0, 0, 0)

In Exercises 3–4, find the cosine of the angle between the vec-
tors with respect to the standard inner product on P2.

3. p = −1 + 5x + 2x2, q = 2 + 4x − 9x2

4. p = x − x2, q = 7 + 3x + 3x2

In Exercises 5–6, find the cosine of the angle between A and B

with respect to the standard inner product on M22.

5. A =
[

2 6
1 −3

]
, B =

[
3 2
1 0

]

6. A =
[

2 4
−1 3

]
, B =

[−3 1
4 2

]

In Exercises 7–8, determine whether the vectors are orthogonal
with respect to the Euclidean inner product.

7. (a) u = (−1, 3, 2), v = (4, 2, −1)

(b) u = (−2, −2, −2), v = (1, 1, 1)

(c) u = (a, b), v = (−b, a)

8. (a) u = (u1, u2, u3), v = (0, 0, 0)

(b) u = (−4, 6, −10, 1), v = (2, 1, −2, 9)

(c) u = (a, b, c), v = (−c, 0, a)

In Exercises 9–10, show that the vectors are orthogonal with
respect to the standard inner product on P2.

9. p = −1 − x + 2x2, q = 2x + x2

10. p = 2 − 3x + x2, q = 4 + 2x − 2x2

In Exercises 11–12, show that the matrices are orthogonal with
respect to the standard inner product on M22.

11. U =
[

2 1
−1 3

]
, V =

[−3 0
0 2

]

12. U =
[

5 −1
2 −2

]
, V =

[
1 3

−1 0

]

In Exercises 13–14, show that the vectors are not orthogonal
with respect to the Euclidean inner product on R2, and then find
a value of k for which the vectors are orthogonal with respect to
the weighted Euclidean inner product 〈u, v〉 = 2u1v1 + ku2v2.

13. u = (1, 3), v = (2, −1) 14. u = (2, −4), v = (0, 3)

15. If the vectors u = (1, 2) and v = (2, −4) are orthogonal
with respect to the weighted Euclidean inner product
〈u, v〉 = w1u1v1 + w2u2v2, what must be true of the weights
w1 and w2?

16. Let R4 have the Euclidean inner product. Find two unit vec-
tors that are orthogonal to all three of the vectors
u = (2, 1, −4, 0), v = (−1, −1, 2, 2), and w = (3, 2, 5, 4).

17. Do there exist scalars k and l such that the vectors

p1 = 2 + kx + 6x2, p2 = l + 5x + 3x2, p3 = 1 + 2x + 3x2

are mutually orthogonal with respect to the standard inner
product on P2?

18. Show that the vectors

u =
[

3

3

]

and v =
[

5

−8

]

are orthogonal with respect to the inner product on R2 that is
generated by the matrix

A =
[

2 1

1 1

]

[See Formulas (5) and (6) of Section 6.1.]

19. Let P2 have the evaluation inner product at the points

x0 = −2, x1 = 0, x2 = 2

Show that the vectors p = x and q = x2 are orthogonal with
respect to this inner product.

20. Let M22 have the standard inner product. Determine whether
the matrix A is in the subspace spanned by the matrices U

and V .

A =
[
−1 1

0 2

]

, U =
[

1 −1

3 0

]

, V =
[

4 0

9 2

]

In Exercises 21–24, confirm that the Cauchy–Schwarz inequal-
ity holds for the given vectors using the stated inner product.

21. u = (1, 0, 3), v = (2, 1, −1) using the weighted Euclidean in-
ner product 〈u, v〉 = 2u1v1 + 3u2v2 + u3v3 in R3.

22. U =
[−1 2

6 1

]
and V =

[
1 0
3 3

]

using the standard inner product on M22.

23. p = −1 + 2x + x2 and q = 2 − 4x2 using the standard inner
product on P2.

24. The vectors

u =
[

1
1

]
and v =

[
1

−1

]

with respect to the inner product in Exercise 18.
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25. Let R4 have the Euclidean inner product, and let
u = (−1, 1, 0, 2). Determine whether the vector u is orthogo-
nal to the subspace spanned by the vectors w1 = (1, −1, 3, 0)
and w2 = (4, 0, 9, 2).

26. Let P3 have the standard inner product, and let

p = −1 − x + 2x2 + 4x3

Determine whether p is orthogonal to the subspace spanned by
the polynomials w1 = 2 − x2 + x3 and w2 = 4x − 2x2 + 2x3.

In Exercises 27–28, find a basis for the orthogonal complement
of the subspace of Rn spanned by the vectors.

27. v1 = (1, 4, 5, 2), v2 = (2, 1, 3, 0), v3 = (−1, 3, 2, 2)

28. v1 = (1, 4, 5, 6, 9), v2 = (3, −2, 1, 4, −1),
v3 = (−1, 0, −1, −2, −1), v4 = (2, 3, 5, 7, 8)

In Exercises 29–30, assume that Rn has the Euclidean inner
product.

29. (a) Let W be the line in R2 with equation y = 2x. Find an
equation for W⊥.

(b) Let W be the plane in R3 with equation x − 2y − 3z = 0.
Find parametric equations for W⊥.

30. (a) Let W be the y-axis in an xyz-coordinate system in R3.
Describe the subspace W⊥.

(b) Let W be the yz-plane of an xyz-coordinate system in R3.
Describe the subspace W⊥.

31. (Calculus required ) Let C[0, 1] have the integral inner product

〈p, q〉 =
∫ 1

0
p(x)q(x) dx

and let p = p(x) = x and q = q(x) = x2.

(a) Find 〈p, q〉.
(b) Find ‖p‖ and ‖q‖.

32. (a) Find the cosine of the angle between the vectors p and q
in Exercise 31.

(b) Find the distance between the vectors p and q in Exer-
cise 31.

33. (Calculus required ) Let C[−1, 1] have the integral inner
product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

and let p = p(x) = x2 − x and q = q(x) = x + 1.

(a) Find 〈p, q〉.
(b) Find ‖p‖ and ‖q‖.

34. (a) Find the cosine of the angle between the vectors p and q
in Exercise 33.

(b) Find the distance between the vectors p and q in Exer-
cise 33.

35. (Calculus required ) Let C[0, 1] have the inner product in Ex-
ercise 31.

(a) Show that the vectors

p = p(x) = 1 and q = q(x) = 1
2 − x

are orthogonal.

(b) Show that the vectors in part (a) satisfy the Theorem of
Pythagoras.

36. (Calculus required ) Let C[−1, 1] have the inner product in
Exercise 33.

(a) Show that the vectors

p = p(x) = x and q = q(x) = x2 − 1

are orthogonal.

(b) Show that the vectors in part (a) satisfy the Theorem of
Pythagoras.

37. Let V be an inner product space. Show that if u and v are
orthogonal unit vectors in V, then ‖u − v‖ =

√
2.

38. Let V be an inner product space. Show that if w is orthogonal
to both u1 and u2, then it is orthogonal to k1u1 + k2u2 for all
scalars k1 and k2. Interpret this result geometrically in the case
where V is R3 with the Euclidean inner product.

39. (Calculus required ) Let C[0, π ] have the inner product

〈f, g〉 =
∫ π

0
f(x)g(x) dx

and let fn = cos nx (n = 0, 1, 2, . . .). Show that if k &= l, then
fk and fl are orthogonal vectors.

40. As illustrated in the accompanying figure, the vectors
u = (1,

√
3 ) and v = (−1,

√
3 ) have norm 2 and an angle

of 60◦ between them relative to the Euclidean inner product.
Find a weighted Euclidean inner product with respect to which
u and v are orthogonal unit vectors.

y

x
uv

2

60°

(–1, √3) (1, √3)

Figure Ex-40

Working with Proofs

41. Let V be an inner product space. Prove that if w is orthogonal
to each of the vectors u1, u2, . . . , ur , then it is orthogonal to
every vector in span{u1, u2, . . . , ur}.

42. Let {v1, v2, . . . , vr} be a basis for an inner product space V .
Prove that the zero vector is the only vector in V that is or-
thogonal to all of the basis vectors.
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43. Let {w1, w2, . . . , wk} be a basis for a subspace W of V . Prove
that W⊥ consists of all vectors in V that are orthogonal to
every basis vector.

44. Prove the following generalization of Theorem 6.2.3: If
v1, v2, . . . , vr are pairwise orthogonal vectors in an inner
product space V, then

‖v1 + v2 + · · · + vr‖2 = ‖v1‖2 + ‖v2‖2 + · · · + ‖vr‖2

45. Prove: If u and v are n × 1 matrices and A is an n × n matrix,
then

(vTATAu)2 ≤ (uTATAu)(vTATAv)

46. Use the Cauchy–Schwarz inequality to prove that for all real
values of a, b, and θ ,

(a cos θ + b sin θ)2 ≤ a2 + b2

47. Prove: If w1, w2, . . . , wn are positive real numbers, and
if u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are any two
vectors in Rn, then

|w1u1v1 + w2u2v2 + · · · + wnunvn|
≤ (w1u

2
1 + w2u

2
2 + · · · + wnu

2
n)

1/2(w1v
2
1 + w2v

2
2 + · · · + wnv

2
n)

1/2

48. Prove that equality holds in the Cauchy–Schwarz inequality if
and only if u and v are linearly dependent.

49. (Calculus required ) Let f(x) and g(x) be continuous functions
on [0, 1]. Prove:

(a)

[ ∫ 1

0
f(x)g(x) dx

]2

≤
[ ∫ 1

0
f 2(x) dx

] [∫ 1

0
g2(x) dx

]

(b)

[ ∫ 1

0
[f(x) + g(x)]2 dx

]1/2

≤
[ ∫ 1

0
f 2(x) dx

]1/2

+
[ ∫ 1

0
g2(x) dx

]1/2

[Hint: Use the Cauchy–Schwarz inequality.]

50. Prove that Formula (4) holds for all nonzero vectors u and v
in a real inner product space V .

51. Let TA: R2 →R2 be multiplication by

A =
[

1 1

−1 1

]

and let x = (1, 1).

(a) Assuming that R2 has the Euclidean inner product, find
all vectors v in R2 such that 〈x, v〉 = 〈TA(x), TA(v)〉.

(b) Assuming that R2 has the weighted Euclidean inner prod-
uct 〈u, v〉 = 2u1v1 + 3u2v2, find all vectors v in R2 such
that 〈x, v〉 = 〈TA(x), TA(v)〉.

52. Let T : P2 →P2 be the linear transformation defined by
T (a + bx + cx2) = 3a − cx2

and let p = 1 + x.

(a) Assuming that P2 has the standard inner product, find all
vectors q in P2 such that 〈p, q〉 = 〈T (p), T (q)〉.

(b) Assuming that P2 has the evaluation inner product at the
points x0 = −1, x1 = 0, x2 = 1, find all vectors q in P2

such that 〈p, q〉 = 〈T (p), T (q)〉.

True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) If u is orthogonal to every vector of a subspace W , then u = 0.

(b) If u is a vector in both W and W⊥, then u = 0.

(c) If u and v are vectors in W⊥, then u + v is in W⊥.

(d) If u is a vector in W⊥ and k is a real number, then ku is in W⊥.

(e) If u and v are orthogonal, then |〈u, v〉| = ‖u‖‖v‖.

(f ) If u and v are orthogonal, then ‖u + v‖ = ‖u‖ + ‖v‖.

Working withTechnology

T1. (a) We know that the row space and null space of a matrix
are orthogonal complements relative to the Euclidean inner
product. Confirm this fact for the matrix

A =





2 −1 3 5

4 −3 1 3

3 −2 3 4

4 −1 15 17

7 −6 −7 0





(b) Find a basis for the orthogonal complement of the column
space of A.

T2. In each part, confirm that the vectors u and v satisfy the
Cauchy–Schwarz inequality relative to the stated inner product.

(a) M44 with the standard inner product.

u =





1 0 2 0

0 −1 0 1

3 0 0 2

0 4 −3 0




and v =





2 2 1 3

3 −1 0 1

1 0 0 −2

−3 1 2 0





(b) R4 with the weighted Euclidean inner product with weights
w1 = 1

2 , w2 = 1
4 , w3 = 1

8 , w4 = 1
8 .

u = (1, −2, 2, 1) and v = (0, −3, 3, −2)


