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24. Find a 3 × 3 matrix whose null space is

(a) a point. (b) a line. (c) a plane.

25. (a) Find all 2 × 2 matrices whose null space is the line
3x − 5y = 0.

(b) Describe the null spaces of the following matrices:

A =
[

1 4
0 5

]

, B =
[

1 0
0 5

]

, C =
[

6 2
3 1

]

, D =
[

0 0
0 0

]

Working with Proofs

26. Prove Theorem 4.7.4.

27. Prove that the row vectors of an n × n invertible matrix A

form a basis for Rn.

28. Suppose that A and B are n × n matrices and A is invertible.
Invent and prove a theorem that describes how the row spaces
of AB and B are related.

True-False Exercises

TF. In parts (a)–( j) determine whether the statement is true or
false, and justify your answer.

(a) The span of v1, . . . , vn is the column space of the matrix
whose column vectors are v1, . . . , vn.

(b) The column space of a matrix A is the set of solutions of
Ax = b.

(c) If R is the reduced row echelon form of A, then those column
vectors of R that contain the leading 1’s form a basis for the
column space of A.

(d) The set of nonzero row vectors of a matrix A is a basis for the
row space of A.

(e) If A and B are n × n matrices that have the same row space,
then A and B have the same column space.

(f ) If E is an m × m elementary matrix and A is an m × n matrix,
then the null space of EA is the same as the null space of A.

(g) If E is an m × m elementary matrix and A is an m × n matrix,
then the row space of EA is the same as the row space of A.

(h) If E is an m × m elementary matrix and A is an m × n matrix,
then the column space of EA is the same as the column space
of A.

(i) The system Ax = b is inconsistent if and only if b is not in the
column space of A.

( j) There is an invertible matrix A and a singular matrix B such
that the row spaces of A and B are the same.

Working withTechnology

T1. Find a basis for the column space of

A =





2 6 0 8 4 12 4

3 9 −2 8 6 18 6

3 9 −7 −2 6 −3 −1

2 6 5 18 4 33 11

1 3 −2 0 2 6 2





that consists of column vectors of A.

T2. Find a basis for the row space of the matrix A in Exercise T1
that consists of row vectors of A.

4.8 Rank, Nullity, and the Fundamental Matrix Spaces
In the last section we investigated relationships between a system of linear equations and
the row space, column space, and null space of its coefficient matrix. In this section we will
be concerned with the dimensions of those spaces. The results we obtain will provide a
deeper insight into the relationship between a linear system and its coefficient matrix.

Row and Column Spaces
Have Equal Dimensions

In Examples 6 and 7 of Section 4.7 we found that the row and column spaces of the
matrix

A =





1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7

−1 3 −4 2 −5 −4





both have three basis vectors and hence are both three-dimensional. The fact that these
spaces have the same dimension is not accidental, but rather a consequence of the fol-
lowing theorem.
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THEOREM 4.8.1 The row space and the column space of a matrix A have the same
dimension.

Proof It follows from Theorems 4.7.4 and 4.7.6 (b) that elementary row operations do

The proof of Theorem 4.8.1
shows that the rank of A can
be interpreted as the number
of leading 1’s in any row eche-
lon form of A.

not change the dimension of the row space or of the column space of a matrix. Thus, if
R is any row echelon form of A, it must be true that

dim(row space of A) = dim(row space of R)

dim(column space of A) = dim(column space of R)

so it suffices to show that the row and column spaces of R have the same dimension. But
the dimension of the row space of R is the number of nonzero rows, and by Theorem
4.7.5 the dimension of the column space of R is the number of leading 1’s. Since these
two numbers are the same, the row and column space have the same dimension.

Rank and Nullity The dimensions of the row space, column space, and null space of a matrix are such
important numbers that there is some notation and terminology associated with them.

DEFINITION 1 The common dimension of the row space and column space of a
matrix A is called the rank of A and is denoted by rank(A); the dimension of the null
space of A is called the nullity of A and is denoted by nullity(A).

EXAMPLE 1 Rank and Nullity of a 4 × 6 Matrix

Find the rank and nullity of the matrix

A =





−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7





Solution The reduced row echelon form of A is




1 0 −4 −28 −37 13
0 1 −2 −12 −16 5
0 0 0 0 0 0
0 0 0 0 0 0




(1)

(verify). Since this matrix has two leading 1’s, its row and column spaces are two-
dimensional and rank(A) = 2. To find the nullity of A, we must find the dimension of
the solution space of the linear system Ax = 0. This system can be solved by reducing
its augmented matrix to reduced row echelon form. The resulting matrix will be iden-
tical to (1), except that it will have an additional last column of zeros, and hence the
corresponding system of equations will be

x1 − 4x3 − 28x4 − 37x5 + 13x6 = 0

x2 − 2x3 − 12x4 − 16x5 + 5x6 = 0

Solving these equations for the leading variables yields

x1 = 4x3 + 28x4 + 37x5 − 13x6

x2 = 2x3 + 12x4 + 16x5 − 5x6
(2)

I

⑰



250 Chapter 4 GeneralVector Spaces

from which we obtain the general solution

x1 = 4r + 28s + 37t − 13u

x2 = 2r + 12s + 16t − 5u

x3 = r

x4 = s

x5 = t

x6 = u

or in column vector form



x1

x2

x3

x4

x5

x6





= r





4
2
1
0
0
0





+ s





28
12

0
1
0
0





+ t





37
16

0
0
1
0





+ u





−13
−5

0
0
0
1





(3)

Because the four vectors on the right side of (3) form a basis for the solution space,
nullity(A) = 4.

EXAMPLE 2 MaximumValue for Rank

What is the maximum possible rank of an m × n matrix A that is not square?

Solution Since the row vectors of A lie in Rn and the column vectors in Rm, the row
space of A is at most n-dimensional and the column space is at most m-dimensional.
Since the rank of A is the common dimension of its row and column space, it follows
that the rank is at most the smaller of m and n. We denote this by writing

rank(A) ≤ min(m, n)

in which min(m, n) is the minimum of m and n.

The following theorem establishes a fundamental relationship between the rank and
nullity of a matrix.

THEOREM 4.8.2 DimensionTheorem for Matrices

If A is a matrix with n columns, then

rank(A) + nullity(A) = n (4)

Proof Since A has n columns, the homogeneous linear system Ax = 0 has n unknowns
(variables). These fall into two distinct categories: the leading variables and the free
variables. Thus, [

number of leading
variables

]
+

[
number of free

variables

]
= n

But the number of leading variables is the same as the number of leading 1’s in any row
echelon form of A, which is the same as the dimension of the row space of A, which is
the same as the rank of A. Also, the number of free variables in the general solution of
Ax = 0 is the same as the number of parameters in that solution, which is the same as
the dimension of the solution space of Ax = 0, which is the same as the nullity of A.
This yields Formula (4).

-
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EXAMPLE 3 The Sum of Rank and Nullity

The matrix

A =





−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7





has 6 columns, so
rank(A) + nullity(A) = 6

This is consistent with Example 1, where we showed that

rank(A) = 2 and nullity(A) = 4

The following theorem, which summarizes results already obtained, interprets rank
and nullity in the context of a homogeneous linear system.

THEOREM 4.8.3 If A is an m × n matrix, then

(a) rank(A) = the number of leading variables in the general solution of Ax = 0.

(b) nullity(A) = the number of parameters in the general solution of Ax = 0.

EXAMPLE 4 Rank, Nullity, and Linear Systems

(a) Find the number of parameters in the general solution of Ax = 0 if A is a 5 × 7
matrix of rank 3.

(b) Find the rank of a 5 × 7 matrix A for which Ax = 0 has a two-dimensional solution
space.

Solution (a) From (4),

nullity(A) = n − rank(A) = 7 − 3 = 4

Thus, there are four parameters.

Solution (b) The matrix A has nullity 2, so

rank(A) = n − nullity(A) = 7 − 2 = 5

Recall from Section 4.7 that if Ax = b is a consistent linear system, then its general
solution can be expressed as the sum of a particular solution of this system and the general
solution of Ax = 0. We leave it as an exercise for you to use this fact and Theorem 4.8.3
to prove the following result.

THEOREM 4.8.4 IfAx = b is a consistent linear system ofm equations in n unknowns,
and if A has rank r , then the general solution of the system contains n − r parameters.

The Fundamental Spaces of
a Matrix

There are six important vector spaces associated with a matrix A and its transpose AT :

row space of A row space of AT

column space of A column space of AT

null space of A null space of AT

123456

I
2 YS

rank(A) +nullity.A)
=
7

nullity(A)
⑳

3 + nullity (A):
7 ↳

⑧
> 0

nullity(A) =
7-3 nullity(A)=2 rank=??
-Y 0 n=7

7-2
=5

-

-

X?
= -
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However, transposing a matrix converts row vectors into column vectors and conversely,
so except for a difference in notation, the row space of AT is the same as the column
space of A, and the column space of AT is the same as the row space of A. Thus, of the
six spaces listed above, only the following four are distinct:

row space of A column space of A

null space of A null space of AT

These are called the fundamental spaces of a matrix A. We will now consider how these

If A is an m × n matrix, then
the row space and null space
of A are subspaces of Rn, and
the column space of A and the
null space of AT are subspaces
of Rm.

four subspaces are related.
Let us focus for a moment on the matrix AT . Since the row space and column space

of a matrix have the same dimension, and since transposing a matrix converts its columns
to rows and its rows to columns, the following result should not be surprising.

THEOREM 4.8.5 If A is any matrix, then rank(A) = rank(AT ).

Proof

rank(A) = dim(row space of A) = dim(column space of AT ) = rank(AT ).

This result has some important implications. For example, if A is an m × n matrix,
then applying Formula (4) to the matrix AT and using the fact that this matrix has m

columns yields

rank(AT ) + nullity(AT ) = m

which, by virtue of Theorem 4.8.5, can be rewritten as

rank(A) + nullity(AT ) = m (5)

This alternative form of Formula (4) makes it possible to express the dimensions of all
four fundamental spaces in terms of the size and rank of A. Specifically, if rank(A) = r ,
then

dim[row(A)] = r dim[col(A)] = r

dim[null(A)] = n − r dim[null(AT )] = m − r
(6)

A Geometric Link Between
the Fundamental Spaces

The four formulas in (6) provide an algebraic relationship between the size of a matrix
and the dimensions of its fundamental spaces. Our next objective is to find a geometric
relationship between the fundamental spaces themselves. For this purpose recall from
Theorem 3.4.3 that if A is an m × n matrix, then the null space of A consists of those
vectors that are orthogonal to each of the row vectors of A. To develop that idea in more
detail, we make the following definition.

DEFINITION 2 If W is a subspace of Rn, then the set of all vectors in Rn that are
orthogonal to every vector in W is called the orthogonal complement of W and is
denoted by the symbol W⊥.

The following theorem lists three basic properties of orthogonal complements. We
will omit the formal proof because a more general version of this theorem will be proved
later in the text.

-
-

rank (A) +nullitydAl=n
-

rank(A) -nullity(
=

m

AT:nX
-

rank(A)-nullity,

-

X
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THEOREM 4.8.6 If W is a subspace of Rn, then:

(a) W⊥ is a subspace of Rn.

(b) The only vector common to W and W⊥ is 0.

(c) The orthogonal complement of W⊥ is W .

Part (b) of Theorem 4.8.6 can
be expressed as

W ∩ W⊥ = {0}
and part (c) as

(W⊥)⊥ = W

EXAMPLE 5 Orthogonal Complements

In R2 the orthogonal complement of a line W through the origin is the line through the
origin that is perpendicular to W (Figure 4.8.1a); and in R3 the orthogonal complement
of a plane W through the origin is the line through the origin that is perpendicular to
that plane (Figure 4.8.1b).

Figure 4.8.1
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The next theorem will provide a geometric link between the fundamental spaces of

Explain why {0} and Rn are
orthogonal complements.

a matrix. In the exercises we will ask you to prove that if a vector in Rn is orthogonal
to each vector in a basis for a subspace of Rn, then it is orthogonal to every vector in
that subspace. Thus, part (a) of the following theorem is essentially a restatement of
Theorem 3.4.3 in the language of orthogonal complements; it is illustrated in Example 6
of Section 3.4. The proof of part (b), which is left as an exercise, follows from part (a).
The essential idea of the theorem is illustrated in Figure 4.8.2.

Figure 4.8.2
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THEOREM 4.8.7 If A is an m × n matrix, then:

(a) The null space of A and the row space of A are orthogonal complements in Rn.

(b) The null space ofAT and the column space ofA are orthogonal complements inRm.

X
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More on the Equivalence
Theorem

In Theorem 2.3.8 we listed six results that are equivalent to the invertibility of a square
matrix A. We are now in a position to add ten more statements to that list to produce a
single theorem that summarizes and links together all of the topics that we have covered
thus far. We will prove some of the equivalences and leave others as exercises.

THEOREM 4.8.8 Equivalent Statements

If A is an n × n matrix, then the following statements are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) &= 0.

(h) The column vectors of A are linearly independent.

(i ) The row vectors of A are linearly independent.

( j) The column vectors of A span Rn.

(k) The row vectors of A span Rn.

(l ) The column vectors of A form a basis for Rn.

(m) The row vectors of A form a basis for Rn.

(n) A has rank n.

(o) A has nullity 0.

( p) The orthogonal complement of the null space of A is Rn.

(q) The orthogonal complement of the row space of A is {0}.

Proof The equivalence of (h) through (m) follows from Theorem 4.5.4 (we omit the
details). To complete the proof we will show that (b), (n), and (o) are equivalent by
proving the chain of implications (b) ⇒ (o) ⇒ (n) ⇒ (b).

(b) ⇒ (o) If Ax = 0 has only the trivial solution, then there are no parameters in that
solution, so nullity(A) = 0 by Theorem 4.8.3(b).

(o) ⇒ (n) Theorem 4.8.2.

(n)⇒ (b) IfAhas rankn, then Theorem 4.8.3(a) implies that there aren leading variables
(hence no free variables) in the general solution of Ax = 0. This leaves the trivial solution
as the only possibility.

Applications of Rank The advent of the Internet has stimulated research on finding efficient methods for trans-
mitting large amounts of digital data over communications lines with limited bandwidths.
Digital data are commonly stored in matrix form, and many techniques for improving
transmission speed use the rank of a matrix in some way. Rank plays a role because it
measures the “redundancy” in a matrix in the sense that if A is an m × n matrix of rank
k, then n − k of the column vectors and m − k of the row vectors can be expressed in
terms of k linearly independent column or row vectors. The essential idea in many data
compression schemes is to approximate the original data set by a data set with smaller
rank that conveys nearly the same information, then eliminate redundant vectors in the
approximating set to speed up the transmission time.

X
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Overdetermined and
Underdetermined Systems

In many applications the equations in a linear system correspond to physical constraintsO PT I O NA L

or conditions that must be satisfied. In general, the most desirable systems are those that

In engineering and physics,
the occurrence of an overde-
termined or underdetermined
linear system often signals that
one or more variables were
omitted in formulating the
problem or that extraneous
variables were included. This
often leads to some kind of
complication.

have the same number of constraints as unknowns since such systems often have a unique
solution. Unfortunately, it is not always possible to match the number of constraints and
unknowns, so researchers are often faced with linear systems that have more constraints
than unknowns, called overdetermined systems, or with fewer constraints than unknowns,
called underdetermined systems. The following theorem will help us to analyze both
overdetermined and underdetermined systems.

THEOREM 4.8.9 Let A be an m × n matrix.

(a) (Overdetermined Case). If m > n, then the linear system Ax = b is inconsistent
for at least one vector b in Rn.

(b) (Underdetermined Case). Ifm < n, then for each vector b inRm the linear system
Ax = b is either inconsistent or has infinitely many solutions.

Proof (a) Assume that m > n, in which case the column vectors of A cannot span Rm

(fewer vectors than the dimension of Rm). Thus, there is at least one vector b in Rm that
is not in the column space of A, and for any such b the system Ax = b is inconsistent by
Theorem 4.7.1.

Proof (b) Assume that m < n. For each vector b in Rn there are two possibilities: either
the system Ax = b is consistent or it is inconsistent. If it is inconsistent, then the proof
is complete. If it is consistent, then Theorem 4.8.4 implies that the general solution has
n − r parameters, where r = rank(A). But we know from Example 2 that rank(A) is at
most the smaller of m and n (which is m), so

n − r ≥ n − m > 0

This means that the general solution has at least one parameter and hence there are
infinitely many solutions.

EXAMPLE 6 Overdetermined and Underdetermined Systems

(a) What can you say about the solutions of an overdetermined system Ax = b of 7
equations in 5 unknowns in which A has rank r = 4?

(b) What can you say about the solutions of an underdetermined system Ax = b of 5
equations in 7 unknowns in which A has rank r = 4?

Solution (a) The system is consistent for some vector b in R7, and for any such b the
number of parameters in the general solution is n − r = 5 − 4 = 1.

Solution (b) The system may be consistent or inconsistent, but if it is consistent for the
vector b in R5, then the general solution has n − r = 7 − 4 = 3 parameters.

EXAMPLE 7 An Overdetermined System

The linear system
x1 − 2x2 = b1

x1 − x2 = b2

x1 + x2 = b3

x1 + 2x2 = b4

x1 + 3x2 = b5

is overdetermined, so it cannot be consistent for all possible values of b1, b2, b3, b4, and
b5. Conditions under which the system is consistent can be obtained by solving the linear

X
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system by Gauss–Jordan elimination. We leave it for you to show that the augmented
matrix is row equivalent to





1 0 2b2 − b1

0 1 b2 − b1

0 0 b3 − 3b2 + 2b1

0 0 b4 − 4b2 + 3b1

0 0 b5 − 5b2 + 4b1




(7)

Thus, the system is consistent if and only if b1, b2, b3, b4, and b5 satisfy the conditions

2b1 − 3b2 + b3 = 0
3b1 − 4b2 + b4 = 0
4b1 − 5b2 + b5 = 0

Solving this homogeneous linear system yields

b1 = 5r − 4s, b2 = 4r − 3s, b3 = 2r − s, b4 = r, b5 = s

where r and s are arbitrary.

Remark The coefficient matrix for the given linear system in the last example has n = 2 columns,
and it has rank r = 2 because there are two nonzero rows in its reduced row echelon form. This
implies that when the system is consistent its general solution will contain n − r = 0 parameters;
that is, the solution will be unique. With a moment’s thought, you should be able to see that this
is so from (7).

Exercise Set 4.8
In Exercises 1–2, find the rank and nullity of the matrix A by

reducing it to row echelon form.

1. (a) A =





1 2 −1 1
2 4 −2 2
3 6 −3 3
4 8 −4 4





(b) A =




1 −2 2 3 −1

−3 6 −1 1 −7
2 −4 5 8 −4





2. (a) A =





1 0 −2 1 0
0 −1 −3 1 3

−2 −1 1 −1 3
0 1 3 0 −4





(b) A =





1 3 1 3
0 1 1 0

−3 0 6 −1
3 4 −2 1
2 0 −4 −2





In Exercises 3–6, the matrix R is the reduced row echelon form
of the matrix A.

(a) By inspection of the matrix R, find the rank and nullity
of A.

(b) Confirm that the rank and nullity satisfy Formula (4).

(c) Find the number of leading variables and the number
of parameters in the general solution of Ax = 0 without
solving the system.

3. A =




2 −1 −3

−1 2 −3
1 1 4



; R =




1 0 0
0 1 0
0 0 1





4. A =




2 −1 −3

−1 2 −3
1 1 −6



; R =




1 0 −3
0 1 −3
0 0 0





5. A =




2 −1 −3

−2 1 3
−4 2 6



; R =




1 − 1

2 − 3
2

0 0 0
0 0 0





6. A =





0 2 2 4
1 0 −1 −3
2 3 1 1

−2 1 3 −2




; R =





1 0 −1 0
0 1 1 0
0 0 0 1
0 0 0 0





X
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7. In each part, find the largest possible value for the rank of A

and the smallest possible value for the nullity of A.

(a) A is 4 × 4 (b) A is 3 × 5 (c) A is 5 × 3

8. If A is an m × n matrix, what is the largest possible value for
its rank and the smallest possible value for its nullity?

9. In each part, use the information in the table to:

(i) find the dimensions of the row space of A, column space
of A, null space of A, and null space of AT ;

(ii) determine whether or not the linear system Ax = b is
consistent;

(iii) find the number of parameters in the general solution of
each system in (ii) that is consistent.

(a) (b) (c) (d) (e) (f ) (g)

Size of A 3 × 3 3 × 3 3 × 3 5 × 9 5 × 9 4 × 4 6 × 2
Rank(A) 3 2 1 2 2 0 2
Rank[A | b] 3 3 1 2 3 0 2

10. Verify that rank(A) = rank(AT ).

A =




1 2 4 0

−3 1 5 2
−2 3 9 2





11. (a) Find an equation relating nullity(A) and nullity(AT ) for
the matrix in Exercise 10.

(b) Find an equation relating nullity(A) and nullity(AT ) for
a general m × n matrix.

12. Let T : R2 →R3 be the linear transformation defined by the
formula

T (x1, x2) = (x1 + 3x2, x1 − x2, x1)

(a) Find the rank of the standard matrix for T .

(b) Find the nullity of the standard matrix for T .

13. Let T : R5 →R3 be the linear transformation defined by the
formula

T (x1, x2, x3, x4, x5) = (x1 + x2, x2 + x3 + x4, x4 + x5)

(a) Find the rank of the standard matrix for T .

(b) Find the nullity of the standard matrix for T .

14. Discuss how the rank of A varies with t .

(a) A =




1 1 t

1 t 1
t 1 1



 (b) A =




t 3 −1
3 6 −2

−1 −3 t





15. Are there values of r and s for which




1 0 0
0 r − 2 2
0 s − 1 r + 2
0 0 3





has rank 1? Has rank 2? If so, find those values.

16. (a) Give an example of a 3 × 3 matrix whose column space is
a plane through the origin in 3-space.

(b) What kind of geometric object is the null space of your
matrix?

(c) What kind of geometric object is the row space of your
matrix?

17. Suppose that A is a 3 × 3 matrix whose null space is a line
through the origin in 3-space. Can the row or column space
of A also be a line through the origin? Explain.

18. (a) If A is a 3 × 5 matrix, then the rank of A is at most
. Why?

(b) If A is a 3 × 5 matrix, then the nullity of A is at most
. Why?

(c) If A is a 3 × 5 matrix, then the rank of AT is at most
. Why?

(d) If A is a 3 × 5 matrix, then the nullity of AT is at most
. Why?

19. (a) If A is a 3 × 5 matrix, then the number of leading 1’s in
the reduced row echelon form of A is at most .
Why?

(b) If A is a 3 × 5 matrix, then the number of parameters in
the general solution of Ax = 0 is at most . Why?

(c) If A is a 5 × 3 matrix, then the number of leading 1’s in
the reduced row echelon form of A is at most .
Why?

(d) If A is a 5 × 3 matrix, then the number of parameters in
the general solution of Ax = 0 is at most . Why?

20. Let A be a 7 × 6 matrix such that Ax = 0 has only the trivial
solution. Find the rank and nullity of A.

21. Let A be a 5 × 7 matrix with rank 4.

(a) What is the dimension of the solution space of Ax = 0 ?

(b) Is Ax = b consistent for all vectors b in R5? Explain.

22. Let

A =
[
a11 a12 a13

a21 a22 a23

]

Show that A has rank 2 if and only if one or more of the fol-
lowing determinants is nonzero.

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣,
∣∣∣∣
a11 a13

a21 a23

∣∣∣∣,
∣∣∣∣
a12 a13

a22 a23

∣∣∣∣
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23. Use the result in Exercise 22 to show that the set of points
(x, y, z) in R3 for which the matrix

[
x y z

1 x y

]

has rank 1 is the curve with parametric equations x = t ,
y = t2, z = t3.

24. Find matrices A and B for which rank(A) = rank(B), but
rank(A2) &= rank(B2).

25. In Example 6 of Section 3.4 we showed that the row space and
the null space of the matrix

A =





1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18





are orthogonal complements in R6, as guaranteed by part (a)
of Theorem 4.8.7. Show that null space of AT and the column
space of A are orthogonal complements in R4, as guaranteed
by part (b) of Theorem 4.8.7. [Suggestion: Show that each
column vector of A is orthogonal to each vector in a basis for
the null space of AT .]

26. Confirm the results stated in Theorem 4.8.7 for the matrix.

A =





−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3





27. In each part, state whether the system is overdetermined or
underdetermined. If overdetermined, find all values of the b’s
for which it is inconsistent, and if underdetermined, find all
values of the b’s for which it is inconsistent and all values for
which it has infinitely many solutions.

(a)




1 −1

−3 1
0 1





[
x

y

]

=




b1

b2

b3





(b)

[
1 −3 4

−2 −6 8

] 


x

y

z



 =
[
b1

b2

]

(c)

[
1 −3 0

−1 1 1

] 


x

y

z



 =
[
b1

b2

]

28. What conditions must be satisfied by b1, b2, b3, b4, and b5 for
the overdetermined linear system

x1 − 3x2 = b1

x1 − 2x2 = b2

x1 + x2 = b3

x1 − 4x2 = b4

x1 + 5x2 = b5

to be consistent?

Working with Proofs

29. Prove: If k &= 0, then A and kA have the same rank.

30. Prove: If a matrix A is not square, then either the row vectors
or the column vectors of A are linearly dependent.

31. Use Theorem 4.8.3 to prove Theorem 4.8.4.

32. Prove Theorem 4.8.7(b).

33. Prove: If a vector v in Rn is orthogonal to each vector in a
basis for a subspace W of Rn, then v is orthogonal to every
vector in W .

True-False Exercises

TF. In parts (a)–( j) determine whether the statement is true or
false, and justify your answer.

(a) Either the row vectors or the column vectors of a square matrix
are linearly independent.

(b) A matrix with linearly independent row vectors and linearly
independent column vectors is square.

(c) The nullity of a nonzero m × n matrix is at most m.

(d) Adding one additional column to a matrix increases its rank
by one.

(e) The nullity of a square matrix with linearly dependent rows is
at least one.

(f ) If A is square and Ax = b is inconsistent for some vector b,
then the nullity of A is zero.

(g) If a matrix A has more rows than columns, then the dimension
of the row space is greater than the dimension of the column
space.

(h) If rank(AT ) = rank(A), then A is square.

(i) There is no 3 × 3 matrix whose row space and null space are
both lines in 3-space.

( j) If V is a subspace of Rn and W is a subspace of V, then W⊥

is a subspace of V ⊥.

Working withTechnology

T1. It can be proved that a nonzero matrix A has rank k if and
only if some k × k submatrix has a nonzero determinant and all
square submatrices of larger size have determinant zero. Use this
fact to find the rank of

A =





3 −1 3 2 5

5 −3 2 3 4

1 −3 −5 0 −7

7 −5 1 4 1





Check your result by computing the rank of A in a different way.


