STAT 333 Chapter 4 Contingency Tables

• Contingency tables are summaries (in matrix form) of categorical data, where the entries in the table are counts of how many observations fell into specific categories (and combinations of categories).

• A <u>one-way</u> contingency table summarizes data on a single categorical variable and has only one row.

• A <u>two-way</u> contingency table summarizes data on two categorical variables and may have several rows and several columns.

• Data on several categorical variables can be summarized by <u>multi-way</u> contingency tables.

<u>Section 4.1: Tests for 2×2 Tables</u>

• Consider the simplest form of two-way table:

2x2 table (2 rows, 2 columns)

- Such a table could summarize data arising from
 - Having a single sample in which <u>two binary variables</u> are measured on each individual
 - Having two samples in which <u>the same binary variable</u> is measured on each individual in each sample.

Comparing Two Probabilities, Independent Samples

• Suppose we have two independent samples, with respective sizes n_1 and n_2 . We classify each individual in each sample into class 1 or class 2.

• Our data could be arranged in a 2×2 table as follows:

	Class 1	Class 2	Total
Sample from population 1	O ₁₁	O ₁₂	n ₁
Sample from population 2	O ₂₁	O ₂₂	n ₂
Total	C ₁	\mathbf{C}_2	N

• The total number of observations is $N = n_1 + n_2$.

• Our goal is to compare the probability of "success" (Class 1) across the two populations:

 P_1 =Proportion an observation from population 1 will be in class 1. P_2 =Proportion an observation from population 2 will be in class 1.

Hypotheses:

Two -tailed	Lower -tailed	Upper-tailed
$H_0: p_1 = p_2$	$H_0: p_1 \ge p_2$	$H_0: p_1 \le p_2$
$H_1: p_1 \neq p_2$	$H_1: p_1 < p_2$	$H_1: p_1 > p_2$

Development of the Test Statistic

As estimators of p_1 and p_2 , we have:

 $\begin{aligned} \hat{p}_1 &= \frac{o_{11}}{n_1} \ , \ \hat{p}_2 &= \frac{o_{21}}{n_2} \ (n_1 = o_{11} + o_{12} \ , n_2 = o_{21} + o_{22}) \\ \hat{p}_1 &- \hat{p}_2 &= \frac{o_{11}}{n_1} - \frac{o_{21}}{n_2} = \frac{o_{11}n_2 - o_{21}n_1}{n_1n_2} = \frac{o_{11}(o_{21} + o_{22}) - o_{21}(o_{11} + o_{12})}{n_1n_2} \\ &= \frac{o_{11}o_{21} + o_{11}o_{22} - o_{21}o_{11} - o_{21}o_{12}}{n_1n_2} = \frac{o_{11}o_{22} - o_{21}o_{12}}{n_1n_2} \end{aligned}$

• This estimates how far apart p_1 and p_2 are.

• Scaling this by dividing by the estimated standard error (see Eq. 5, p. 187), we get the test statistic

$$T_1 = \frac{\sqrt{N}(O_{11}O_{22} - O_{21}O_{12})}{\sqrt{n_1 n_2 c_1 c_2}}$$

which has a <u>standard normal</u> distribution <u>for large samples</u> when H_0 is true.

- If T_1 is far <u>from zero</u>, this indicates that $\mathbf{p}_1 \neq \mathbf{p}_2$
- If T_1 is far <u>below zero</u>, this indicates that $\mathbf{p}_1 < \mathbf{p}_2$
- If T_1 is far <u>above zero</u>, this indicates that $p_1 > p_2$

Decision Rules

Alternative	H ₁ : $p_1 \neq p_2$	H ₁ : $p_1 < p_2$	H ₁ : $p_1 > p_2$
hypothesis			
Reject H ₀ if	$ T_1 > Z_{1-\frac{\alpha}{2}}$	$T_1 < -Z_{1-\infty}$	$T_1 > Z_{1-\infty}$
P-value	$2[min\{P(Z \le T_1^{obs}), P(Z \ge T_1^{obs})\}]$	$P(Z \le T_1^{obs})$	$P(Z \ge T_1^{obs})$

<u>Note</u>: • In all cases, reject H_0 if the p-value $\leq \alpha$

• Note: The normal approximation for T_1 is valid for large samples, say, if

Each of $\,O_{11}\,,O_{12}\,,O_{21},O_{22}$ are at least 5

Example 1:

A survey was conducted of 160 rural households and 261 urban households with Christmas trees. Of interest was whether the tree was natural or artificial. Is the probability of natural trees different for rural and urban households? Use $\alpha = 0.05$.

Data:

Tree

Population		Natural	Artificial	Total
	Rural	64	96	160
	Urban	89	172	261
	Total	153	268	421

Hypothesis:

H₀: $p_1 = p_2$

H₁: $p_1 \neq p_2$

Test statistic:

$$T_1 = \frac{\sqrt{N}(O_{11}O_{22} - O_{21}O_{12})}{\sqrt{n_1 n_2 c_1 c_2}}$$

	Natural	Artificial	Total
Rural	64= <mark>0</mark> 11	96=O ₁₂	$160 = n_1$
Urban	89= <mark>0</mark> 21	172=O ₂₂	261=n ₂
Total	$153 = c_1$	$268 = c_2$	421=N

$$T_1 = \frac{\sqrt{421} \left(64x172 - 89x96\right)}{\sqrt{160x261x153x268}} = 1.22$$

Reject H₀ if $|T_1| > Z_{1-\frac{\alpha}{2}}$ **Since** |1.22| > 1.96 $1.22 \ge 1.96$ (6)

(condition	n not s	satisfies)	

where $\alpha = 0.05$	
$1 - \alpha/2 = 0.975$	
$Z_{1-\frac{\alpha}{2}} = Z_{0.975}$	
= 1.96	

Decision: Fail to reject H₀

<u>Conclusion</u>: Can't conclude that, the probability of natural tree differs for urban and rural households.

P-value =2[min{ $P(Z < T_1^{obs}), P(Z > T_1^{obs})$ }] = 2[min{P(Z < 1.22), P(Z > 1.22)}] = 2[min{0.88877,0.11123}]=2x0.11123=0.22246 > α (Accept H₀)

Example 2:

Page 184 gives data from a study to determine whether a new lighting system worsened midshipmen's vision.

Data:

Vision

Lighting		Good	Poor	Total
	Old	714	111	825
	New	662	154	816
	Total	1376	265	1641

Hypothesis:

H₀: $p_1 \le p_2$

H₁: $p_1 > p_2$

Test statistic:

$$T_1 = \frac{\sqrt{N}(O_{11}O_{22} - O_{21}O_{12})}{\sqrt{n_1 n_2 c_1 c_2}}$$

	Good	Poor	Total
Old	714=O ₁₁	111=O ₁₂	825=n ₁
New	662 = O ₂₁	154=O ₂₂	816 = n ₂
Total	$1376 = c_1$	$265 = c_2$	1641=N

$$T_1 = \frac{\sqrt{1641} \left(714x154 - 662x111\right)}{\sqrt{825x816x1376x265}} = 2.982$$

Reject H₀ if $T_1 > Z_{1-\alpha}$ **Since** 2.982 > 1.645 (condition satisfies)

where $\alpha = 0.05$	
1-α=0.95	
$Z_{1-\alpha} = Z_{0.95}$	
= 1.645	

Decision: Reject H₀

<u>Conclusion</u>: Conclude that, the old lighting produced a better of good vision that new lighting.

5 | Section 4.1- Stat333

P-value= $P(Z > T_1^{obs}) = P(Z > 2.89) = 0.00193$

Fisher's Exact Test

• In the previous examples, the row totals were the sizes of the two samples, which are <u>fixed</u> before the data are examined (i.e., they are not random).

• When we have a single sample in which two <u>binary</u> variables are measured on each individual, the resulting 2×2 table has <u>random</u> row totals and <u>random</u> column totals.

• We will cover that scenario in Section 4.2.

• In other situations, both the row totals and the column totals may be <u>fixed</u> prior to the data being examined.

• In this case of "fixed margins", Fisher's Exact Test is ideal.

Data setup:

	Column 1	Column2	Total
Row 1	Х	r-x	r
Row2	C-X	N-r-c+x	N-r
Total	С	N-c	N

• We again wish to compare:

 P_1 =Probability of an observation in row1 being classified into column 1. P_2 =Probability of an observation in row 2 being classified into column 1.

Test statistic

 $T_2 = x =$ number of observations in (1,1) cell

Null Distribution

• Let p = probability an observation is in Column 1.

• Under H_0 , this probability is the same whether the observation is in Row 1 or Row 2. Then:

P(table results | row totals) =
$$\binom{r}{x} \binom{N-r}{c-x} p^c (1-p)^{N-c}$$

P(column totals) =
$$\binom{N}{c} p^{c} (1-p)^{N-c}$$

 \rightarrow P(table results | row totals & column totals) =

$$\frac{\binom{r}{x}\binom{N-r}{c-x}p^{c}(1-p)^{N-c}}{\binom{N}{c}p^{c}(1-p)^{N-c}} = \frac{\binom{r}{x}\binom{N-r}{c-x}}{\binom{N}{c}}$$

• The decision is based on the P-value, which is found differently depending on the alternative hypothesis:

Alternative	H ₁ : $p_1 \neq p_2$	H ₁ : $p_1 < p_2$	H ₁ : $p_1 > p_2$
hypothesis			
Reject H ₀ if	$ T_1 > Z_{1-\frac{\alpha}{2}}$	$T_1 < -Z_{1-\infty}$	$T_1 > Z_{1-\alpha}$
P-value	$2[min\{P(T_2 \le T_2^{obs}), P(T_2 \ge T_2^{obs})\}]$	$P(T_2 \le T_2^{obs})$	$P(T_2 \ge T_2^{obs})$

• In all cases, reject H_0 if the p-value $\leq \alpha$

Example 3:

Fourteen new hires (10 male and 4 female) are being assigned to bank positions (there are 4 account representative positions open and 10 (less desirable) teller positions open. The data on page 190 summarize the assignments. If all new employees are equally qualified, is there evidence that female hires were more likely to get the account representative jobs?

<u>Data</u>:

	Account rep.	Teller	Total
Male	1	9	10
Female	3	1	4
Total	4	10	14

Hypothesis:

H₀: $p_1 \ge p_2$

 $H_1: p_1 < p_2$

Test statistic:	T_2^{obs}	= x =	1

P-value:

 $P(T_2 \le T_2^{obs}) = P(T_2 \le 1) = P(T_2 = 0) + P(T_2 = 1)$

$$=\frac{\binom{10}{0}\binom{4}{4-0}}{\binom{14}{4}}+\frac{\binom{10}{1}\binom{4}{4-1}}{\binom{14}{4}}=\frac{\binom{10}{0}\binom{4}{4}}{\binom{14}{4}}+\frac{\binom{10}{1}\binom{4}{3}}{\binom{14}{4}}$$

$$=\frac{1x1}{1001}+\frac{10x4}{1001}=\frac{41}{1001}=0.041$$

<u>Decision</u> : P-value $< \alpha$ (Reject H₀)

<u>Conclusion</u> : Female hires more likely to get account representative positions

• See fisher.test function in R to perform this test.

• Fisher's Exact Test may be used if the row totals and/or column totals are random, but in this case it is <u>more conservative</u> than the z-test.

	Account	Teller	Total	
	rep.			
Male	Х	r-x	r	
Female	C-X	N-r-c+x	N-r	
Total	с	N-c	Ν	

• Fisher's Exact Test can also be viewed as an alternative to the z-test when the large-sample rule is not met, but the Exact Test <u>lacks power</u> when the sample size is very small.

• Suppose we have several related (but not identical) conditions in which subexperiments are conducted, each of which produces a 2×2 table.

• It is of interest to see whether rows and columns are independent in <u>each</u> table.

Mantel-Haenszel Test

• We assume we have $k \ge 2$ such 2×2 tables, each with fixed row and column totals (although the test can be done even with random totals).

Let p_{1i} = Probability of an observation in row 1 being classified into column 1, in the i-th table.

And p_{2i} = Probability of an observation in row 2 being classified into column 1, in the i-th table.

Hypotheses:

H ₀ : $p_{1i}=p_{2i}$ for all $i=1,2k$	H ₀ : $p_{1i} \ge p_{2i}$ for all i=1,2k	H ₀ : $p_{1i} \le p_{2i}$ for all i=1,2k
H ₁ : Either $p_{1i} > p_{2i}$ for some i Or either $p_{1i} < p_{2i}$ for some i, but not both	$ \begin{array}{ll} \textbf{H_1:} \ p_{1i} \leq p_{2i} & \text{for all } i, \\ \text{and } \ p_{1i} < p_{2i} & \text{for some } i \end{array} $	$ \begin{array}{ll} \textbf{H_1:} \ p_{1i} \geq p_{2i} & \text{for all } i \ , \\ \text{and} \ p_{1i} > p_{2i} & \text{for some } i \end{array} $

Test statistic:

$$T_{4} = \frac{\sum_{i=1}^{k} x_{i} - \sum_{i=1}^{k} \frac{r_{i}c_{i}}{N_{i}}}{\sqrt{\sum_{i=1}^{k} \frac{r_{i}c_{i}(N_{i} - r_{i})(N_{i} - c_{i})}{N_{i}^{2}(N_{i} - 1)}}}$$

• The null distribution is approximately standard normal, tabulated in Table A1. Decision Rules and P-value:

	Two- tailed	Lower-tailed	Upper-tailed
Reject H ₀ if	$T_4 > Z_{1-\frac{\alpha}{2}} \text{ or } T_4 < -Z_{1-\frac{\alpha}{2}}$	$T_4 < -Z_{1-\alpha}$	$T_4 > Z_{1-\alpha}$
P-value	$2[min\{P(Z \le T_4^{obs}), P(Z \ge T_4^{obs})\}]$	$P(Z \le T_4^{obs})$	$P(Z \ge T_4^{obs})$

Example 4:

Three groups of cancer patients were given either a drug treatment or a control, and for each patient, whether the outcome was successful was recorded. Is there evidence that <u>in at least one group</u>, the treatment produces a better chance of success than the control? (Use $\alpha = 0.05$.)

Data:

	Group 1		Group 2		Group 3	
	Success	Failure	Success	Failure	Success	Failure
Treatment	$10 = x_1$	1	9 =x ₂	0	$8 = x_3$	0
Control	12	1	11	1	7	3
Total	24=N ₁		$21 = N_2$		18=N ₃	

Hypothesis:

 $H_0: p_{1i} \le p_{2i} \text{ for all } i=1,2\ldots k \qquad H_1: p_{1i} > \ p_{2i} \text{ and } p_{1i} \ge \ p_{2i} \text{ for all } i=1,2\ldots k$

Test statistic: (r_i = sum of row i, c_i = sum of column i) $T_{4} = \frac{\sum_{i=1}^{k} x_{i} - \sum_{i=1}^{k} \frac{r_{i}c_{i}}{N_{i}}}{\sqrt{\sum_{i=1}^{k} \frac{r_{i}c_{i}(N_{i} - r_{i})(N_{i} - c_{i})}{N_{i}^{2}(N_{i} - 1)}}}$

$$=\frac{(10+9+8)-(\frac{11x22}{24}+\frac{9x20}{21}+\frac{8x15}{18})}{\sqrt{\frac{11x22x(24-11)x(24-22)}{24^2x(24-1)}}+\frac{9x20x(21-9)x(21-20)}{21^2x(21-1)}+\frac{8x15x(18-8)x(18-15)}{18^2x(18-1)}}$$

$$=\frac{27-25.3214}{\sqrt{\frac{11132}{24^2x23}+\frac{2160}{21^2x20}+\frac{3600}{18^2x17}}}=\frac{1.6786}{1.31862}=1.272997$$

 $T_4 = 1.0057$ (R reports T_4^2)

P-value: =

 $P(Z \ge T_4^{obs}) = P(Z \ge 1.01) = 1 - P(Z < 1.01) = 1 - 0.84375 = 0.15625$

P-value > α (accept H₀)

Conclusion:

There is no evidence that the success probability is better for treatment than for control. (in any group)

• See mantelhaen.test function in R to perform this test.