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39. Prove that the intersection of any two distinct eigenspaces of
a matrix A is {0}.

True-False Exercises

TF. In parts (a)–(f) determine whether the statement is true or
false, and justify your answer.

(a) If A is a square matrix and Ax = λx for some nonzero scalar
λ, then x is an eigenvector of A.

(b) If λ is an eigenvalue of a matrix A, then the linear system
(λI − A)x = 0 has only the trivial solution.

(c) If the characteristic polynomial of a matrix A is
p(λ) = λ2 + 1, then A is invertible.

(d) If λ is an eigenvalue of a matrix A, then the eigenspace of A

corresponding to λ is the set of eigenvectors of A correspond-
ing to λ.

(e) The eigenvalues of a matrix A are the same as the eigenvalues
of the reduced row echelon form of A.

(f ) If 0 is an eigenvalue of a matrix A, then the set of columns of
A is linearly independent.

Working withTechnology

T1. For the given matrix A, find the characteristic polynomial
and the eigenvalues, and then use the method of Example 7 to find
bases for the eigenspaces.

A =





−8 33 38 173 −30

0 0 −1 −4 0

0 0 −5 −25 1

0 0 1 5 0

4 −16 −19 −86 15





T2. The Cayley–Hamilton Theorem states that every square ma-
trix satisfies its characteristic equation; that is, if A is an n × n

matrix whose characteristic equation is

λ′′ + c1λ
n−1 + · · · + cn = 0

then An + c1A
n−1 + · · · + cn = 0.

(a) Verify the Cayley–Hamilton Theorem for the matrix

A =




0 1 0

0 0 1

2 −5 4





(b) Use the result in Exercise 28 to prove the Cayley–Hamilton
Theorem for 2 × 2 matrices.

5.2 Diagonalization
In this section we will be concerned with the problem of finding a basis for Rn that consists
of eigenvectors of an n × n matrix A. Such bases can be used to study geometric properties
of A and to simplify various numerical computations. These bases are also of physical
significance in a wide variety of applications, some of which will be considered later in this
text.

The Matrix Diagonalization
Problem

Products of the form P −1AP in which A and P are n × n matrices and P is invertible
will be our main topic of study in this section. There are various ways to think about
such products, one of which is to view them as transformations

A→P −1AP

in which the matrix A is mapped into the matrix P −1AP . These are called similarity
transformations. Such transformations are important because they preserve many prop-
erties of the matrix A. For example, if we let B = P −1AP, then A and B have the same
determinant since

det(B) = det(P −1AP) = det(P −1) det(A) det(P )

= 1
det(P )

det(A) det(P ) = det(A)

def(x) =0

b =-.

bI -A1,
:
I
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In general, any property that is preserved by a similarity transformation is called a
similarity invariant and is said to be invariant under similarity. Table 1 lists the most
important similarity invariants. The proofs of some of these are given as exercises.

Table 1 Similarity Invariants

Property Description

Determinant A and P −1AP have the same determinant.

Invertibility A is invertible if and only if P −1AP is invertible.

Rank A and P −1AP have the same rank.

Nullity A and P −1AP have the same nullity.

Trace A and P −1AP have the same trace.

Characteristic polynomial A and P −1AP have the same characteristic polynomial.

Eigenvalues A and P −1AP have the same eigenvalues.

Eigenspace dimension If λ is an eigenvalue of A (and hence of P −1AP ) then the eigenspace
of A corresponding to λ and the eigenspace of P −1AP

corresponding to λ have the same dimension.

We will find the following terminology useful in our study of similarity transforma-
tions.

DEFINITION 1 If A and B are square matrices, then we say that B is similar to A if
there is an invertible matrix P such that B = P −1AP .

Note that if B is similar to A, then it is also true that A is similar to B since we can
express A as A = Q−1BQ by taking Q = P −1. This being the case, we will usually say
that A and B are similar matrices if either is similar to the other.

Because diagonal matrices have such a simple form, it is natural to inquire whether
a given n × n matrix A is similar to a matrix of this type. Should this turn out to be
the case, and should we be able to actually find a diagonal matrix D that is similar to
A, then we would be able to ascertain many of the similarity invariant properties of A

directly from the diagonal entries of D. For example, the diagonal entries of D will
be the eigenvalues of A (Theorem 5.1.2), and the product of the diagonal entries of D

will be the determinant of A (Theorem 2.1.2). This leads us to introduce the following
terminology.

DEFINITION 2 A square matrix A is said to be diagonalizable if it is similar to some
diagonal matrix; that is, if there exists an invertible matrix P such that P −1AP is
diagonal. In this case the matrix P is said to diagonalize A.

The following theorem and the ideas used in its proof will provide us with a roadmap
for devising a technique for determining whether a matrix is diagonalizable and, if so,
for finding a matrix P that will perform the diagonalization.

B
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THEOREM 5.2.1 If A is an n × n matrix, the following statements are equivalent.

(a) A is diagonalizable.

(b) A has n linearly independent eigenvectors.

Proof (a) ⇒ (b) Since A is assumed to be diagonalizable, it follows that there exist an

Part (b) of Theorem 5.2.1 is
equivalent to saying that there
is a basis for Rn consisting of
eigenvectors of A. Why?

invertible matrix P and a diagonal matrix D such that P −1AP = D or, equivalently,

AP = PD (1)

If we denote the column vectors of P by p1, p2, . . . , pn, and if we assume that the
diagonal entries of D are λ1, λ2, . . . , λn, then by Formula (6) of Section 1.3 the left side
of (1) can be expressed as

AP = A[p1 p2 · · · pn] = [Ap1 Ap2 · · · Apn]
and, as noted in the comment following Example 1 of Section 1.7, the right side of (1)
can be expressed as

PD = [λ1p1 λ2p2 · · · λnpn]
Thus, it follows from (1) that

Ap1 = λ1p1, Ap2 = λ2p2, . . . , Apn = λnpn (2)

Since P is invertible, we know from Theorem 5.1.5 that its column vectors p1, p2, . . . , pn

are linearly independent (and hence nonzero). Thus, it follows from (2) that these n

column vectors are eigenvectors of A.

Proof (b) ⇒ (a) Assume that A has n linearly independent eigenvectors, p1, p2, . . . , pn,
and that λ1, λ2, . . . , λn are the corresponding eigenvalues. If we let

P = [p1 p2 · · · pn]
and if we let D be the diagonal matrix that has λ1, λ2, . . . , λn as its successive diagonal
entries, then

AP = A[p1 p2 · · · pn] = [Ap1 Ap2 · · · Apn]
= [λ1p1 λ2p2 · · · λnpn] = PD

Since the column vectors of P are linearly independent, it follows from Theorem 5.1.5
that P is invertible, so that this last equation can be rewritten as P −1AP = D, which
shows that A is diagonalizable.

Whereas Theorem 5.2.1 tells us that we need to find n linearly independent eigen-
vectors to diagonalize a matrix, the following theorem tells us where such vectors might
be found. Part (a) is proved at the end of this section, and part (b) is an immediate
consequence of part (a) and Theorem 5.2.1 (why?).

THEOREM 5.2.2

(a) If λ1, λ2, . . . , λk are distinct eigenvalues of a matrix A, and if v1, v2, . . . , vk are
corresponding eigenvectors, then {v1, v2, . . . , vk} is a linearly independent set.

(b) An n × n matrix with n distinct eigenvalues is diagonalizable.

Remark Part (a) of Theorem 5.2.2 is a special case of a more general result: Specifically, if
λ1, λ2, . . . , λk are distinct eigenvalues, and if S1, S2, . . . , Sk are corresponding sets of linearly
independent eigenvectors, then the union of these sets is linearly independent.

X

X
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Procedure for
Diagonalizing a Matrix

Theorem 5.2.1 guarantees that an n × n matrix A with n linearly independent eigen-
vectors is diagonalizable, and the proof of that theorem together with Theorem 5.2.2
suggests the following procedure for diagonalizing A.

A Procedure for Diagonalizing an n × n Matrix

Step 1. Determine first whether the matrix is actually diagonalizable by searching for
n linearly independent eigenvectors. One way to do this is to find a basis for
each eigenspace and count the total number of vectors obtained. If there is
a total of n vectors, then the matrix is diagonalizable, and if the total is less
than n, then it is not.

Step 2. If you ascertained that the matrix is diagonalizable, then form the matrix
P = [p1 p2 · · · pn] whose column vectors are the n basis vectors you ob-
tained in Step 1.

Step 3. P −1AP will be a diagonal matrix whose successive diagonal entries are the
eigenvalues λ1, λ2, . . . , λn that correspond to the successive columns of P .

EXAMPLE 1 Finding a Matrix P That Diagonalizes a MatrixA

Find a matrix P that diagonalizes

A =




0 0 −2
1 2 1
1 0 3





Solution In Example 7 of the preceding section we found the characteristic equation of
A to be

(λ − 1)(λ − 2)2 = 0

and we found the following bases for the eigenspaces:

λ = 2: p1 =




−1

0
1



, p2 =




0
1
0



 ; λ = 1: p3 =




−2

1
1





There are three basis vectors in total, so the matrix

P =




−1 0 −2

0 1 1
1 0 1





diagonalizes A. As a check, you should verify that

P −1AP =




1 0 2
1 1 1

−1 0 −1








0 0 −2
1 2 1
1 0 3








−1 0 −2

0 1 1
1 0 1



 =




2 0 0
0 2 0
0 0 1





In general, there is no preferred order for the columns of P . Since the ith diagonal
entry of P −1AP is an eigenvalue for the ith column vector of P , changing the order of
the columns of P just changes the order of the eigenvalues on the diagonal of P −1AP .
Thus, had we written

P =




−1 −2 0

0 1 1
1 1 0





=
xXB

⑧

I
-

I
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in the preceding example, we would have obtained

P −1AP =




2 0 0
0 1 0
0 0 2





EXAMPLE 2 A MatrixThat Is Not Diagonalizable

Show that the following matrix is not diagonalizable:

A =




1 0 0
1 2 0

−3 5 2





Solution The characteristic polynomial of A is

det(λI − A) =

∣∣∣∣∣∣∣

λ − 1 0 0
−1 λ − 2 0
3 −5 λ − 2

∣∣∣∣∣∣∣
= (λ − 1)(λ − 2)2

so the characteristic equation is

(λ − 1)(λ − 2)2 = 0

and the distinct eigenvalues of A are λ = 1 and λ = 2. We leave it for you to show that
bases for the eigenspaces are

λ = 1: p1 =





1
8

− 1
8

1



 ; λ = 2: p2 =




0
0
1





Since A is a 3 × 3 matrix and there are only two basis vectors in total, A is not diago-
nalizable.

Alternative Solution If you are concerned only in determining whether a matrix is di-
agonalizable and not with actually finding a diagonalizing matrix P , then it is not nec-
essary to compute bases for the eigenspaces—it suffices to find the dimensions of the
eigenspaces. For this example, the eigenspace corresponding to λ = 1 is the solution
space of the system 


0 0 0

−1 −1 0
3 −5 −1








x1

x2

x3



 =




0
0
0





Since the coefficient matrix has rank 2 (verify), the nullity of this matrix is 1 by Theo-
rem 4.8.2, and hence the eigenspace corresponding to λ = 1 is one-dimensional.

The eigenspace corresponding to λ = 2 is the solution space of the system



1 0 0

−1 0 0
3 −5 0








x1

x2

x3



 =




0
0
0





This coefficient matrix also has rank 2 and nullity 1 (verify), so the eigenspace corre-
sponding to λ = 2 is also one-dimensional. Since the eigenspaces produce a total of two
basis vectors, and since three are needed, the matrix A is not diagonalizable.

det(bI -A) =0

I
-
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EXAMPLE 3 Recognizing Diagonalizability

We saw in Example 3 of the preceding section that

A =




0 1 0
0 0 1
4 −17 8





has three distinct eigenvalues: λ = 4, λ = 2 +
√

3, and λ = 2 −
√

3. Therefore, A is
diagonalizable and

P −1AP =




4 0 0

0 2 +
√

3 0

0 0 2 −
√

3





for some invertible matrix P . If needed, the matrix P can be found using the method
shown in Example 1 of this section.

EXAMPLE 4 Diagonalizability ofTriangular Matrices

From Theorem 5.1.2, the eigenvalues of a triangular matrix are the entries on its main
diagonal. Thus, a triangular matrix with distinct entries on the main diagonal is diago-
nalizable. For example,

A =





−1 2 4 0
0 3 1 7
0 0 5 8
0 0 0 −2





is a diagonalizable matrix with eigenvalues λ1 = −1, λ2 = 3, λ3 = 5, λ4 = −2.

Eigenvalues of Powers of a
Matrix

Since there are many applications in which it is necessary to compute high powers of a
square matrix A, we will now turn our attention to that important problem. As we will
see, the most efficient way to compute Ak , particularly for large values of k, is to first
diagonalize A. But because diagonalizing a matrix A involves finding its eigenvalues and
eigenvectors, we will need to know how these quantities are related to those of Ak . As an
illustration, suppose that λ is an eigenvalue of A and x is a corresponding eigenvector.
Then

A2x = A(Ax) = A(λx) = λ(Ax) = λ(λx) = λ2x

which shows not only that λ2 is a eigenvalue of A2 but that x is a corresponding eigen-
vector. In general, we have the following result.

Note that diagonalizability is
not a requirement in Theo-
rem 5.2.3.

THEOREM 5.2.3 If k is a positive integer, λ is an eigenvalue of a matrix A, and x is
a corresponding eigenvector, then λk is an eigenvalue of Ak and x is a corresponding
eigenvector.

EXAMPLE 5 Eigenvalues and Eigenvectors of Matrix Powers

In Example 2 we found the eigenvalues and corresponding eigenvectors of the matrix

A =




1 0 0
1 2 0

−3 5 2





Do the same for A7.

-
#

O size A =Y

O
0 Ibil Y distinct
-

0
----

=

x=
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Solution We know from Example 2 that the eigenvalues of A are λ = 1 and λ = 2, so
the eigenvalues of A7 are λ = 17 = 1 and λ = 27 = 128. The eigenvectors p1 and p2
obtained in Example 1 corresponding to the eigenvalues λ = 1 and λ = 2 of A are also
the eigenvectors corresponding to the eigenvalues λ = 1 and λ = 128 of A7.

Computing Powers of a
Matrix

The problem of computing powers of a matrix is greatly simplified when the matrix is
diagonalizable. To see why this is so, suppose that A is a diagonalizable n × n matrix,
that P diagonalizes A, and that

P −1AP =





λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn




= D

Squaring both sides of this equation yields

(P −1AP)2 =





λ2
1 0 · · · 0

0 λ2
2 · · · 0

...
...

...

0 0 · · · λ2
n




= D2

We can rewrite the left side of this equation as

(P −1AP)2 = P −1APP −1AP = P −1AIAP = P −1A2P

from which we obtain the relationship P −1A2P = D2. More generally, if k is a positive
integer, then a similar computation will show that

P −1AkP = Dk =





λk
1 0 · · · 0

0 λk
2 · · · 0

...
...

...

0 0 · · · λk
n





which we can rewrite as

Formula (3) reveals that rais-
ing a diagonalizable matrix A

to a positive integer power has
the effect of raising its eigen-
values to that power.

Ak = PDkP −1 = P





λk
1 0 · · · 0

0 λk
2 · · · 0

...
...

...

0 0 · · · λk
n




P −1 (3)

EXAMPLE 6 Powers of a Matrix

Use (3) to find A13, where

A =




0 0 −2
1 2 1
1 0 3





Solution We showed in Example 1 that the matrix A is diagonalized by

P =




−1 0 −2

0 1 1
1 0 1





and that

D = P −1AP =




2 0 0
0 2 0
0 0 1





pAP:D"

**A*I* =PpYp" ⑧
-

I.A"l =PDYp- -.
O

Al=PDp

⑳ -



det(3I-A) =0 =(972) =a =(x-).*ist:
z(d -z)(3(d-3) +2) =0 =(3 -z)(3z+2) =0 =(x -z)(x -z)(

=1 -25(d - 1) =0 =[())b.2
/

when

-i)E]:(E =) = :]())2

2x, +2kz=0

-> 1. =)()=1]
-x, - x,

=0- x, +2x,
=0

atleft, tell -x
+x =
0

and SER LetSt, te

aiy-s et aft

- - -
!

I

[i] =[Et]: + [i]

P =[iii] %



A
=Ppp- D =PAP

D =[82 I

pil pi =2 as i
--
2 I

[i -8: I
R,isR2

[
I o I

i
⑧ 10

I
- R2

10 I

i
010

I->

·!!: i?"iO

=R2+R3

I I I I-> !8 -,=])iI=.o I 2

W 00' I I
1 I

-2123+R2

102
=p=[102]-> Io 10 S I - 10-1

- 1RB+ RI 0 01-10
-
I

A ":P Dp-
w

/?? Ig



5.2 Diagonalization 309

Thus, it follows from (3) that

A13 = PD13P −1 =




−1 0 −2

0 1 1
1 0 1








213 0 0
0 213 0
0 0 113








1 0 2
1 1 1

−1 0 −1





=




−8190 0 −16382

8191 8192 8191
8191 0 16383





(4)

Remark With the method in the preceding example, most of the work is in diagonalizing A.
Once that work is done, it can be used to compute any power of A. Thus, to compute A1000 we
need only change the exponents from 13 to 1000 in (4).

Geometric and Algebraic
Multiplicity

Theorem 5.2.2(b) does not completely settle the diagonalizability question since it only
guarantees that a square matrix with n distinct eigenvalues is diagonalizable; it does not
preclude the possibility that there may exist diagonalizable matrices with fewer than n

distinct eigenvalues. The following example shows that this is indeed the case.

EXAMPLE 7 The Converse ofTheorem 5.2.2(b) Is False

Consider the matrices

I =




1 0 0
0 1 0
0 0 1



 and J =




1 1 0
0 1 1
0 0 1





It follows from Theorem 5.1.2 that both of these matrices have only one distinct eigen-
value, namely λ = 1, and hence only one eigenspace. We leave it as an exercise for you
to solve the characteristic equations

(λI − I )x = 0 and (λI − J )x = 0

with λ = 1 and show that for I the eigenspace is three-dimensional (all of R3) and for J

it is one-dimensional, consisting of all scalar multiples of

x =




1
0
0





This shows that the converse of Theorem 5.2.2(b) is false, since we have produced two
3 × 3 matrices with fewer than three distinct eigenvalues, one of which is diagonalizable
and the other of which is not.

A full excursion into the study of diagonalizability is left for more advanced courses,
but we will touch on one theorem that is important for a fuller understanding of diago-
nalizability. It can be proved that if λ0 is an eigenvalue of A, then the dimension of the
eigenspace corresponding to λ0 cannot exceed the number of times that λ − λ0 appears
as a factor of the characteristic polynomial of A. For example, in Examples 1 and 2 the
characteristic polynomial is

(λ − 1)(λ − 2)2

Thus, the eigenspace corresponding to λ = 1 is at most (hence exactly) one-dimensional,
and the eigenspace corresponding to λ = 2 is at most two-dimensional. In Example 1

...E
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the eigenspace corresponding to λ = 2 actually had dimension 2, resulting in diagonal-
izability, but in Example 2 the eigenspace corresponding to λ = 2 had only dimension 1,
resulting in nondiagonalizability.

There is some terminology that is related to these ideas. If λ0 is an eigenvalue of an
n × n matrix A, then the dimension of the eigenspace corresponding to λ0 is called the
geometric multiplicity of λ0, and the number of times that λ − λ0 appears as a factor in
the characteristic polynomial of A is called the algebraic multiplicity of λ0. The following
theorem, which we state without proof, summarizes the preceding discussion.

THEOREM 5.2.4 Geometric and Algebraic Multiplicity

If A is a square matrix, then:

(a) For every eigenvalue of A, the geometric multiplicity is less than or equal to the
algebraic multiplicity.

(b) A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is
equal to the algebraic multiplicity.

We will complete this section with an optional proof of Theorem 5.2.2(a).

Proof ofTheorem 5.2.2 (a ) Let v1, v2, . . . , vk be eigenvectors of A corresponding to dis-O PT I O NA L

tinct eigenvalues λ1, λ2, . . . , λk . We will assume that v1, v2, . . . , vk are linearly depen-
dent and obtain a contradiction. We can then conclude that v1, v2, . . . , vk are linearly
independent.

Since an eigenvector is nonzero by definition, {v1} is linearly independent. Let r

be the largest integer such that {v1, v2, . . . , vr} is linearly independent. Since we are
assuming that {v1, v2, . . . , vk} is linearly dependent, r satisfies 1 ≤ r < k. Moreover,
by the definition of r , {v1, v2, . . . , vr+1} is linearly dependent. Thus, there are scalars
c1, c2, . . . , cr+1, not all zero, such that

c1v1 + c2v2 + · · · + cr+1vr+1 = 0 (5)

Multiplying both sides of (5) by A and using the fact that

Av1 = λ1v1, Av2 = λ2v2, . . . , Avr+1 = λr+1vr+1

we obtain
c1λ1v1 + c2λ2v2 + · · · + cr+1λr+1vr+1 = 0 (6)

If we now multiply both sides of (5) by λr+1 and subtract the resulting equation from (6)
we obtain

c1(λ1 − λr+1)v1 + c2(λ2 − λr+1)v2 + · · · + cr(λr − λr+1)vr = 0

Since {v1, v2, . . . , vr} is a linearly independent set, this equation implies that

c1(λ1 − λr+1) = c2(λ2 − λr+1) = · · · = cr(λr − λr+1) = 0

and since λ1, λ2, . . . , λr+1 are assumed to be distinct, it follows that

c1 = c2 = · · · = cr = 0 (7)

Substituting these values in (5) yields

cr+1vr+1 = 0
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Since the eigenvector vr+1 is nonzero, it follows that

cr+1 = 0 (8)

But equations (7) and (8) contradict the fact that c1, c2, . . . , cr+1 are not all zero so the
proof is complete.

Exercise Set 5.2
In Exercises 1–4, show that A and B are not similar matrices.

1. A =
[

1 1
3 2

]
, B =

[
1 0
3 −2

]

2. A =
[

4 −1
2 4

]
, B =

[
4 1
2 4

]

3. A =




1 2 3
0 1 2
0 0 1



, B =





1 2 0
1
2 1 0

0 0 1





4. A =




1 0 1
2 0 2
3 0 3



, B =




1 1 0
2 2 0
0 1 1





In Exercises 5–8, find a matrix P that diagonalizes A, and
check your work by computing P −1AP .

5. A =
[

1 0
6 −1

]

6. A =
[
−14 12
−20 17

]

7. A =




2 0 −2
0 3 0
0 0 3



 8. A =




1 0 0
0 1 1
0 1 1





9. Let

A =




4 0 1
2 3 2
1 0 4





(a) Find the eigenvalues of A.

(b) For each eigenvalue λ, find the rank of the matrix λI −A.

(c) Is A diagonalizable? Justify your conclusion.

10. Follow the directions in Exercise 9 for the matrix



3 0 0
0 2 0
0 1 2





In Exercises 11–14, find the geometric and algebraic multiplic-
ity of each eigenvalue of the matrix A, and determine whether A

is diagonalizable. If A is diagonalizable, then find a matrix P that
diagonalizes A, and find P −1AP .

11. A =




−1 4 −2
−3 4 0
−3 1 3



 12. A =




19 −9 −6
25 −11 −9
17 −9 −4





13. A =




0 0 0
0 0 0
3 0 1



 14. A =




5 0 0
1 5 0
0 1 5





In each part of Exercises 15–16, the characteristic equation of
a matrix A is given. Find the size of the matrix and the possible
dimensions of its eigenspaces.

15. (a) (λ − 1)(λ + 3)(λ − 5) = 0

(b) λ2(λ − 1)(λ − 2)3 = 0

16. (a) λ3(λ2 − 5λ − 6) = 0

(b) λ3 − 3λ2 + 3λ − 1 = 0

In Exercises 17–18, use the method of Example 6 to compute
the matrix A10.

17. A =
[

0 3
2 −1

]

18. A =
[

1 0
−1 2

]

19. Let

A =




−1 7 −1

0 1 0
0 15 −2



 and P =




1 1 1
0 0 1
1 0 5





Confirm that P diagonalizes A, and then compute A11.

20. Let

A =




1 −2 8
0 −1 0
0 0 −1



 and P =




1 −4 1
1 0 0
0 1 0





Confirm that P diagonalizes A, and then compute each of the
following powers of A.

(a) A1000 (b) A−1000 (c) A2301 (d) A−2301

21. Find An if n is a positive integer and

A =




3 −1 0

−1 2 −1
0 −1 3




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22. Show that the matrices

A =




1 1 1
1 1 1
1 1 1



 and B =




3 0 0
0 0 0
0 0 0





are similar.

23. We know from Table 1 that similar matrices have the same
rank. Show that the converse is false by showing that the
matrices

A =
[

1 0
0 0

]

and B =
[

0 1
0 0

]

have the same rank but are not similar. [Suggestion: If they
were similar, then there would be an invertible 2 × 2 matrix P

for which AP = PB. Show that there is no such matrix.]

24. We know from Table 1 that similar matrices have the same
eigenvalues. Use the method of Exercise 23 to show that the
converse is false by showing that the matrices

A =
[

1 1
0 1

]

and B =
[

1 0
0 1

]

have the same eigenvalues but are not similar.

25. If A, B, and C are n × n matrices such that A is similar to B

and B is similar to C, do you think that A must be similar to
C? Justify your answer.

26. (a) Is it possible for an n × n matrix to be similar to itself ?
Justify your answer.

(b) What can you say about an n × n matrix that is similar to
0n×n? Justify your answer.

(c) Is is possible for a nonsingular matrix to be similar to a
singular matrix? Justify your answer.

27. Suppose that the characteristic polynomial of some matrix A

is found to be p(λ) = (λ − 1)(λ − 3)2(λ − 4)3. In each part,
answer the question and explain your reasoning.

(a) What can you say about the dimensions of the eigenspaces
of A?

(b) What can you say about the dimensions of the eigenspaces
if you know that A is diagonalizable?

(c) If {v1, v2, v3} is a linearly independent set of eigenvectors
of A, all of which correspond to the same eigenvalue of A,
what can you say about that eigenvalue?

28. Let

A =
[
a b

c d

]

Show that

(a) A is diagonalizable if (a − d)2 + 4bc > 0.

(b) A is not diagonalizable if (a − d)2 + 4bc < 0.

[Hint: See Exercise 29 of Section 5.1.]

29. In the case where the matrix A in Exercise 28 is diagonalizable,
find a matrix P that diagonalizes A. [Hint: See Exercise 30 of
Section 5.1.]

In Exercises 30–33, find the standard matrix A for the given lin-
ear operator, and determine whether that matrix is diagonalizable.
If diagonalizable, find a matrix P that diagonalizes A.

30. T (x1, x2) = (2x1 − x2, x1 + x2)

31. T (x1, x2) = (−x2, −x1)

32. T (x1, x2, x3) = (8x1 + 3x2 − 4x3, −3x1 + x2 + 3x3,

4x1 + 3x2)

33. T (x1, x2, x3) = (3x1, x2, x1 − x2)

34. If P is a fixed n × n matrix, then the similarity transformation

A→P −1AP

can be viewed as an operator SP (A) = P −1AP on the vector
space Mnn of n × n matrices.

(a) Show that SP is a linear operator.

(b) Find the kernel of SP .

(c) Find the rank of SP .

Working with Proofs

35. Prove that similar matrices have the same rank and nullity.

36. Prove that similar matrices have the same trace.

37. Prove that if A is diagonalizable, then so is Ak for every positive
integer k.

38. We know from Table 1 that similar matrices, A and B, have
the same eigenvalues. However, it is not true that those eigen-
values have the same corresponding eigenvectors for the two
matrices. Prove that if B = P −1AP , and v is an eigenvector of
B corresponding to the eigenvalue λ, then P v is the eigenvec-
tor of A corresponding to λ.

39. Let A be an n × n matrix, and let q(A) be the matrix

q(A) = anA
n + an−1A

n−1 + · · · + a1A + a0In

(a) Prove that if B = P −1AP , then q(B) = P −1q(A)P .

(b) Prove that if A is diagonalizable, then so is q(A).

40. Prove that if A is a diagonalizable matrix, then the rank of A

is the number of nonzero eigenvalues of A.

41. This problem will lead you through a proof of the fact that
the algebraic multiplicity of an eigenvalue of an n × n matrix
A is greater than or equal to the geometric multiplicity. For
this purpose, assume that λ0 is an eigenvalue with geometric
multiplicity k.

(a) Prove that there is a basis B = {u1, u2, . . . , un} for Rn

in which the first k vectors of B form a basis for the
eigenspace corresponding to λ0.



5.3 ComplexVector Spaces 313

(b) Let P be the matrix having the vectors in B as col-
umns. Prove that the product AP can be expressed as

AP = P

[
λ0Ik X

0 Y

]

[Hint: Compare the first k column vectors on both sides.]

(c) Use the result in part (b) to prove that A is similar to

C =
[
λ0Ik X

0 Y

]

and hence that A and C have the same characteristic poly-
nomial.

(d) By considering det(λI − C), prove that the charac-
teristic polynomial of C (and hence A) contains the factor
(λ − λ0) at least k times, thereby proving that the algebraic
multiplicity of λ0 is greater than or equal to the geometric
multiplicity k.

True-False Exercises

TF. In parts (a)–(i) determine whether the statement is true or
false, and justify your answer.

(a) An n × n matrix with fewer than n distinct eigenvalues is not
diagonalizable.

(b) An n × n matrix with fewer than n linearly independent eigen-
vectors is not diagonalizable.

(c) If A and B are similar n × n matrices, then there exists an
invertible n × n matrix P such that PA = BP .

(d) If A is diagonalizable, then there is a unique matrix P such
that P −1AP is diagonal.

(e) If A is diagonalizable and invertible, then A−1 is diagonaliz-
able.

(f ) If A is diagonalizable, then AT is diagonalizable.

(g) If there is a basis for Rn consisting of eigenvectors of an n × n

matrix A, then A is diagonalizable.

(h) If every eigenvalue of a matrix A has algebraic multiplicity 1,
then A is diagonalizable.

(i) If 0 is an eigenvalue of a matrix A, then A2 is singular.

Working withTechnology

T1. Generate a random 4 × 4 matrix A and an invertible 4 × 4
matrix P and then confirm, as stated in Table 1, that P −1AP and
A have the same

(a) determinant.

(b) rank.

(c) nullity.

(d) trace.

(e) characteristic polynomial.

(f ) eigenvalues.

T2. (a) Use Theorem 5.2.1 to show that the following matrix is
diagonalizable.

A =




−13 −60 −60

10 42 40

−5 −20 −18





(b) Find a matrix P that diagonalizes A.

(c) Use the method of Example 6 to compute A10, and check your
result by computing A10 directly.

T3. Use Theorem 5.2.1 to show that the following matrix is not
diagonalizable.

A =




−10 11 −6

−15 16 −10

−3 3 −2





5.3 ComplexVector Spaces
Because the characteristic equation of any square matrix can have complex solutions, the
notions of complex eigenvalues and eigenvectors arise naturally, even within the context of
matrices with real entries. In this section we will discuss this idea and apply our results to
study symmetric matrices in more detail. A review of the essentials of complex numbers
appears in the back of this text.

Review of Complex
Numbers

Recall that if z = a + bi is a complex number, then:

• Re(z) = a and Im(z) = b are called the real part of z and the imaginary part of z,
respectively,

• |z| =
√

a2 + b2 is called the modulus (or absolute value) of z,

• z = a − bi is called the complex conjugate of z,


