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4.7 Row Space, Column Space, and Null Space
In this section we will study some important vector spaces that are associated with matrices.
Our work here will provide us with a deeper understanding of the relationships between the
solutions of a linear system and properties of its coefficient matrix.

Row Space, Column Space,
and Null Space

Recall that vectors can be written in comma-delimited form or in matrix form as either
row vectors or column vectors. In this section we will use the latter two.

DEFINITION 1 For an m × n matrix

A =





a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn





the vectors
r1 = [a11 a12 · · · a1n]
r2 = [a21 a22 · · · a2n]
...

...
rm = [am1 am2 · · · amn]

in Rn that are formed from the rows of A are called the row vectors of A, and the
vectors

c1 =





a11

a21
...

am1




, c2 =





a12

a22
...

am2




, . . . , cn =





a1n

a2n
...

amn





in Rm formed from the columns of A are called the column vectors of A.

EXAMPLE 1 Row and ColumnVectors of a 2 × 3 Matrix

Let

A =
[

2 1 0
3 −1 4

]

The row vectors of A are

r1 = [2 1 0] and r2 = [3 − 1 4]
and the column vectors of A are

c1 =
[

2
3

]
, c2 =

[
1

−1

]
, and c3 =

[
0
4

]

The following definition defines three important vector spaces associated with a

We will sometimes denote the
row space of A, the column
space of A, and the null space
of A by row(A), col(A), and
null(A), respectively.

matrix.

DEFINITION 2 If A is an m × n matrix, then the subspace of Rn spanned by the
row vectors of A is called the row space of A, and the subspace of Rm spanned by
the column vectors of A is called the column space of A. The solution space of the
homogeneous system of equations Ax = 0, which is a subspace of Rn, is called the
null space of A.

Amxn
S =Er, r, ..., m? n S =2c, ..., (3
span(S) : Space

of R I span/S):subspace ofR
->row space

=> column space
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In this section and the next we will be concerned with two general questions:

Question 1. What relationships exist among the solutions of a linear system Ax = b
and the row space, column space, and null space of the coefficient matrix A?

Question 2. What relationships exist among the row space, column space, and null
space of a matrix?

Starting with the first question, suppose that

A =





a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn




and x =





x1

x2
...
xn





It follows from Formula (10) of Section 1.3 that if c1, c2, . . . , cn denote the column
vectors of A, then the product Ax can be expressed as a linear combination of these
vectors with coefficients from x; that is,

Ax = x1c1 + x2c2 + · · · + xncn (1)

Thus, a linear system, Ax = b, of m equations in n unknowns can be written as

x1c1 + x2c2 + · · · + xncn = b (2)

from which we conclude that Ax = b is consistent if and only if b is expressible as a linear
combination of the column vectors of A. This yields the following theorem.

THEOREM 4.7.1 A system of linear equations Ax = b is consistent if and only if b is in
the column space of A.

EXAMPLE 2 AVector b in the Column Space ofA

Let Ax = b be the linear system



−1 3 2

1 2 −3

2 1 −2








x1

x2

x3



 =




1

−9

−3





Show that b is in the column space of A by expressing it as a linear combination of the
column vectors of A.

Solution Solving the system by Gaussian elimination yields (verify)

x1 = 2, x2 = −1, x3 = 3

It follows from this and Formula (2) that

2




−1

1

2



 −




3

2

1



 + 3




2

−3

−2



 =




1

−9

−3





Recall from Theorem 3.4.4 that the general solution of a consistent linear system
Ax = b can be obtained by adding any specific solution of the system to the general
solution of the corresponding homogeneous system Ax = 0. Keeping in mind that the
null space of A is the same as the solution space of Ax = 0, we can rephrase that theorem
in the following vector form.

3
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THEOREM 4.7.2 If x0 is any solution of a consistent linear system Ax = b, and if
S = {v1, v2, . . . , vk} is a basis for the null space ofA, then every solution ofAx = b can
be expressed in the form

x = x0 + c1v1 + c2v2 + · · · + ckvk (3)

Conversely, for all choices of scalars c1, c2, . . . , ck, the vector x in this formula is a
solution of Ax = b.

The vector x0 in Formula (3) is called a particular solution of Ax = b, and the remain-
ing part of the formula is called the general solution of Ax = 0. With this terminology
Theorem 4.7.2 can be rephrased as:

The general solution of a consistent linear system can be expressed as the sum of a partic-
ular solution of that system and the general solution of the corresponding homogeneous
system.

Geometrically, the solution set of Ax = b can be viewed as the translation by x0 of the
solution space of Ax = 0 (Figure 4.7.1).

Figure 4.7.1

y

xx

x0 + x

Solution space
of Ax = 0

x0

Solution set
of Ax = b

EXAMPLE 3 General Solution of a Linear SystemAx = b

In the concluding subsection of Section 3.4 we compared solutions of the linear systems





1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18









x1

x2

x3

x4

x5

x6





=





0
0
0
0




and





1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18









x1

x2

x3

x4

x5

x6





=





0
−1

5
6





and deduced that the general solution x of the nonhomogeneous system and the general
solution xh of the corresponding homogeneous system (when written in column-vector
form) are related by

E
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



x1

x2

x3

x4

x5

x6





︸ ︷︷ ︸
x

=





−3r − 4s − 2t

r

−2s

s

t
1
3





=





0
0
0
0
0
1
3





︸︷︷︸
x0

+ r





−3
1
0
0
0
0





+ s





−4
0

−2
1
0
0





+ t





−2
0
0
0
1
0





︸ ︷︷ ︸
xh

Recall from the Remark following Example 3 of Section 4.5 that the vectors in xh

form a basis for the solution space of Ax = 0.

Bases for Row Spaces,
Column Spaces, and Null

Spaces

We know that performing elementary row operations on the augmented matrix [A | b]
of a linear system does not change the solution set of that system. This is true, in
particular, if the system is homogeneous, in which case the augmented matrix is [A | 0].
But elementary row operations have no effect on the column of zeros, so it follows that
the solution set of Ax = 0 is unaffected by performing elementary row operations on A

itself. Thus, we have the following theorem.

THEOREM 4.7.3 Elementary row operations do not change the null space of a matrix.

The following theorem, whose proof is left as an exercise, is a companion to Theo-
rem 4.7.3.

THEOREM 4.7.4 Elementary row operations do not change the row space of a matrix.

Theorems 4.7.3 and 4.7.4 might tempt you into incorrectly believing that elementary
row operations do not change the column space of a matrix. To see why this is not true,
compare the matrices

A =
[

1 3
2 6

]
and B =

[
1 3
0 0

]

The matrix B can be obtained from A by adding −2 times the first row to the second.
However, this operation has changed the column space of A, since that column space
consists of all scalar multiples of [

1
2

]

whereas the column space of B consists of all scalar multiples of[
1
0

]

and the two are different spaces.

EXAMPLE 4 Finding a Basis for the Null Space of a Matrix

Find a basis for the null space of the matrix

A =





1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18





VI V. V3

O

*
-

-
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--

0 (17 (4],(83)
O [d] [?] []

=>
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Solution The null space of A is the solution space of the homogeneous linear system
Ax = 0, which, as shown in Example 3, has the basis

v1 =





−3
1
0
0
0
0





, v2 =





−4
0

−2
1
0
0





, v3 =





−2
0
0
0
1
0





Remark Observe that the basis vectors v1, v2, and v3 in the last example are the vectors that result
by successively setting one of the parameters in the general solution equal to 1 and the others equal
to 0.

The following theorem makes it possible to find bases for the row and column spaces
of a matrix in row echelon form by inspection.

THEOREM 4.7.5 If a matrix R is in row echelon form, then the row vectors with the
leading 1’s (the nonzero row vectors) form a basis for the row space ofR, and the column
vectors with the leading 1’s of the row vectors form a basis for the column space of R.

The proof essentially involves an analysis of the positions of the 0’s and 1’s of R. We
omit the details.

EXAMPLE 5 Bases for the Row and Column Spaces of a Matrix in Row
Echelon Form

Find bases for the row and column spaces of the matrix

R =





1 −2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0





Solution Since the matrix R is in row echelon form, it follows from Theorem 4.7.5 that
the vectors

r1 = [1 −2 5 0 3]
r2 = [0 1 3 0 0]
r3 = [0 0 0 1 0]

form a basis for the row space of R, and the vectors

c1 =





1
0
0
0




, c2 =





−2
1
0
0




, c4 =





0
0
1
0





form a basis for the column space of R.

⑦
un

-
V,
VN

S-
-- -
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EXAMPLE 6 Basis for a Row Space by Row Reduction

Find a basis for the row space of the matrix

A =





1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7

−1 3 −4 2 −5 −4





Solution Since elementary row operations do not change the row space of a matrix, we
can find a basis for the row space of A by finding a basis for the row space of any row
echelon form of A. Reducing A to row echelon form, we obtain (verify)

R =





1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 0 0 1 5
0 0 0 0 0 0





By Theorem 4.7.5, the nonzero row vectors of R form a basis for the row space of R and
hence form a basis for the row space of A. These basis vectors are

r1 = [1 −3 4 −2 5 4]
r2 = [0 0 1 3 −2 −6]
r3 = [0 0 0 0 1 5]

Basis for the Column
Space of a Matrix

The problem of finding a basis for the column space of a matrix A in Example 6 is
complicated by the fact that an elementary row operation can alter its column space.
However, the good news is that elementary rowoperations do not alter dependence relation-
ships among the column vectors. To make this more precise, suppose that w1, w2, . . . , wk

are linearly dependent column vectors of A, so there are scalars c1, c2, . . . , ck that are
not all zero and such that

c1w1 + c2w2 + · · · + ckwk = 0 (4)

If we perform an elementary row operation on A, then these vectors will be changed
into new column vectors w′

1, w′
2, . . . , w′

k . At first glance it would seem possible that the
transformed vectors might be linearly independent. However, this is not so, since it can
be proved that these new column vectors are linearly dependent and, in fact, related by
an equation

c1w′
1 + c2w′

2 + · · · + ckw′
k = 0

that has exactly the same coefficients as (4). It can also be proved that elementary row
operations do not alter the linear independence of a set of column vectors. All of these
results are summarized in the following theorem.

THEOREM 4.7.6 If A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if and only if the corre-
sponding column vectors of B are linearly independent.

(b) A given set of column vectors of A forms a basis for the column space of A if and
only if the corresponding column vectors of B form a basis for the column space
of B.

Although elementary row op-
erations can change the col-
umn space of a matrix, it
follows from Theorem 4.7.6(b)
that they do not change the
dimension of its column space.

- 2R 1 +R2

- 2R1 + R3
1R1 + R4C
->

-

IIA11
0
---

0
-

-I BOS BA->

11I 111
⑲ basis
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EXAMPLE 7 Basis for a Column Space by Row Reduction

Find a basis for the column space of the matrix

A =





1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7

−1 3 −4 2 −5 −4





that consists of column vectors of A.

Solution We observed in Example 6 that the matrix

R =





1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 0 0 1 5
0 0 0 0 0 0





is a row echelon form of A. Keeping in mind that A and R can have different column
spaces, we cannot find a basis for the column space of A directly from the
column vectors of R. However, it follows from Theorem 4.7.6(b) that if we can find
a set of column vectors of R that forms a basis for the column space of R, then the
corresponding column vectors of A will form a basis for the column space of A.

Since the first, third, and fifth columns of R contain the leading 1’s of the row vectors,
the vectors

c′
1 =





1
0
0
0




, c′

3 =





4
1
0
0




, c′

5 =





5
−2

1
0





form a basis for the column space of R. Thus, the corresponding column vectors of A,
which are

c1 =





1
2
2

−1




, c3 =





4
9
9

−4




, c5 =





5
8
9

−5





form a basis for the column space of A.

Up to now we have focused on methods for finding bases associated with matrices.
Those methods can readily be adapted to the more general problem of finding a basis
for the subspace spanned by a set of vectors in Rn.

EXAMPLE 8 Basis for the Space Spanned by a Set ofVectors

The following vectors span a subspace of R4. Find a subset of these vectors that forms
a basis of this subspace.

v1 = (1, 2, 2, −1), v2 = (−3, −6, −6, 3),

v3 = (4, 9, 9, −4), v4 = (−2, −1, −1, 2),

v5 = (5, 8, 9, −5), v6 = (4, 2, 7, −4)

Solution If we rewrite these vectors in column form and construct the matrix that has
those vectors as its successive columns, then we obtain the matrix A in Example 7 (verify).
Thus,

span{v1, v2, v3, v4, v5, v6} = col(A)

row
echoi

↳

basis of column

spaceof

basis of Column

space of

-

⑮ 3
Wsubspace t

-Span(S)

S

[s)e
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Proceeding as in that example (and adjusting the notation appropriately), we see that
the vectors v1, v3, and v5 form a basis for

span{v1, v2, v3, v4, v5, v6}

Bases Formed from Row
and ColumnVectors of a

Matrix

In Example 6, we found a basis for the row space of a matrix by reducing that matrix
to row echelon form. However, the basis vectors produced by that method were not all
row vectors of the original matrix. The following adaptation of the technique used in
Example 7 shows how to find a basis for the row space of a matrix that consists entirely
of row vectors of that matrix.

EXAMPLE 9 Basis for the Row Space of a Matrix

Find a basis for the row space of

A =





1 −2 0 0 3
2 −5 −3 −2 6
0 5 15 10 0
2 6 18 8 6





consisting entirely of row vectors from A.

Solution We will transpose A, thereby converting the row space of A into the column
space of AT ; then we will use the method of Example 7 to find a basis for the column
space of AT ; and then we will transpose again to convert column vectors back to row
vectors.

Transposing A yields

AT =





1 2 0 2
−2 −5 5 6

0 −3 15 18
0 −2 10 8
3 6 0 6





and then reducing this matrix to row echelon form we obtain




1 2 0 2
0 1 −5 −10
0 0 0 1
0 0 0 0
0 0 0 0





The first, second, and fourth columns contain the leading 1’s, so the corresponding
column vectors in AT form a basis for the column space of AT ; these are

c1 =





1
−2

0
0
3




, c2 =





2
−5
−3
−2

6




, and c4 =





2
6

18
8
6





Transposing again and adjusting the notation appropriately yields the basis vectors

r1 = [1 −2 0 0 3], r2 = [2 −5 −3 −2 6],
r4 = [2 6 18 8 6]

for the row space of A.

-

card) o

basic of.X⑧spaces
of

-basis of rowsas

·
②

8 -
-

-

④ -- -
-

- --

-



4.7 Row Space, Column Space, and Null Space 245

Next we will give an example that adapts the method of Example 7 to solve the
following general problem in Rn:

Problem Given a set of vectors S = {v1, v2, . . . , vk} in Rn, find a subset of these
vectors that forms a basis for span(S), and express each vector that is not in that basis
as a linear combination of the basis vectors.

EXAMPLE 10 Basis and Linear Combinations

(a) Find a subset of the vectors

v1 = (1, −2, 0, 3), v2 = (2, −5, −3, 6),

v3 = (0, 1, 3, 0), v4 = (2, −1, 4, −7), v5 = (5, −8, 1, 2)

that forms a basis for the subspace of R4 spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of the basis vectors.

Solution (a) We begin by constructing a matrix that has v1, v2, . . . , v5 as its column
vectors: 



1 2 0 2 5
−2 −5 1 −1 −8

0 −3 3 4 1
3 6 0 −7 2





↑ ↑ ↑ ↑ ↑
v1 v2 v3 v4 v5

(5)

The first part of our problem can be solved by finding a basis for the column space of

Had we only been interested
in part (a) of this example, it
would have sufficed to reduce
the matrix to row echelon
form. It is for part (b) that
the reduced row echelon form
is most useful.

this matrix. Reducing the matrix to reduced row echelon form and denoting the column
vectors of the resulting matrix by w1, w2, w3, w4, and w5 yields





1 0 2 0 1
0 1 −1 0 1
0 0 0 1 1
0 0 0 0 0





↑ ↑ ↑ ↑ ↑
w1 w2 w3 w4 w5

(6)

The leading 1’s occur in columns 1, 2, and 4, so by Theorem 4.7.5,

{w1, w2, w4}
is a basis for the column space of (6), and consequently,

{v1, v2, v4}
is a basis for the column space of (5).

Solution (b) We will start by expressing w3 and w5 as linear combinations of the basis
vectors w1, w2, w4. The simplest way of doing this is to express w3 and w5 in terms
of basis vectors with smaller subscripts. Accordingly, we will express w3 as a linear
combination of w1 and w2, and we will express w5 as a linear combination of w1, w2,
and w4. By inspection of (6), these linear combinations are

w3 = 2w1 − w2

w5 = w1 + w2 + w4
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We call these the dependency equations. The corresponding relationships in (5) are

v3 = 2v1 − v2

v5 = v1 + v2 + v4

The following is a summary of the steps that we followed in our last example to solve
the problem posed above.

Basis for the Space Spanned by a Set of Vectors

Step 1. Form the matrixAwhose columns are the vectors in the setS = {v1, v2, . . . , vk}.
Step 2. Reduce the matrix A to reduced row echelon form R.

Step 3. Denote the column vectors of R by w1, w2, . . . , wk .

Step 4. Identify the columns of R that contain the leading 1’s. The corresponding
column vectors of A form a basis for span(S).

This completes the first part of the problem.

Step 5. Obtain a set of dependency equations for the column vectors w1, w2, . . . , wk

of R by successively expressing each wi that does not contain a leading 1 of
R as a linear combination of predecessors that do.

Step 6. In each dependency equation obtained in Step 5, replace the vector wi by the
vector vi for i = 1, 2, . . . , k.

This completes the second part of the problem.

Exercise Set 4.7
In Exercises 1–2, express the product Ax as a linear combina-

tion of the column vectors of A.

1. (a)
[

2 3
−1 4

] [
1
2

]
(b)




4 0 −1
3 6 2
0 −1 4








−2

3
5





2. (a)





−3 6 2
5 −4 0
2 3 −1
1 8 3








−1

2
5



 (b)
[

2 1 5
6 3 −8

]



3
0

−5





In Exercises 3–4, determine whether b is in the column space
of A, and if so, express b as a linear combination of the column
vectors of A

3. (a) A =




1 1 2
1 0 1
2 1 3



; b =




−1

0
2





(b) A =




1 −1 1
9 3 1
1 1 1



; b =




5
1

−1





4. (a) A =




1 −1 1

−1 1 −1
−1 −1 1



; b =




2
0
0





(b) A =





1 2 0 1
0 1 2 1
1 2 1 3
0 1 2 2




; b =





4
3
5
7





5. Suppose that x1 = 3, x2 = 0, x3 = −1, x4 = 5 is a solution of
a nonhomogeneous linear system Ax = b and that the solu-
tion set of the homogeneous system Ax = 0 is given by the
formulas

x1 = 5r − 2s, x2 = s, x3 = s + t, x4 = t

(a) Find a vector form of the general solution of Ax = 0.

(b) Find a vector form of the general solution of Ax = b.

6. Suppose that x1 = −1, x2 = 2, x3 = 4, x4 = −3 is a solution
of a nonhomogeneous linear system Ax = b and that the so-
lution set of the homogeneous system Ax = 0 is given by the
formulas

x1 = −3r + 4s, x2 = r − s, x3 = r, x4 = s

(a) Find a vector form of the general solution of Ax = 0.

(b) Find a vector form of the general solution of Ax = b.

In Exercises 7–8, find the vector form of the general solution
of the linear system Ax = b, and then use that result to find the
vector form of the general solution of Ax = 0.

I
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7. (a) x1 − 3x2 = 1
2x1 − 6x2 = 2

(b) x1 + x2 + 2x3 = 5
x1 + x3 = −2

2x1 + x2 + 3x3 = 3

8. (a) x1 − 2x2 + x3 + 2x4 = −1
2x1 − 4x2 + 2x3 + 4x4 = −2
−x1 + 2x2 − x3 − 2x4 = 1
3x1 − 6x2 + 3x3 + 6x4 = −3

(b) x1 + 2x2 − 3x3 + x4 = 4
−2x1 + x2 + 2x3 + x4 = −1
−x1 + 3x2 − x3 + 2x4 = 3
4x1 − 7x2 − 5x4 = −5

In Exercises 9–10, find bases for the null space and row space
of A.

9. (a) A =




1 −1 3
5 −4 −4
7 −6 2



 (b) A =




2 0 −1
4 0 −2
0 0 0





10. (a) A =




1 4 5 2
2 1 3 0

−1 3 2 2





(b) A =





1 4 5 6 9
3 −2 1 4 −1

−1 0 −1 −2 −1
2 3 5 7 8





In Exercises 11–12, a matrix in row echelon form is given. By
inspection, find a basis for the row space and for the column space
of that matrix.

11. (a)




1 0 2
0 0 1
0 0 0



 (b)





1 −3 0 0
0 1 0 0
0 0 0 0
0 0 0 0





12. (a)





1 2 4 5
0 1 −3 0
0 0 1 −3
0 0 0 1
0 0 0 0




(b)





1 2 −1 5
0 1 4 3
0 0 1 −7
0 0 0 1





13. (a) Use the methods of Examples 6 and 7 to find bases for the
row space and column space of the matrix

A =





1 −2 5 0 3
−2 5 −7 0 −6
−1 3 −2 1 −3
−3 8 −9 1 −9





(b) Use the method of Example 9 to find a basis for the row
space of A that consists entirely of row vectors of A.

In Exercises 14–15, find a basis for the subspace of R4 that is
spanned by the given vectors.

14. (1, 1, −4, −3), (2, 0, 2, −2), (2, −1, 3, 2)

15. (1, 1, 0, 0), (0, 0, 1, 1), (−2, 0, 2, 2), (0, −3, 0, 3)

In Exericses 16–17, find a subset of the given vectors that forms
a basis for the space spanned by those vectors, and then express
each vector that is not in the basis as a linear combination of the
basis vectors.

16. v1 = (1, 0, 1, 1), v2 = (−3, 3, 7, 1),
v3 = (−1, 3, 9, 3), v4 = (−5, 3, 5, −1)

17. v1 = (1, −1, 5, 2), v2 = (−2, 3, 1, 0),
v3 = (4, −5, 9, 4), v4 = (0, 4, 2, −3),
v5 = (−7, 18, 2, −8)

In Exercises 18–19, find a basis for the row space of A that
consists entirely of row vectors of A.
18. The matrix in Exercise 10(a).

19. The matrix in Exercise 10(b).

20. Construct a matrix whose null space consists of all linear
combinations of the vectors

v1 =





1
−1

3
2




and v2 =





2
0

−2
4





21. In each part, let A =
[

1 2 0
1 −1 4

]

. For the given vector b,

find the general form of all vectors x in R3 for which TA(x) = b
if such vectors exist.

(a) b = (0, 0) (b) b = (1, 3) (c) b = (−1, 1)

22. In each part, let A =





2 0
0 1
1 1
2 0




. For the given vector b, find

the general form of all vectors x in R2 for which TA(x) = b if
such vectors exist.

(a) b = (0, 0, 0, 0) (b) b = (1, 1, −1, −1)

(c) b = (2, 0, 0, 2)

23. (a) Let

A =




0 1 0
1 0 0
0 0 0





Show that relative to an xyz-coordinate system in 3-space
the null space of A consists of all points on the z-axis and
that the column space consists of all points in the xy-plane
(see the accompanying figure).

(b) Find a 3 × 3 matrix whose null space is the x-axis and
whose column space is the yz-plane.

z

y

x

Null space of A

Column space
of A

Figure Ex-23
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24. Find a 3 × 3 matrix whose null space is

(a) a point. (b) a line. (c) a plane.

25. (a) Find all 2 × 2 matrices whose null space is the line
3x − 5y = 0.

(b) Describe the null spaces of the following matrices:

A =
[

1 4
0 5

]

, B =
[

1 0
0 5

]

, C =
[

6 2
3 1

]

, D =
[

0 0
0 0

]

Working with Proofs

26. Prove Theorem 4.7.4.

27. Prove that the row vectors of an n × n invertible matrix A

form a basis for Rn.

28. Suppose that A and B are n × n matrices and A is invertible.
Invent and prove a theorem that describes how the row spaces
of AB and B are related.

True-False Exercises

TF. In parts (a)–( j) determine whether the statement is true or
false, and justify your answer.

(a) The span of v1, . . . , vn is the column space of the matrix
whose column vectors are v1, . . . , vn.

(b) The column space of a matrix A is the set of solutions of
Ax = b.

(c) If R is the reduced row echelon form of A, then those column
vectors of R that contain the leading 1’s form a basis for the
column space of A.

(d) The set of nonzero row vectors of a matrix A is a basis for the
row space of A.

(e) If A and B are n × n matrices that have the same row space,
then A and B have the same column space.

(f ) If E is an m × m elementary matrix and A is an m × n matrix,
then the null space of EA is the same as the null space of A.

(g) If E is an m × m elementary matrix and A is an m × n matrix,
then the row space of EA is the same as the row space of A.

(h) If E is an m × m elementary matrix and A is an m × n matrix,
then the column space of EA is the same as the column space
of A.

(i) The system Ax = b is inconsistent if and only if b is not in the
column space of A.

( j) There is an invertible matrix A and a singular matrix B such
that the row spaces of A and B are the same.

Working withTechnology

T1. Find a basis for the column space of

A =





2 6 0 8 4 12 4

3 9 −2 8 6 18 6

3 9 −7 −2 6 −3 −1

2 6 5 18 4 33 11

1 3 −2 0 2 6 2





that consists of column vectors of A.

T2. Find a basis for the row space of the matrix A in Exercise T1
that consists of row vectors of A.

4.8 Rank, Nullity, and the Fundamental Matrix Spaces
In the last section we investigated relationships between a system of linear equations and
the row space, column space, and null space of its coefficient matrix. In this section we will
be concerned with the dimensions of those spaces. The results we obtain will provide a
deeper insight into the relationship between a linear system and its coefficient matrix.

Row and Column Spaces
Have Equal Dimensions

In Examples 6 and 7 of Section 4.7 we found that the row and column spaces of the
matrix

A =





1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7

−1 3 −4 2 −5 −4





both have three basis vectors and hence are both three-dimensional. The fact that these
spaces have the same dimension is not accidental, but rather a consequence of the fol-
lowing theorem.


