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INTRODUCTION In this chapter we will focus on classes of scalars and vectors known as “eigenvalues”
and “eigenvectors,” terms derived from the German word eigen, meaning “own,”
“peculiar to,” “characteristic,” or “individual.” The underlying idea first appeared in
the study of rotational motion but was later used to classify various kinds of surfaces
and to describe solutions of certain differential equations. In the early 1900s it was
applied to matrices and matrix transformations, and today it has applications in such
diverse fields as computer graphics, mechanical vibrations, heat flow, population
dynamics, quantum mechanics, and economics, to name just a few.

5.1 Eigenvalues and Eigenvectors
In this section we will define the notions of “eigenvalue” and “eigenvector” and discuss
some of their basic properties.

Definition of Eigenvalue
and Eigenvector

We begin with the main definition in this section.

DEFINITION 1 If A is an n × n matrix, then a nonzero vector x in Rn is called an
eigenvector of A (or of the matrix operator TA) if Ax is a scalar multiple of x; that is,

Ax = λx

for some scalar λ. The scalar λ is called an eigenvalue of A (or of TA), and x is said
to be an eigenvector corresponding to λ.

The requirement that an eigen-
vector be nonzero is imposed
to avoid the unimportant case
A0 = λ0, which holds for ev-
ery A and λ.

In general, the image of a vector x under multiplication by a square matrix A dif-
fers from x in both magnitude and direction. However, in the special case where x is
an eigenvector of A, multiplication by A leaves the direction unchanged. For example,
in R2 or R3 multiplication by A maps each eigenvector x of A (if any) along the same
line through the origin as x. Depending on the sign and magnitude of the eigenvalue λ
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corresponding to x, the operation Ax = λx compresses or stretches x by a factor of λ,
with a reversal of direction in the case where λ is negative (Figure 5.1.1).

Figure 5.1.1
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EXAMPLE 1 Eigenvector of a 2 × 2 Matrix

The vector x =
[

1
2

]
is an eigenvector of

A =
[

3 0
8 −1

]

corresponding to the eigenvalue λ = 3, since

Ax =
[

3 0
8 −1

] [
1
2

]
=

[
3
6

]
= 3x

Geometrically, multiplication by A has stretched the vector x by a factor of 3 (Figure
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Figure 5.1.2 5.1.2).

Computing Eigenvalues
and Eigenvectors

Our next objective is to obtain a general procedure for finding eigenvalues and eigenvec-
tors of an n × n matrix A. We will begin with the problem of finding the eigenvalues of A.
Note first that the equation Ax = λx can be rewritten as Ax = λIx, or equivalently, as

(λI − A)x = 0

For λ to be an eigenvalue of A this equation must have a nonzero solution for x. But
it follows from parts (b) and (g) of Theorem 4.10.2 that this is so if and only if the
coefficient matrix λI − A has a zero determinant. Thus, we have the following result.

Note that if (A)ij = aij , then
formula (1) can be written in
expanded form as
∣∣∣∣∣∣∣∣∣

λ − a11 a12 · · · −a1n

−a21 λ − a22 · · · −a2n

...
...

...

−an1 −an2 · · · λ − ann

∣∣∣∣∣∣∣∣∣

= 0

THEOREM 5.1.1 If A is an n × n matrix, then λ is an eigenvalue of A if and only if it
satisfies the equation

det(λI − A) = 0 (1)

This is called the characteristic equation of A.

EXAMPLE 2 Finding Eigenvalues

In Example 1 we observed that λ = 3 is an eigenvalue of the matrix

A =
[

3 0
8 −1

]

but we did not explain how we found it. Use the characteristic equation to find all
eigenvalues of this matrix.

An= bx

Ax =[=3(i3=7
3w = s/)=[]-

0

⑭sie bx-Ax =(

- 0

Si -A =x[:] -[.] =13]-[8-2]=[8 +)

dot [iY =(d -3)(x+1) - 0
=(x - 3)(d +1)

det(( =

0 11)-3))d +1) =0r
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Solution It follows from Formula (1) that the eigenvalues of A are the solutions of the
equation det(λI − A) = 0, which we can write as

∣∣∣∣
λ − 3 0
−8 λ + 1

∣∣∣∣ = 0

from which we obtain
(λ − 3)(λ + 1) = 0 (2)

This shows that the eigenvalues of A are λ = 3 and λ = −1. Thus, in addition to
the eigenvalue λ = 3 noted in Example 1, we have discovered a second eigenvalue
λ = −1.

When the determinant det(λI − A) in (1) is expanded, the characteristic equation
of A takes the form

λn + c1λ
n−1 + · · · + cn = 0 (3)

where the left side of this equation is a polynomial of degree n in which the coefficient
of λn is 1 (Exercise 37). The polynomial

p(λ) = λn + c1λ
n−1 + · · · + cn (4)

is called the characteristic polynomial of A. For example, it follows from (2) that the
characteristic polynomial of the 2 × 2 matrix in Example 2 is

p(λ) = (λ − 3)(λ + 1) = λ2 − 2λ − 3

which is a polynomial of degree 2.
Since a polynomial of degree n has at most n distinct roots, it follows from (3) that

the characteristic equation of an n × n matrix A has at most n distinct solutions and
consequently the matrix has at most n distinct eigenvalues. Since some of these solutions
may be complex numbers, it is possible for a matrix to have complex eigenvalues, even if
that matrix itself has real entries. We will discuss this issue in more detail later, but for
now we will focus on examples in which the eigenvalues are real numbers.

EXAMPLE 3 Eigenvalues of a 3 × 3 Matrix

Find the eigenvalues of

A =




0 1 0
0 0 1
4 −17 8





Solution The characteristic polynomial of A is

det(λI − A) = det




λ −1 0
0 λ −1

−4 17 λ − 8



 = λ3 − 8λ2 + 17λ − 4

The eigenvalues of A must therefore satisfy the cubic equation

λ3 − 8λ2 + 17λ − 4 = 0 (5)

-



x-1. 3]-/8?]I
det(31-A) =0

"Ivics) + 12i'0) = 0

d(d(X -8) +17) -4 =0

b(x286 +17) - 4 =0
=2,14,1

⑰173 - 4

= 11,12,
&Ist

C 6 -y))5 -46 + 1) =
0

#

d-Y =0 I -4d+1 =0

-
__e-

Stu
2 2

=2I5 + =
y

-E s ⑧
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To solve this equation, we will begin by searching for integer solutions. This task can be
simplified by exploiting the fact that all integer solutions (if there are any) of a polynomial
equation with integer coefficients

λn + c1λ
n−1 + · · · + cn = 0

must be divisors of the constant term, cn. Thus, the only possible integer solutions of (5)
are the divisors of −4, that is, ±1, ±2, ±4. Successively substituting these values in (5)
shows that λ = 4 is an integer solution and hence that λ − 4 is a factor of the left side
of (5). Dividing λ − 4 into λ3 − 8λ2 + 17λ − 4 shows that (5) can be rewritten as

(λ − 4)(λ2 − 4λ + 1) = 0

Thus, the remaining solutions of (5) satisfy the quadratic equation
In applications involving large
matrices it is often not feasi-
ble to compute the character-
istic equation directly, so other
methods must be used to find
eigenvalues. We will consider
such methods in Chapter 9.

λ2 − 4λ + 1 = 0

which can be solved by the quadratic formula. Thus, the eigenvalues of A are

λ = 4, λ = 2 +
√

3, and λ = 2 −
√

3

EXAMPLE 4 Eigenvalues of an UpperTriangular Matrix

Find the eigenvalues of the upper triangular matrix

A =





a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44





Solution Recalling that the determinant of a triangular matrix is the product of the
entries on the main diagonal (Theorem 2.1.2), we obtain

det(λI − A) = det





λ − a11 −a12 −a13 −a14

0 λ − a22 −a23 −a24

0 0 λ − a33 −a34

0 0 0 λ − a44





= (λ − a11)(λ − a22)(λ − a33)(λ − a44)

Thus, the characteristic equation is

(λ − a11)(λ − a22)(λ − a33)(λ − a44) = 0

and the eigenvalues are

λ = a11, λ = a22, λ = a33, λ = a44

which are precisely the diagonal entries of A.

The following general theorem should be evident from the computations in the pre-
ceding example.

THEOREM5.1.2 IfA is an n × n triangularmatrix (upper triangular, lower triangular,
or diagonal ), then the eigenvalues of A are the entries on the main diagonal of A.

⑳
35 -A

-

- To

-
-



5.1 Eigenvalues and Eigenvectors 295

EXAMPLE 5 Eigenvalues of a LowerTriangular Matrix

By inspection, the eigenvalues of the lower triangular matrix

Had Theorem 5.1.2 been avail-
able earlier, we could have an-
ticipated the result obtained in
Example 2.

A =





1
2 0 0

−1 2
3 0

5 −8 − 1
4





are λ = 1
2 , λ = 2

3 , and λ = − 1
4 .

The following theorem gives some alternative ways of describing eigenvalues.

THEOREM 5.1.3 If A is an n × n matrix, the following statements are equivalent.

(a) λ is an eigenvalue of A.

(b) λ is a solution of the characteristic equation det(λI − A) = 0.

(c) The system of equations (λI − A)x = 0 has nontrivial solutions.

(d ) There is a nonzero vector x such that Ax = λx.

Finding Eigenvectors and
Bases for Eigenspaces

Now that we know how to find the eigenvalues of a matrix, we will consider the
problem of finding the corresponding eigenvectors. By definition, the eigenvectors of A

corresponding to an eigenvalue λ are the nonzero vectors that satisfy

(λI − A)x = 0

Thus, we can find the eigenvectors of A corresponding to λ by finding the nonzero
Notice that x = 0 is in every
eigenspace but is not an eigen-
vector (see Definition 1). In
the exercises we will ask you to
show that this is theonly vector
that distinct eigenspaces have
in common.

vectors in the solution space of this linear system. This solution space, which is called
the eigenspace of A corresponding to λ, can also be viewed as:

1. the null space of the matrix λI − A

2. the kernel of the matrix operator TλI−A: Rn →Rn

3. the set of vectors for which Ax = λx

EXAMPLE 6 Bases for Eigenspaces

Find bases for the eigenspaces of the matrix

A =
[
−1 3

2 0

]

Historical Note Methods of linear algebra are used in the emerg-
ing field of computerized face recognition. Researchers are working
with the idea that every human face in a racial group is a combina-
tion of a few dozen primary shapes. For example, by analyzing three-
dimensional scans ofmany faces, researchers at Rockefeller University
have produced both an average head shape in the Caucasian group—
dubbed themeanhead (top row left in the figure to the left)—and a set
of standardized variations from that shape, called eigenheads (15 of
which are shown in the picture). These are so named because they are
eigenvectors of a certain matrix that stores digitized facial information.
Face shapes are representedmathematically as linear combinations of
the eigenheads.

[Image: © Dr. Joseph J. Atick, adapted from Scientific American]

>I-A
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Solution The characteristic equation of A is
∣∣∣∣∣
λ + 1 −3

−2 λ

∣∣∣∣∣ = λ(λ + 1) − 6 = (λ − 2)(λ + 3) = 0

so the eigenvalues of A are λ = 2 and λ = −3. Thus, there are two eigenspaces of A,
one for each eigenvalue.

By definition,

x =
[
x1

x2

]

is an eigenvector of A corresponding to an eigenvalue λ if and only if (λI − A)x = 0,
that is, [

λ + 1 −3

−2 λ

] [
x1

x2

]

=
[

0

0

]

In the case where λ = 2 this equation becomes
[

3 −3

−2 2

] [
x1

x2

]

=
[

0

0

]

whose general solution is
x1 = t, x2 = t

(verify). Since this can be written in matrix form as
[
x1

x2

]

=
[
t

t

]

= t

[
1

1

]

it follows that [
1

1

]

is a basis for the eigenspace corresponding to λ = 2. We leave it for you to follow the
pattern of these computations and show that

[
− 3

2

1

]

is a basis for the eigenspace corresponding to λ = −3.

Figure 5.1.3 illustrates the geometric effect of multiplication by the matrix A in
Example 6. The eigenspace corresponding to λ = 2 is the line L1 through the origin and
the point (1, 1), and the eigenspace corresponding to λ = 3 is the line L2 through the
origin and the point (− 3

2 , 1). As indicated in the figure, multiplication by A maps each
vector in L1 back into L1, scaling it by a factor of 2, and it maps each vector in L2 back
into L2, scaling it by a factor of −3.

EXAMPLE 7 Eigenvectors and Bases for Eigenspaces

Find bases for the eigenspaces of

A =




0 0 −2
1 2 1
1 0 3





①

5.A-i]-l]EGy**--

-
- - ] -(i)88 I

x,-x
=0

Let tER

I Eit
-

E.
↑

0 (
=

ff
-



d =2,1

O invertible

dI -A =S
dut(3I -A) =(b -2))-5 -

s) =( -x)[x(6 -x +2]=0

(6 -z)(j - 33 +2) =

0

X - z =0 or 32 -3 +2 =0

Set 16 -1)(1 - 2) =0

① =>be).f
⑳ ⑤

Siiwillmillion
e

->

x, +x=
0

Letit, te



Weset
-x, +x, =0

(7:() =s') =/]
-

[/i].[I]] basis
of

eigenspace

·b =

1(1)()=):)



5.1 Eigenvalues and Eigenvectors 297

Figure 5.1.3

L1
L2

Multiplication
by λ = –3

Multiplication
by λ = 2

(1, 1)
(2, 2)

2(   , –3)9

2(–   , 1)3

x

y

Solution The characteristic equation of A is λ3 − 5λ2 + 8λ − 4 = 0, or in factored
form, (λ − 1)(λ − 2)2 = 0 (verify). Thus, the distinct eigenvalues of A are λ = 1 and
λ = 2, so there are two eigenspaces of A.

By definition,

x =




x1

x2

x3





is an eigenvector of A corresponding to λ if and only if x is a nontrivial solution of
(λI − A)x = 0, or in matrix form,




λ 0 2

−1 λ − 2 −1
−1 0 λ − 3








x1

x2

x3



 =




0
0
0



 (6)

In the case where λ = 2, Formula (6) becomes



2 0 2

−1 0 −1
−1 0 −1








x1

x2

x3



 =




0
0
0





Solving this system using Gaussian elimination yields (verify)

x1 = −s, x2 = t, x3 = s

Thus, the eigenvectors of A corresponding to λ = 2 are the nonzero vectors of the form

x =




−s

t

s



 =




−s

0
s



 +




0
t

0



 = s




−1

0
1



 + t




0
1
0





Since 


−1

0
1



 and




0
1
0





are linearly independent (why?), these vectors form a basis for the eigenspace corre-
sponding to λ = 2.

I
-

-O
-

-

↑

-
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If λ = 1, then (6) becomes



1 0 2

−1 −1 −1
−1 0 −2








x1

x2

x3



 =




0
0
0





Solving this system yields (verify)

x1 = −2s, x2 = s, x3 = s

Thus, the eigenvectors corresponding to λ = 1 are the nonzero vectors of the form



−2s

s

s



 = s




−2

1
1



 so that




−2

1
1





is a basis for the eigenspace corresponding to λ = 1.

Eigenvalues and
Invertibility

The next theorem establishes a relationship between the eigenvalues and the invertibility
of a matrix.

THEOREM 5.1.4 A square matrix A is invertible if and only if λ = 0 is not an eigen-
value of A.

Proof Assume that A is an n × n matrix and observe first that λ = 0 is a solution of the
characteristic equation

λn + c1λ
n−1 + · · · + cn = 0

if and only if the constant term cn is zero. Thus, it suffices to prove that A is invertible
if and only if cn %= 0. But

det(λI − A) = λn + c1λ
n−1 + · · · + cn

or, on setting λ = 0,

det(−A) = cn or (−1)n det(A) = cn

It follows from the last equation that det(A) = 0 if and only if cn = 0, and this in turn
implies that A is invertible if and only if cn %= 0.

EXAMPLE 8 Eigenvalues and Invertibility

The matrix A in Example 7 is invertible since it has eigenvalues λ = 1 and λ = 2, nei-
ther of which is zero. We leave it for you to check this conclusion by showing that
det(A) %= 0.

More on the Equivalence
Theorem

As our final result in this section, we will use Theorem 5.1.4 to add one additional part
to Theorem 4.10.2.

-

-

X

E -
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THEOREM 5.1.5 Equivalent Statements

If A is an n × n matrix, then the following statements are equivalent.
(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) %= 0.

(h) The column vectors of A are linearly independent.

(i ) The row vectors of A are linearly independent.

( j) The column vectors of A span Rn.

(k) The row vectors of A span Rn.

(l ) The column vectors of A form a basis for Rn.

(m) The row vectors of A form a basis for Rn.

(n) A has rank n.

(o) A has nullity 0.

( p) The orthogonal complement of the null space of A is Rn.

(q) The orthogonal complement of the row space of A is {0}.
(r) The kernel of TA is {0}.
(s) The range of TA is Rn.

(t) TA is one-to-one.

(u) λ = 0 is not an eigenvalue of A.

Eigenvalues of General
LinearTransformations

Thus far, we have only defined eigenvalues and eigenvectors for matrices and linear
operators on Rn. The following definition, which parallels Definition 1, extends this
concept to general vector spaces.

DEFINITION 2 If T : V →V is a linear operator on a vector space V , then a nonzero
vector x in V is called an eigenvector of T if T(x) is a scalar multiple of x; that is,

T(x) = λx
for some scalar λ. The scalar λ is called an eigenvalue of T , and x is said to be an
eigenvector corresponding to λ.

As with matrix operators, we call the kernel of the operator λI − A the eigenspace of
T corresponding to λ. Stated another way, this is the subspace of all vectors in V for
which T(x) = λx.

EXAMPLE 9 Eigenvalue of a Differentiation Operator

If D: C! →C! is the differentiation operator on the vector space of functions with

CA L C U L U S R E Q U I R E D

In vector spaces of functions
eigenvectors are commonly re-
ferred to as eigenfunctions.

continuous derivatives of all orders on the interval (−!, !), and if λ is a constant, then
D(eλx) = λeλx

so that λ is an eigenvalue of D and eλx is a corresponding eigenvector.

-
--
-
-

⑫x=3.7A,e14eigenvergende
↳ V
-

T:V -
T(x)

X

---

Ar
↳x
2
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Exercise Set 5.1
In Exercises 1–4, confirm by multiplication that x is an eigen-

vector of A, and find the corresponding eigenvalue.

1. A =
[

1 2
3 2

]
; x =

[
1

−1

]

2. A =
[

5 −1
1 3

]
; x =

[
1
1

]

3. A =




4 0 1
2 3 2
1 0 4



 ; x =




1
2
1





4. A =




2 −1 −1

−1 2 −1
−1 −1 2



 ; x =




1
1
1





In each part of Exercises 5–6, find the characteristic equation,
the eigenvalues, and bases for the eigenspaces of the matrix.

5. (a)
[

1 4
2 3

]
(b)

[−2 −7
1 2

]

(c)
[

1 0
0 1

]
(d)

[
1 −2
0 1

]

6. (a)
[

2 1
1 2

]
(b)

[
2 −3
0 2

]

(c)
[

2 0
0 2

]
(d)

[
1 2

−2 −1

]

In Exercises 7–12, find the characteristic equation, the eigen-
values, and bases for the eigenspaces of the matrix.

7.




4 0 1

−2 1 0
−2 0 1



 8.




1 0 −2
0 0 0

−2 0 4





9.




6 3 −8
0 −2 0
1 0 −3



 10.




0 1 1
1 0 1
1 1 0





11.




4 0 −1
0 3 0
1 0 2



 12.




1 −3 3
3 −5 3
6 −6 4





In Exercises 13–14, find the characteristic equation of the
matrix by inspection.

13.




3 0 0

−2 7 0
4 8 1



 14.





9 −8 6 3
0 −1 0 0
0 0 3 0
0 0 0 7





In Exercises 15–16, find the eigenvalues and a basis for each
eigenspace of the linear operator defined by the stated formula.
[Suggestion: Work with the standard matrix for the operator.]

15. T (x, y) = (x + 4y, 2x + 3y)

16. T (x, y, z) = (2x − y − z, x − z, −x + y + 2z)

17. (Calculus required ) Let D2: C!(−!, !)→C!(−!, !) be the
operator that maps a function into its second derivative.

(a) Show that D2 is linear.

(b) Show that if ω is a positive constant, then sin
√

ωx and
cos

√
ωx are eigenvectors of D2, and find their corre-

sponding eigenvalues.

18. (Calculus required ) Let D2: C! →C! be the linear operator
in Exercise 17. Show that if ω is a positive constant, then
sinh

√
ωx and cosh

√
ωx are eigenvectors of D2, and find their

corresponding eigenvalues.

In each part of Exercises 19–20, find the eigenvalues and the
corresponding eigenspaces of the stated matrix operator on R2.
Refer to the tables in Section 4.9 and use geometric reasoning to
find the answers. No computations are needed.

19. (a) Reflection about the line y = x.

(b) Orthogonal projection onto the x-axis.

(c) Rotation about the origin through a positive angle of 90◦.

(d) Contraction with factor k (0 ≤ k < 1).

(e) Shear in the x-direction by a factor k (k %= 0).

20. (a) Reflection about the y-axis.

(b) Rotation about the origin through a positive angle of 180◦.

(c) Dilation with factor k (k > 1).

(d) Expansion in the y-direction with factor k (k > 1).

(e) Shear in the y-direction by a factor k (k %= 0).

In each part of Exercises 21–22, find the eigenvalues and the
corresponding eigenspaces of the stated matrix operator on R3.
Refer to the tables in Section 4.9 and use geometric reasoning to
find the answers. No computations are needed.

21. (a) Reflection about the xy-plane.

(b) Orthogonal projection onto the xz-plane.

(c) Counterclockwise rotation about the positive x-axis
through an angle of 90◦.

(d) Contraction with factor k (0 ≤ k < 1).

22. (a) Reflection about the xz-plane.

(b) Orthogonal projection onto the yz-plane.

(c) Counterclockwise rotation about the positive y-axis
through an angle of 180◦.

(d) Dilation with factor k (k > 1).
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23. Let A be a 2 × 2 matrix, and call a line through the origin of
R2 invariant under A if Ax lies on the line when x does. Find
equations for all lines in R2, if any, that are invariant under
the given matrix.

(a) A =
[

4 −1
2 1

]
(b) A =

[
0 1

−1 0

]

24. Find det(A) given that A has p(λ) as its characteristic poly-
nomial.

(a) p(λ) = λ3 − 2λ2 + λ + 5

(b) p(λ) = λ4 − λ3 + 7

[Hint: See the proof of Theorem 5.1.4.]

25. Suppose that the characteristic polynomial of some matrix A

is found to be p(λ) = (λ − 1)(λ − 3)2(λ − 4)3. In each part,
answer the question and explain your reasoning.

(a) What is the size of A?

(b) Is A invertible?

(c) How many eigenspaces does A have?

26. The eigenvectors that we have been studying are sometimes
called right eigenvectors to distinguish them from left eigen-
vectors, which are n × 1 column matrices x that satisfy the
equation xTA = µxT for some scalar µ. For a given matrix A,
how are the right eigenvectors and their corresponding eigen-
values related to the left eigenvectors and their corresponding
eigenvalues?

27. Find a 3 × 3 matrix A that has eigenvalues 1, −1, and 0, and
for which 


1

−1
1



 ,




1
1
0



 ,




1

−1
0





are their corresponding eigenvectors.

Working with Proofs

28. Prove that the characteristic equation of a 2 × 2 matrix A can
be expressed as λ2 − tr(A)λ + det(A) = 0, where tr(A) is the
trace of A.

29. Use the result in Exercise 28 to show that if

A =
[
a b

c d

]

then the solutions of the characteristic equation of A are

λ = 1
2

[
(a + d) ±

√
(a − d)2 + 4bc

]

Use this result to show that A has

(a) two distinct real eigenvalues if (a − d)2 + 4bc > 0.

(b) two repeated real eigenvalues if (a − d)2 + 4bc = 0.

(c) complex conjugate eigenvalues if (a − d)2 + 4bc < 0.

30. Let A be the matrix in Exercise 29. Show that if b %= 0, then

x1 =
[ −b

a − λ1

]
and x2 =

[ −b

a − λ2

]

are eigenvectors of A that correspond, respectively, to the
eigenvalues

λ1 = 1
2

[
(a + d) +

√
(a − d)2 + 4bc

]

and
λ2 = 1

2

[
(a + d) −

√
(a − d)2 + 4bc

]

31. Use the result of Exercise 28 to prove that if

p(λ) = λ2 + c1λ + c2

is the characteristic polynomial of a 2 × 2 matrix, then

p(A) = A2 + c1A + c2I = 0

(Stated informally, A satisfies its characteristic equation. This
result is true as well for n × n matrices.)

32. Prove: If a, b, c, and d are integers such that a + b = c + d,
then

A =
[
a b

c d

]

has integer eigenvalues.

33. Prove: If λ is an eigenvalue of an invertible matrix A and x is
a corresponding eigenvector, then 1/λ is an eigenvalue of A−1

and x is a corresponding eigenvector.

34. Prove: If λ is an eigenvalue of A, x is a corresponding eigen-
vector, and s is a scalar, then λ − s is an eigenvalue of A − sI

and x is a corresponding eigenvector.

35. Prove: If λ is an eigenvalue of A and x is a corresponding
eigenvector, then sλ is an eigenvalue of sA for every scalar s

and x is a corresponding eigenvector.

36. Find the eigenvalues and bases for the eigenspaces of

A =




−2 2 3
−2 3 2
−4 2 5





and then use Exercises 33 and 34 to find the eigenvalues and
bases for the eigenspaces of

(a) A−1 (b) A − 3I (c) A + 2I

37. Prove that the characteristic polynomial of an n × n matrix A

has degree n and that the coefficient of λn in that polynomial
is 1.

38. (a) Prove that if A is a square matrix, then A and AT have
the same eigenvalues. [Hint: Look at the characteristic
equation det(λI − A) = 0.]

(b) Show that A and AT need not have the same eigenspaces.
[Hint: Use the result in Exercise 30 to find a 2 × 2 matrix
for which A and AT have different eigenspaces.]



302 Chapter 5 Eigenvalues and Eigenvectors

39. Prove that the intersection of any two distinct eigenspaces of
a matrix A is {0}.

True-False Exercises

TF. In parts (a)–(f) determine whether the statement is true or
false, and justify your answer.

(a) If A is a square matrix and Ax = λx for some nonzero scalar
λ, then x is an eigenvector of A.

(b) If λ is an eigenvalue of a matrix A, then the linear system
(λI − A)x = 0 has only the trivial solution.

(c) If the characteristic polynomial of a matrix A is
p(λ) = λ2 + 1, then A is invertible.

(d) If λ is an eigenvalue of a matrix A, then the eigenspace of A

corresponding to λ is the set of eigenvectors of A correspond-
ing to λ.

(e) The eigenvalues of a matrix A are the same as the eigenvalues
of the reduced row echelon form of A.

(f ) If 0 is an eigenvalue of a matrix A, then the set of columns of
A is linearly independent.

Working withTechnology

T1. For the given matrix A, find the characteristic polynomial
and the eigenvalues, and then use the method of Example 7 to find
bases for the eigenspaces.

A =





−8 33 38 173 −30

0 0 −1 −4 0

0 0 −5 −25 1

0 0 1 5 0

4 −16 −19 −86 15





T2. The Cayley–Hamilton Theorem states that every square ma-
trix satisfies its characteristic equation; that is, if A is an n × n

matrix whose characteristic equation is

λ′′ + c1λ
n−1 + · · · + cn = 0

then An + c1A
n−1 + · · · + cn = 0.

(a) Verify the Cayley–Hamilton Theorem for the matrix

A =




0 1 0

0 0 1

2 −5 4





(b) Use the result in Exercise 28 to prove the Cayley–Hamilton
Theorem for 2 × 2 matrices.

5.2 Diagonalization
In this section we will be concerned with the problem of finding a basis for Rn that consists
of eigenvectors of an n × n matrix A. Such bases can be used to study geometric properties
of A and to simplify various numerical computations. These bases are also of physical
significance in a wide variety of applications, some of which will be considered later in this
text.

The Matrix Diagonalization
Problem

Products of the form P −1AP in which A and P are n × n matrices and P is invertible
will be our main topic of study in this section. There are various ways to think about
such products, one of which is to view them as transformations

A→P −1AP

in which the matrix A is mapped into the matrix P −1AP . These are called similarity
transformations. Such transformations are important because they preserve many prop-
erties of the matrix A. For example, if we let B = P −1AP, then A and B have the same
determinant since

det(B) = det(P −1AP) = det(P −1) det(A) det(P )

= 1
det(P )

det(A) det(P ) = det(A)


