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27. Consider the coordinate vectors

[w]S =




6

−1
4



 , [q]S =




3
0
4



 , [B]S =





−8
7
6
3





(a) Find w if S is the basis in Exercise 2.

(b) Find q if S is the basis in Exercise 3.

(c) Find B if S is the basis in Exercise 5.

28. The basis that we gave for M22 in Example 4 consisted of non-
invertible matrices. Do you think that there is a basis for M22

consisting of invertible matrices? Justify your answer.

Working with Proofs

29. Prove that R! is an infinite-dimensional vector space.

30. Let TA: Rn →Rn be multiplication by an invertible matrix
A, and let {u1, u2, . . . , un} be a basis for Rn. Prove that
{TA(u1), TA(u2), . . . , TA(un)} is also a basis for Rn.

31. Prove that if V is a subspace of a vector space W and if V is
infinite-dimensional, then so is W .

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) If V = span{v1, . . . , vn}, then {v1, . . . , vn} is a basis for V.

(b) Every linearly independent subset of a vector space V is a
basis for V.

(c) If {v1, v2, . . . , vn} is a basis for a vector space V, then ev-
ery vector in V can be expressed as a linear combination of
v1, v2, . . . , vn.

(d) The coordinate vector of a vector x in Rn relative to the stan-
dard basis for Rn is x.

(e) Every basis of P4 contains at least one polynomial of degree 3
or less.

Working withTechnology

T1. Let V be the subspace of P3 spanned by the vectors

p1 = 1 + 5x − 3x2 − 11x3, p2 = 7 + 4x − x2 + 2x3,

p3 = 5 + x + 9x2 + 2x3, p4 = 3 − x + 7x2 + 5x3

(a) Find a basis S for V .

(b) Find the coordinate vector of p = 19 + 18x − 13x2 − 10x3

relative to the basis S you obtained in part (a).

T2. Let V be the subspace of C!(−!, !) spanned by the vectors
in the set

B = {1, cos x, cos2 x, cos3 x, cos4 x, cos5 x}

and accept without proof that B is a basis for V . Confirm that
the following vectors are in V , and find their coordinate vectors
relative to B.

f0 = 1, f1 = cos x, f2 = cos 2x, f3 = cos 3x,

f4 = cos 4x, f5 = cos 5x

4.5 Dimension
We showed in the previous section that the standard basis for Rn has n vectors and hence
that the standard basis for R3 has three vectors, the standard basis for R2 has two vectors, and
the standard basis for R1(= R) has one vector. Since we think of space as three-dimensional,
a plane as two-dimensional, and a line as one-dimensional, there seems to be a link between
the number of vectors in a basis and the dimension of a vector space. We will develop this
idea in this section.

Number of Vectors in a
Basis

Our first goal in this section is to establish the following fundamental theorem.

THEOREM 4.5.1 All bases for a finite-dimensional vector space have the same number
of vectors.

To prove this theorem we will need the following preliminary result, whose proof is
deferred to the end of the section.
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THEOREM 4.5.2 Let V be an n-dimensional vector space, and let {v1, v2, . . . , vn} be
any basis.

(a) If a set in V has more than n vectors, then it is linearly dependent.

(b) If a set in V has fewer than n vectors, then it does not span V.

We can now see rather easily why Theorem 4.5.1 is true; for if

S = {v1, v2, . . . , vn}
is an arbitrary basis for V, then the linear independence of S implies that any set in V

with more than n vectors is linearly dependent and any set in V with fewer than n vectors
does not span V. Thus, unless a set in V has exactly n vectors it cannot be a basis.

We noted in the introduction to this section that for certain familiar vector spaces
the intuitive notion of dimension coincides with the number of vectors in a basis. The
following definition makes this idea precise.

DEFINITION 1 The dimension of a finite-dimensional vector space V is denoted by
dim(V ) and is defined to be the number of vectors in a basis for V. In addition, the
zero vector space is defined to have dimension zero.

EXAMPLE 1 Dimensions of Some FamiliarVector Spaces

dim(Rn) = n [ The standard basis has n vectors. ]

dim(Pn) = n + 1 [ The standard basis has n + 1 vectors. ]

dim(Mmn) = mn [ The standard basis has mn vectors. ]

Engineers often use the term
degrees of freedom as a syn-
onym for dimension.

EXAMPLE 2 Dimension of Span(S)

If S = {v1, v2, . . . , vr} then every vector in span(S) is expressible as a linear combination
of the vectors in S. Thus, if the vectors in S are linearly independent, they automatically
form a basis for span(S), from which we can conclude that

dim[span{v1, v2, . . . , vr}] = r

In words, the dimension of the space spanned by a linearly independent set of vectors is
equal to the number of vectors in that set.

EXAMPLE 3 Dimension of a Solution Space

Find a basis for and the dimension of the solution space of the homogeneous system

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

Solution In Example 6 of Section 1.2 we found the solution of this system to be

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

which can be written in vector form as

(x1, x2, x3, x4, x5, x6) = (−3r − 4s − 2t, r,−2s, s, t, 0)
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or, alternatively, as

(x1, x2, x3, x4, x5, x6) = r(−3, 1, 0, 0, 0, 0) + s(−4, 0, −2, 1, 0, 0) + t(−2, 0, 0, 0, 1, 0)

This shows that the vectors

v1 = (−3, 1, 0, 0, 0, 0), v2 = (−4, 0, −2, 1, 0, 0), v3 = (−2, 0, 0, 0, 1, 0)

span the solution space. We leave it for you to check that these vectors are linearly
independent by showing that none of them is a linear combination of the other two (but
see the remark that follows). Thus, the solution space has dimension 3.

Remark It can be shown that for any homogeneous linear system, the method of the last example
always produces a basis for the solution space of the system. We omit the formal proof.

Some Fundamental
Theorems

We will devote the remainder of this section to a series of theorems that reveal the subtle
interrelationships among the concepts of linear independence, spanning sets, basis, and
dimension. These theorems are not simply exercises in mathematical theory—they are
essential to the understanding of vector spaces and the applications that build on them.

We will start with a theorem (proved at the end of this section) that is concerned with
the effect on linear independence and spanning if a vector is added to or removed from
a nonempty set of vectors. Informally stated, if you start with a linearly independent set
S and adjoin to it a vector that is not a linear combination of those already in S, then
the enlarged set will still be linearly independent. Also, if you start with a set S of two
or more vectors in which one of the vectors is a linear combination of the others, then
that vector can be removed from S without affecting span(S) (Figure 4.5.1).

The vector outside the plane
can be adjoined to the other
two without affecting their
linear independence.

Any of the vectors can
be removed, and the 
remaining two will still
span the plane.

Either of the collinear
vectors can be removed,
and the remaining two
will still span the plane.

Figure 4.5.1

THEOREM 4.5.3 Plus/Minus Theorem

Let S be a nonempty set of vectors in a vector space V.

(a) If S is a linearly independent set, and if v is a vector in V that is outside of
span(S), then the set S ∪ {v} that results by inserting v into S is still linearly
independent.

(b) If v is a vector in S that is expressible as a linear combination of other vectors
in S, and if S − {v} denotes the set obtained by removing v from S, then S and
S − {v} span the same space; that is,

span(S) = span(S − {v})
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EXAMPLE 4 Applying the Plus/MinusTheorem

Show that p1 = 1 − x2, p2 = 2 − x2, and p3 = x3 are linearly independent vectors.

Solution The set S = {p1, p2} is linearly independent since neither vector in S is a scalar
multiple of the other. Since the vector p3 cannot be expressed as a linear combination
of the vectors in S (why?), it can be adjoined to S to produce a linearly independent set
S ∪ {p3} = {p1, p2, p3}.

In general, to show that a set of vectors {v1, v2, . . . , vn} is a basis for a vector space V,

one must show that the vectors are linearly independent and span V. However, if we
happen to know that V has dimension n (so that {v1, v2, . . . , vn} contains the right
number of vectors for a basis), then it suffices to check either linear independence or
spanning—the remaining condition will hold automatically. This is the content of the
following theorem.

THEOREM 4.5.4 Let V be an n-dimensional vector space, and let S be a set in V

with exactly n vectors. Then S is a basis for V if and only if S spans V or S is linearly
independent.

Proof Assume that S has exactly n vectors and spans V. To prove that S is a basis, we
must show that S is a linearly independent set. But if this is not so, then some vector v in
S is a linear combination of the remaining vectors. If we remove this vector from S, then
it follows from Theorem 4.5.3(b) that the remaining set of n − 1 vectors still spans V.

But this is impossible since Theorem 4.5.2(b) states that no set with fewer than n vectors
can span an n-dimensional vector space. Thus S is linearly independent.

Assume that S has exactly n vectors and is a linearly independent set. To prove
that S is a basis, we must show that S spans V. But if this is not so, then there is
some vector v in V that is not in span(S). If we insert this vector into S, then it fol-
lows from Theorem 4.5.3(a) that this set of n + 1 vectors is still linearly independent.
But this is impossible, since Theorem 4.5.2(a) states that no set with more than n vec-
tors in an n-dimensional vector space can be linearly independent. Thus S spans V.

EXAMPLE 5 Bases by Inspection

(a) Explain why the vectors v1 = (−3, 7) and v2 = (5, 5) form a basis for R2.

(b) Explain why the vectors v1 = (2, 0, −1), v2 = (4, 0, 7), and v3 = (−1, 1, 4) form a
basis for R3.

Solution (a) Since neither vector is a scalar multiple of the other, the two vectors form
a linearly independent set in the two-dimensional space R2, and hence they form a basis
by Theorem 4.5.4.

Solution (b) The vectors v1 and v2 form a linearly independent set in the xz-plane (why?).
The vector v3 is outside of the xz-plane, so the set {v1, v2, v3} is also linearly independent.
Since R3 is three-dimensional, Theorem 4.5.4 implies that {v1, v2, v3} is a basis for the
vector space R3.

The next theorem (whose proof is deferred to the end of this section) reveals two
important facts about the vectors in a finite-dimensional vector space V :
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1. Every spanning set for a subspace is either a basis for that subspace or has a basis
as a subset.

2. Every linearly independent set in a subspace is either a basis for that subspace or
can be extended to a basis for it.

THEOREM 4.5.5 Let S be a finite set of vectors in a finite-dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S.

We conclude this section with a theorem that relates the dimension of a vector space
to the dimensions of its subspaces.

THEOREM 4.5.6 If W is a subspace of a finite-dimensional vector space V, then:

(a) W is finite-dimensional.

(b) dim(W) ≤ dim(V ).

(c) W = V if and only if dim(W) = dim(V ).

Proof (a) We will leave the proof of this part as an exercise.

Proof (b) Part (a) shows that W is finite-dimensional, so it has a basis

S = {w1, w2, . . . , wm}
Either S is also a basis for V or it is not. If so, then dim(V ) = m, which means that
dim(V ) = dim(W). If not, then because S is a linearly independent set it can be enlarged
to a basis for V by part (b) of Theorem 4.5.5. But this implies that dim(W) < dim(V ),
so we have shown that dim(W) ≤ dim(V ) in all cases.

Proof (c) Assume that dim(W) = dim(V ) and that

S = {w1, w2, . . . , wm}
is a basis for W . If S is not also a basis for V, then being linearly independent S can
be extended to a basis for V by part (b) of Theorem 4.5.5. But this would mean that
dim(V ) > dim(W), which contradicts our hypothesis. Thus S must also be a basis for
V, which means that W = V . The converse is obvious.

Figure 4.5.2 illustrates the geometric relationship between the subspaces of R3 in
order of increasing dimension.

Figure 4.5.2

Line through the origin
(1-dimensional)
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(0-dimensional)
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We conclude this section with optional proofs of Theorems 4.5.2, 4.5.3, and 4.5.5.O PT I O NA L

Proof ofTheorem 4.5.2 (a) Let S ′ = {w1, w2, . . . , wm} be any set of m vectors in V, where
m > n. We want to show that S ′ is linearly dependent. Since S = {v1, v2, . . . , vn} is a
basis, each wi can be expressed as a linear combination of the vectors in S, say

w1 = a11v1 + a21v2 + · · · + an1vn

w2 = a12v1 + a22v2 + · · · + an2vn
...

...
...

...
wm = a1mv1 + a2mv2 + · · · + anmvn

(1)

To show that S ′ is linearly dependent, we must find scalars k1, k2, . . . , km, not all zero,
such that

k1w1 + k2w2 + · · · + kmwm = 0 (2)

We leave it for you to verify that the equations in (1) can be rewritten in the partitioned
form

[w1 | w2 | · · · | wm] = [v1 | v2 | · · · | vn]





a11 a21 · · · am1

a12 a22 · · · am2

...
...

...

a1n a2n · · · amn




(3)

Since m > n, the linear system




a11 a21 · · · am1

a12 a22 · · · am2

...
...

...

a1n a2n · · · amn









x1

x2

...

xm




=





0

0
...

0




(4)

has more equations than unknowns and hence has a nontrivial solution

x1 = k1, x2 = k2, . . . , xm = km

Creating a column vector from this solution and multiplying both sides of (3) on the
right by this vector yields

[w1 | w2 | · · · | wm]





k1

k2

...

km




= [v1 | v2 | · · · | vn]





a11 a21 · · · am1

a12 a22 · · · am2

...
...

...

a1n a2n · · · amn









k1

k2

...

km





By (4), this simplifies to

[w1 | w2 | · · · | wm]





k1

k2

...

km




=





0

0
...

0





which we can rewrite as
k1w1 + k2w2 + · · · + kmwm = 0

Since the scalar coefficients in this equation are not all zero, we have proved that
S ′ = {w1, w2, . . . , wm} is linearly independent.

/
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The proof of Theorem 4.5.2(b) closely parallels that of Theorem 4.5.2(a) and will be
omitted.

Proof of Theorem 4.5.3 (a) Assume that S = {v1, v2, . . . , vr} is a linearly independent
set of vectors in V, and v is a vector in V that is outside of span(S). To show that
S ′ = {v1, v2, . . . , vr , v} is a linearly independent set, we must show that the only scalars
that satisfy

k1v1 + k2v2 + · · · + krvr + kr+1v = 0 (5)

are k1 = k2 = · · · = kr = kr+1 = 0. But it must be true that kr+1 = 0 for otherwise we
could solve (5) for v as a linear combination of v1, v2, . . . , vr , contradicting the assump-
tion that v is outside of span(S). Thus, (5) simplifies to

k1v1 + k2v2 + · · · + krvr = 0 (6)

which, by the linear independence of {v1, v2, . . . , vr}, implies that

k1 = k2 = · · · = kr = 0

Proof ofTheorem 4.5.3 (b) Assume that S = {v1, v2, . . . , vr} is a set of vectors in V, and
(to be specific) suppose that vr is a linear combination of v1, v2, . . . , vr−1, say

vr = c1v1 + c2v2 + · · · + cr−1vr−1 (7)

We want to show that if vr is removed from S, then the remaining set of vectors
{v1, v2, . . . , vr−1} still spans S; that is, we must show that every vector w in span(S)

is expressible as a linear combination of {v1, v2, . . . , vr−1}. But if w is in span(S), then
w is expressible in the form

w = k1v1 + k2v2 + · · · + kr−1vr−1 + krvr

or, on substituting (7),

w = k1v1 + k2v2 + · · · + kr−1vr−1 + kr(c1v1 + c2v2 + · · · + cr−1vr−1)

which expresses w as a linear combination of v1, v2, . . . , vr−1.

Proof ofTheorem 4.5.5 (a) If S is a set of vectors that spans V but is not a basis for V,

then S is a linearly dependent set. Thus some vector v in S is expressible as a linear
combination of the other vectors in S. By the Plus/Minus Theorem (4.5.3b), we can
remove v from S, and the resulting set S ′ will still span V. If S ′ is linearly independent,
then S ′ is a basis for V, and we are done. If S ′ is linearly dependent, then we can remove
some appropriate vector from S ′ to produce a set S ′′ that still spans V. We can continue
removing vectors in this way until we finally arrive at a set of vectors in S that is linearly
independent and spans V. This subset of S is a basis for V.

Proof ofTheorem 4.5.5 (b) Suppose that dim(V ) = n. If S is a linearly independent set
that is not already a basis for V, then S fails to span V, so there is some vector v in V

that is not in span(S). By the Plus/Minus Theorem (4.5.3a), we can insert v into S, and
the resulting set S ′ will still be linearly independent. If S ′ spans V, then S ′ is a basis for
V, and we are finished. If S ′ does not span V, then we can insert an appropriate vector
into S ′ to produce a set S ′′ that is still linearly independent. We can continue inserting
vectors in this way until we reach a set with n linearly independent vectors in V. This set
will be a basis for V by Theorem 4.5.4.

/
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Exercise Set 4.5
In Exercises 1–6, find a basis for the solution space of the ho-

mogeneous linear system, and find the dimension of that space.

1. x1 + x2 − x3 = 0
−2x1 − x2 + 2x3 = 0
−x1 + x3 = 0

2. 3x1 + x2 + x3 + x4 = 0
5x1 − x2 + x3 − x4 = 0

3. 2x1 + x2 + 3x3 = 0
x1 + 5x3 = 0

x2 + x3 = 0

4. x1 − 4x2 + 3x3 − x4 = 0
2x1 − 8x2 + 6x3 − 2x4 = 0

5. x1 − 3x2 + x3 = 0
2x1 − 6x2 + 2x3 = 0
3x1 − 9x2 + 3x3 = 0

6. x + y + z = 0
3x + 2y − 2z = 0
4x + 3y − z = 0
6x + 5y + z = 0

7. In each part, find a basis for the given subspace of R3, and
state its dimension.

(a) The plane 3x − 2y + 5z = 0.

(b) The plane x − y = 0.

(c) The line x = 2t, y = −t, z = 4t .

(d) All vectors of the form (a, b, c), where b = a + c.

8. In each part, find a basis for the given subspace of R4, and
state its dimension.

(a) All vectors of the form (a, b, c, 0).

(b) All vectors of the form (a, b, c, d), where d = a + b and
c = a − b.

(c) All vectors of the form (a, b, c, d), where a = b = c = d.

9. Find the dimension of each of the following vector spaces.

(a) The vector space of all diagonal n × n matrices.

(b) The vector space of all symmetric n × n matrices.

(c) The vector space of all upper triangular n × n matrices.

10. Find the dimension of the subspace of P3 consisting of all
polynomials a0 + a1x + a2x

2 + a3x
3 for which a0 = 0.

11. (a) Show that the set W of all polynomials in P2 such that
p(1) = 0 is a subspace of P2.

(b) Make a conjecture about the dimension of W .

(c) Confirm your conjecture by finding a basis for W .

12. Find a standard basis vector for R3 that can be added to the
set {v1, v2} to produce a basis for R3.

(a) v1 = (−1, 2, 3), v2 = (1, −2, −2)

(b) v1 = (1, −1, 0), v2 = (3, 1, −2)

13. Find standard basis vectors for R4 that can be added to the
set {v1, v2} to produce a basis for R4.

v1 = (1, −4, 2, −3), v2 = (−3, 8, −4, 6)

14. Let {v1, v2, v3} be a basis for a vector space V. Show that
{u1, u2, u3} is also a basis, where u1 = v1, u2 = v1 + v2, and
u3 = v1 + v2 + v3.

15. The vectors v1 = (1, −2, 3) and v2 = (0, 5, −3) are linearly
independent. Enlarge {v1, v2} to a basis for R3.

16. The vectors v1 = (1, 0, 0, 0) and v2 = (1, 1, 0, 0) are linearly
independent. Enlarge {v1, v2} to a basis for R4.

17. Find a basis for the subspace of R3 that is spanned by the
vectors

v1 = (1, 0, 0), v2 = (1, 0, 1), v3 = (2, 0, 1), v4 = (0, 0, −1)

18. Find a basis for the subspace of R4 that is spanned by the
vectors

v1 = (1, 1, 1, 1), v2 = (2, 2, 2, 0), v3 = (0, 0, 0, 3),
v4 = (3, 3, 3, 4)

19. In each part, let TA: R3 →R3 be multiplication by A and find
the dimension of the subspace of R3 consisting of all vectors
x for which TA(x) = 0.

(a) A =




1 1 0
1 0 1
1 0 1



 (b) A =




1 2 0
1 2 0
1 2 0





(c) A =




1 0 0

−1 1 0
1 1 1





20. In each part, let TA be multiplication by A and find the dimen-
sion of the subspace R4 consisting of all vectors x for which
TA(x) = 0.

(a) A =
[

1 0 2 −1
−1 4 0 0

]

(b) A =




0 0 1 1

−1 1 0 0
1 0 0 1





Working with Proofs

21. (a) Prove that for every positive integer n, one can find n + 1
linearly independent vectors in F(−!, !). [Hint: Look
for polynomials.]

(b) Use the result in part (a) to prove that F(−!, !) is infinite-
dimensional.

(c) Prove that C(−!, !), Cm(−!, !), and C!(−!, !) are
infinite-dimensional.

22. Let S be a basis for an n-dimensional vector space V. Prove
that if v1, v2, . . . , vr form a linearly independent set of vectors
in V, then the coordinate vectors (v1)S, (v2)S, . . . , (vr )S form
a linearly independent set in Rn, and conversely.
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23. Let S = {v1, v2, . . . , vr} be a nonempty set of vectors in an
n-dimensional vector space V . Prove that if the vectors in
S span V, then the coordinate vectors (v1)S, (v2)S, . . . , (vr )S

span Rn, and conversely.

24. Prove part (a) of Theorem 4.5.6.

25. Prove: A subspace of a finite-dimensional vector space is
finite-dimensional.

26. State the two parts of Theorem 4.5.2 in contrapositive form.

27. In each part, let S be the standard basis for P2. Use the results
proved in Exercises 22 and 23 to find a basis for the subspace
of P2 spanned by the given vectors.

(a) −1 + x − 2x2, 3 + 3x + 6x2, 9

(b) 1 + x, x2, 2 + 2x + 3x2

(c) 1 + x − 3x2, 2 + 2x − 6x2, 3 + 3x − 9x2

True-False Exercises

TF. In parts (a)–( k) determine whether the statement is true or
false, and justify your answer.

(a) The zero vector space has dimension zero.

(b) There is a set of 17 linearly independent vectors in R17.

(c) There is a set of 11 vectors that span R17.

(d) Every linearly independent set of five vectors in R5 is a basis
for R5.

(e) Every set of five vectors that spans R5 is a basis for R5.

(f ) Every set of vectors that spans Rn contains a basis for Rn.

(g) Every linearly independent set of vectors in Rn is contained in
some basis for Rn.

(h) There is a basis for M22 consisting of invertible matrices.

(i) If A has size n × n and In, A, A2, . . . , An2
are distinct matri-

ces, then {In, A, A2, . . . , An2 } is a linearly dependent set.

( j) There are at least two distinct three-dimensional subspaces
of P2.

(k) There are only three distinct two-dimensional subspaces of P2.

Working withTechnology

T1. Devise three different procedures for using your technology
utility to determine the dimension of the subspace spanned by a
set of vectors in Rn, and then use each of those procedures to
determine the dimension of the subspace of R5 spanned by the
vectors

v1 = (2, 2, −1, 0, 1), v2 = (−1, −1, 2, −3, 1),

v3 = (1, 1, −2, 0, −1), v4 = (0, 0, 1, 1, 1)

T2. Find a basis for the row space of A by starting at the top and
successively removing each row that is a linear combination of its
predecessors.

A =





3.4 2.2 1.0 −1.8

2.1 3.6 4.0 −3.4

8.9 8.0 6.0 7.0

7.6 9.4 9.0 −8.6

1.0 2.2 0.0 2.2





4.6 Change of Basis
A basis that is suitable for one problem may not be suitable for another, so it is a common
process in the study of vector spaces to change from one basis to another. Because a basis is
the vector space generalization of a coordinate system, changing bases is akin to changing
coordinate axes in R2 and R3. In this section we will study problems related to changing
bases.

Coordinate Maps If S = {v1, v2, . . . , vn} is a basis for a finite-dimensional vector space V, and if

(v)S = (c1, c2, . . . , cn)

is the coordinate vector of v relative to S, then, as illustrated in Figure 4.4.6, the mapping

v → (v)S (1)

creates a connection (a one-to-one correspondence) between vectors in the general vector
space V and vectors in the Euclidean vector space Rn. We call (1) the coordinate map
relative to S from V to Rn. In this section we will find it convenient to express coordinate


