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22. Show that for any vectors u, v, and w in a vector space V, the
vectors u − v, v − w, and w − u form a linearly dependent set.

23. (a) In Example 1 we showed that the mutually orthogonal vec-
tors i, j, and k form a linearly independent set of vectors in
R3. Do you think that every set of three nonzero mutually
orthogonal vectors in R3 is linearly independent? Justify
your conclusion with a geometric argument.

(b) Justify your conclusion with an algebraic argument. [Hint:
Use dot products.]

Working with Proofs

24. Prove that if {v1, v2, v3} is a linearly independent set of vectors,
then so are {v1, v2}, {v1, v3}, {v2, v3}, {v1}, {v2}, and {v3}.

25. Prove that if S = {v1, v2, . . . , vr} is a linearly independent set
of vectors, then so is every nonempty subset of S.

26. Prove that if S = {v1, v2, v3} is a linearly dependent set of vec-
tors in a vector space V, and v4 is any vector in V that is not
in S, then {v1, v2, v3, v4} is also linearly dependent.

27. Prove that if S = {v1, v2, . . . , vr} is a linearly dependent set of
vectors in a vector space V, and if vr+1, . . . , vn are any vectors
in V that are not in S, then {v1, v2, . . . , vr , vr+1, . . . , vn} is also
linearly dependent.

28. Prove that in P2 every set with more than three vectors is lin-
early dependent.

29. Prove that if {v1, v2} is linearly independent and v3 does not lie
in span{v1, v2}, then {v1, v2, v3} is linearly independent.

30. Use part (a) of Theorem 4.3.1 to prove part (b).

31. Prove part (b) of Theorem 4.3.2.

32. Prove part (c) of Theorem 4.3.2.

True-False Exercises

TF. In parts (a)–(h) determine whether the statement is true or
false, and justify your answer.

(a) A set containing a single vector is linearly independent.

(b) The set of vectors {v, kv} is linearly dependent for every
scalar k.

(c) Every linearly dependent set contains the zero vector.

(d) If the set of vectors {v1, v2, v3} is linearly independent, then
{kv1, kv2, kv3} is also linearly independent for every nonzero
scalar k.

(e) If v1, . . . , vn are linearly dependent nonzero vectors, then
at least one vector vk is a unique linear combination of
v1, . . . , vk−1.

(f ) The set of 2 × 2 matrices that contain exactly two 1’s and two
0’s is a linearly independent set in M22.

(g) The three polynomials (x − 1)(x + 2), x(x + 2), and
x(x − 1) are linearly independent.

(h) The functions f1 and f2 are linearly dependent if there is a real
number x such that k1f1(x) + k2f2(x) = 0 for some scalars k1

and k2.

Working withTechnology

T1. Devise three different methods for using your technology util-
ity to determine whether a set of vectors in Rn is linearly indepen-
dent, and then use each of those methods to determine whether
the following vectors are linearly independent.

v1 = (4, −5, 2, 6), v2 = (2, −2, 1, 3),

v3 = (6, −3, 3, 9), v4 = (4, −1, 5, 6)

T2. Show that S = {cos t, sin t, cos 2t, sin 2t} is a linearly inde-
pendent set in C(−!, !) by evaluating the left side of the equation

c1 cos t + c2 sin t + c3 cos 2t + c4 sin 2t = 0

at sufficiently many values of t to obtain a linear system whose
only solution is c1 = c2 = c3 = c4 = 0.

4.4 Coordinates and Basis
We usually think of a line as being one-dimensional, a plane as two-dimensional, and the
space around us as three-dimensional. It is the primary goal of this section and the next to
make this intuitive notion of dimension precise. In this section we will discuss coordinate
systems in general vector spaces and lay the groundwork for a precise definition of
dimension in the next section.

Coordinate Systems in
Linear Algebra

In analytic geometry one uses rectangular coordinate systems to create a one-to-one cor-
respondence between points in 2-space and ordered pairs of real numbers and between
points in 3-space and ordered triples of real numbers (Figure 4.4.1). Although rectan-
gular coordinate systems are common, they are not essential. For example, Figure 4.4.2
shows coordinate systems in 2-space and 3-space in which the coordinate axes are not
mutually perpendicular.
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Figure 4.4.1
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Coordinates of P in a rectangular
coordinate system in 2-space.

Coordinates of P in a rectangular
coordinate system in 3-space.

Figure 4.4.2
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Coordinates of P in a nonrectangular
coordinate system in 2-space.

Coordinates of P in a nonrectangular
coordinate system in 3-space.

In linear algebra coordinate systems are commonly specified using vectors rather
than coordinate axes. For example, in Figure 4.4.3 we have re-created the coordinate
systems in Figure 4.4.2 by using unit vectors to identify the positive directions and then
attaching coordinates to a point P using the scalar coefficients in the equations

−→
OP = au1 + bu2 and

−→
OP = au1 + bu2 + cu3

Figure 4.4.3
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Units of measurement are essential ingredients of any coordinate system. In ge-
ometry problems one tries to use the same unit of measurement on all axes to avoid
distorting the shapes of figures. This is less important in applications where coordinates
represent physical quantities with diverse units (for example, time in seconds on one axis
and temperature in degrees Celsius on another axis). To allow for this level of generality,
we will relax the requirement that unit vectors be used to identify the positive directions
and require only that those vectors be linearly independent. We will refer to these as the
“basis vectors” for the coordinate system. In summary, it is the directions of the basis
vectors that establish the positive directions, and it is the lengths of the basis vectors that
establish the spacing between the integer points on the axes (Figure 4.4.4).
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Basis for a Vector Space Our next goal is to extend the concepts of “basis vectors” and “coordinate systems” to
general vector spaces, and for that purpose we will need some definitions. Vector spaces
fall into two categories: A vector space V is said to be finite-dimensional if there is a
finite set of vectors in V that spans V and is said to be infinite-dimensional if no such set
exists.

DEFINITION 1 If S = {v1, v2, . . . , vn} is a set of vectors in a finite-dimensional vector
space V , then S is called a basis for V if:

(a) S spans V.

(b) S is linearly independent.

If you think of a basis as describing a coordinate system for a finite-dimensional
vector space V , then part (a) of this definition guarantees that there are enough basis
vectors to provide coordinates for all vectors in V , and part (b) guarantees that there is
no interrelationship between the basis vectors. Here are some examples.

EXAMPLE 1 The Standard Basis for Rn

Recall from Example 11 of Section 4.2 that the standard unit vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

span Rn and from Example 1 of Section 4.3 that they are linearly independent. Thus,
they form a basis for Rn that we call the standard basis for Rn. In particular,

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

is the standard basis for R3.

EXAMPLE 2 The Standard Basis for Pn
Show that S = {1, x, x2, . . . , xn} is a basis for the vector space Pn of polynomials of
degree n or less.

Solution We must show that the polynomials in S are linearly independent and span
Pn. Let us denote these polynomials by

p0 = 1, p1 = x, p2 = x2, . . . , pn = xn

We showed in Example 13 of Section 4.2 that these vectors span Pn and in Example 4
of Section 4.3 that they are linearly independent. Thus, they form a basis for Pn that we
call the standard basis for Pn.
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EXAMPLE 3 Another Basis for R3

Show that the vectors v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4) form a basis for R3.

Solution We must show that these vectors are linearly independent and span R3. To
prove linear independence we must show that the vector equation

c1v1 + c2v2 + c3v3 = 0 (1)

has only the trivial solution; and to prove that the vectors span R3 we must show that
every vector b = (b1, b2, b3) in R3 can be expressed as

c1v1 + c2v2 + c3v3 = b (2)

By equating corresponding components on the two sides, these two equations can be
expressed as the linear systems

c1 + 2c2 + 3c3 = 0

2c1 + 9c2 + 3c3 = 0

c1 + 4c3 = 0

and

c1 + 2c2 + 3c3 = b1

2c1 + 9c2 + 3c3 = b2

c1 + 4c3 = b3

(3)

(verify). Thus, we have reduced the problem to showing that in (3) the homogeneous
system has only the trivial solution and that the nonhomogeneous system is consistent
for all values of b1, b2, and b3. But the two systems have the same coefficient matrix

A =




1 2 3
2 9 3
1 0 4





so it follows from parts (b), (e), and (g) of Theorem 2.3.8 that we can prove both resultsFrom Examples 1 and 3 you
can see that a vector space can
have more than one basis.

at the same time by showing that det(A) $= 0. We leave it for you to confirm that
det(A) = −1, which proves that the vectors v1, v2, and v3 form a basis for R3.

EXAMPLE 4 The Standard Basis forMmn

Show that the matrices

M1 =
[

1 0
0 0

]
, M2 =

[
0 1
0 0

]
, M3 =

[
0 0
1 0

]
, M4 =

[
0 0
0 1

]

form a basis for the vector space M22 of 2 × 2 matrices.

Solution We must show that the matrices are linearly independent and span M22. To
prove linear independence we must show that the equation

c1M1 + c2M2 + c3M3 + c4M4 = 0 (4)

has only the trivial solution, where 0 is the 2 × 2 zero matrix; and to prove that the
matrices span M22 we must show that every 2 × 2 matrix

B =
[
a b

c d

]

can be expressed as
c1M1 + c2M2 + c3M3 + c4M4 = B (5)

The matrix forms of Equations (4) and (5) are

c1

[
1 0
0 0

]
+ c2

[
0 1
0 0

]
+ c3

[
0 0
1 0

]
+ c4

[
0 0
0 1

]
=

[
0 0
0 0

]

and

c1

[
1 0
0 0

]
+ c2

[
0 1
0 0

]
+ c3

[
0 0
1 0

]
+ c4

[
0 0
0 1

]
=

[
a b

c d

]
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which can be rewritten as
[
c1 c2

c3 c4

]
=

[
0 0
0 0

]
and

[
c1 c2

c3 c4

]
=

[
a b

c d

]

Since the first equation has only the trivial solution

c1 = c2 = c3 = c4 = 0

the matrices are linearly independent, and since the second equation has the solution

c1 = a, c2 = b, c3 = c, c4 = d

the matrices span M22. This proves that the matrices M1, M2, M3, M4 form a basis for
M22. More generally, the mn different matrices whose entries are zero except for a single
entry of 1 form a basis for Mmn called the standard basis for Mmn.

The simplest of all vector spaces is the zero vector space V = {0}. This space is
finite-dimensional because it is spanned by the vector 0. However, it has no basis in the
sense of Definition 1 because {0} is not a linearly independent set (why?). However, we
will find it useful to define the empty set Ø to be a basis for this vector space.

EXAMPLE 5 An Infinite-DimensionalVector Space

Show that the vector space of P! of all polynomials with real coefficients is infinite-
dimensional by showing that it has no finite spanning set.

Solution If there were a finite spanning set, say S = {p1, p2, . . . , pr}, then the degrees
of the polynomials in S would have a maximum value, say n; and this in turn would
imply that any linear combination of the polynomials in S would have degree at most n.
Thus, there would be no way to express the polynomial xn+1 as a linear combination of
the polynomials in S, contradicting the fact that the vectors in S span P!.

EXAMPLE 6 Some Finite- and Infinite-Dimensional Spaces

In Examples 1, 2, and 4 we found bases for Rn, Pn, and Mmn, so these vector spaces
are finite-dimensional. We showed in Example 5 that the vector space P! is not spanned
by finitely many vectors and hence is infinite-dimensional. Some other examples of
infinite-dimensional vector spaces are R!, F(−!, !), C(−!, !), Cm(−!, !), and
C!(−!, !).

Coordinates Relative to a
Basis

Earlier in this section we drew an informal analogy between basis vectors and coordinate
systems. Our next goal is to make this informal idea precise by defining the notion of a
coordinate system in a general vector space. The following theorem will be our first step
in that direction.

THEOREM 4.4.1 Uniqueness of Basis Representation

If S = {v1, v2, . . . , vn} is a basis for a vector space V, then every vector v in V can be
expressed in the form v = c1v1 + c2v2 + · · · + cnvn in exactly one way.

Proof Since S spans V, it follows from the definition of a spanning set that every vector
in V is expressible as a linear combination of the vectors in S. To see that there is only
one way to express a vector as a linear combination of the vectors in S, suppose that
some vector v can be written as

v = c1v1 + c2v2 + · · · + cnvn
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and also as
v = k1v1 + k2v2 + · · · + knvn

Subtracting the second equation from the first gives

0 = (c1 − k1)v1 + (c2 − k2)v2 + · · · + (cn − kn)vn

Since the right side of this equation is a linear combination of vectors in S, the linear
independence of S implies that

c1 − k1 = 0, c2 − k2 = 0, . . . , cn − kn = 0

that is,
c1 = k1, c2 = k2, . . . , cn = kn

Thus, the two expressions for v are the same.

We now have all of the ingredients required to define the notion of “coordinates” in a
general vector space V. For motivation, observe that in R3, for example, the coordinates
(a, b, c) of a vector v are precisely the coefficients in the formula

k

ck

j

bji

ai
(0, 1, 0)

(a, b, c)

(1, 0, 0)

(0, 0, 1)

z

y

x

Figure 4.4.5

v = ai + bj + ck

that expresses v as a linear combination of the standard basis vectors for R3 (see Fig-
ure 4.4.5). The following definition generalizes this idea.

DEFINITION 2 If S = {v1, v2, . . . , vn} is a basis for a vector space V, and

v = c1v1 + c2v2 + · · · + cnvn

is the expression for a vector v in terms of the basis S, then the scalars c1, c2, . . . , cn

are called the coordinates of v relative to the basis S. The vector (c1, c2, . . . , cn) in
Rn constructed from these coordinates is called the coordinate vector of v relative to
S; it is denoted by

(v)S = (c1, c2, . . . , cn) (6)

Sometimes it will be desirable
to write a coordinate vector as
a column matrix or row ma-
trix, in which case we will de-
note it with square brackets as
[v]S . We will refer to this as the
matrix form of the coordinate
vector and (6) as the comma-
delimited form.

Remark It is standard to regard two sets to be the same if they have the same members, even if
those members are written in a different order. In particular, in a basis for a vector space V , which
is a set of linearly independent vectors that span V , the order in which those vectors are listed
does not generally matter. However, the order in which they are listed is critical for coordinate
vectors, since changing the order of the basis vectors changes the coordinate vectors [for example,
in R2 the coordinate pair (1, 2) is not the same as the coordinate pair (2, 1)]. To deal with this
complication, many authors define an ordered basis to be one in which the listing order of the
basis vectors remains fixed. In all discussions involving coordinate vectors we will assume that the
underlying basis is ordered, even though we may not say so explicitly.

Observe that (v)S is a vector in Rn, so that once an ordered basis S is given for a
vector space V, Theorem 4.4.1 establishes a one-to-one correspondence between vectors
in V and vectors in Rn (Figure 4.4.6).

Figure 4.4.6 RnV

v (v)S

A one-to-one correspondence

/2
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EXAMPLE 7 Coordinates Relative to the Standard Basis for Rn

In the special case where V = Rn and S is the standard basis, the coordinate vector (v)S
and the vector v are the same; that is,

v = (v)S

For example, in R3 the representation of a vector v = (a, b, c) as a linear combination
of the vectors in the standard basis S = {i, j, k} is

v = ai + bj + ck

so the coordinate vector relative to this basis is (v)S = (a, b, c), which is the same as the
vector v.

EXAMPLE 8 CoordinateVectors Relative to Standard Bases

(a) Find the coordinate vector for the polynomial

p(x) = c0 + c1x + c2x
2 + · · · + cnx

n

relative to the standard basis for the vector space Pn.

(b) Find the coordinate vector of

B =
[
a b

c d

]

relative to the standard basis for M22.

Solution (a) The given formula for p(x) expresses this polynomial as a linear combina-
tion of the standard basis vectors S = {1, x, x2, . . . , xn}. Thus, the coordinate vector
for p relative to S is

(p)S = (c0, c1, c2, . . . , cn)

Solution (b) We showed in Example 4 that the representation of a vector

B =
[
a b

c d

]

as a linear combination of the standard basis vectors is

B =
[
a b

c d

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]

so the coordinate vector of B relative to S is

(B)S = (a, b, c, d)

EXAMPLE 9 Coordinates in R3

(a) We showed in Example 3 that the vectors

v1 = (1, 2, 1), v2 = (2, 9, 0), v3 = (3, 3, 4)

form a basis for R3. Find the coordinate vector of v = (5, −1, 9) relative to the
basis S = {v1, v2, v3}.

(b) Find the vector v in R3 whose coordinate vector relative to S is (v)S = (−1, 3, 2).

Solution (a) To find (v)S we must first express v as a linear combination of the vectors
in S; that is, we must find values of c1, c2, and c3 such that

v = c1v1 + c2v2 + c3v3

Ri j
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or, in terms of components,

(5, −1, 9) = c1(1, 2, 1) + c2(2, 9, 0) + c3(3, 3, 4)

Equating corresponding components gives

c1 + 2c2 + 3c3 = 5

2c1 + 9c2 + 3c3 = −1

c1 + 4c3 = 9

Solving this system we obtain c1 = 1, c2 = −1, c3 = 2 (verify). Therefore,

(v)S = (1, −1, 2)

Solution (b) Using the definition of (v)S , we obtain

v = (−1)v1 + 3v2 + 2v3

= (−1)(1, 2, 1) + 3(2, 9, 0) + 2(3, 3, 4) = (11, 31, 7)

Exercise Set 4.4
1. Use the method of Example 3 to show that the following set

of vectors forms a basis for R2.
{
(2, 1), (3, 0)

}

2. Use the method of Example 3 to show that the following set
of vectors forms a basis for R3.

{
(3, 1, −4), (2, 5, 6), (1, 4, 8)

}

3. Show that the following polynomials form a basis for P2.

x2 + 1, x2 − 1, 2x − 1

4. Show that the following polynomials form a basis for P3.

1 + x, 1 − x, 1 − x2, 1 − x3

5. Show that the following matrices form a basis for M22.
[

3 6
3 −6

]

,

[
0 −1

−1 0

]

,

[
0 −8

−12 −4

]

,

[
1 0

−1 2

]

6. Show that the following matrices form a basis for M22.
[

1 1
1 1

]

,

[
1 −1
0 0

]

,

[
0 −1
1 0

]

,

[
1 0
0 0

]

7. In each part, show that the set of vectors is not a basis for R3.

(a)
{
(2, −3, 1), (4, 1, 1), (0, −7, 1)

}

(b)
{
(1, 6, 4), (2, 4, −1), (−1, 2, 5)

}

8. Show that the following vectors do not form a basis for P2.

1 − 3x + 2x2, 1 + x + 4x2, 1 − 7x

9. Show that the following matrices do not form a basis for M22.
[

1 0
1 1

]

,

[
2 −2
3 2

]

,

[
1 −1
1 0

]

,

[
0 −1
1 1

]

10. Let V be the space spanned by v1 = cos2 x, v2 = sin2 x,
v3 = cos 2x.

(a) Show that S = {v1, v2, v3} is not a basis for V.

(b) Find a basis for V .

11. Find the coordinate vector of w relative to the basis
S = {u1, u2} for R2.

(a) u1 = (2, −4), u2 = (3, 8); w = (1, 1)

(b) u1 = (1, 1), u2 = (0, 2); w = (a, b)

12. Find the coordinate vector of w relative to the basis
S = {u1, u2} for R2.

(a) u1 = (1, −1), u2 = (1, 1); w = (1, 0)

(b) u1 = (1, −1), u2 = (1, 1); w = (0, 1)

13. Find the coordinate vector of v relative to the basis
S = {v1, v2, v3} for R3.

(a) v = (2, −1, 3); v1 = (1, 0, 0), v2 = (2, 2, 0),
v3 = (3, 3, 3)

(b) v = (5, −12, 3); v1 = (1, 2, 3), v2 = (−4, 5, 6),
v3 = (7, −8, 9)

14. Find the coordinate vector of p relative to the basis
S = {p1, p2, p3} for P2.

(a) p = 4 − 3x + x2; p1 = 1, p2 = x, p3 = x2

(b) p = 2 − x + x2; p1 = 1 + x, p2 = 1 + x2, p3 = x + x2

-

-

->
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In Exercises 15–16, first show that the set S = {A1, A2, A3, A4}
is a basis for M22, then express A as a linear combination of the
vectors in S, and then find the coordinate vector of A relative
to S.

15. A1 =
[

1 1
1 1

]
, A2 =

[
0 1
1 1

]
, A3 =

[
0 0
1 1

]
,

A4 =
[

0 0
0 1

]
; A =

[
1 0
1 0

]

16. A1 =
[

1 0
1 0

]
, A2 =

[
1 1
0 0

]
, A3 =

[
1 0
0 1

]
,

A4 =
[

0 0
1 0

]
; A =

[
6 2
5 3

]

In Exercises 17–18, first show that the set S = {p1, p2, p3} is a
basis for P2, then express p as a linear combination of the vectors
in S, and then find the coordinate vector of p relative to S.

17. p1 = 1 + x + x2, p2 = x + x2, p3 = x2;
p = 7 − x + 2x2

18. p1 = 1 + 2x + x2, p2 = 2 + 9x, p3 = 3 + 3x + 4x2;
p = 2 + 17x − 3x2

19. In words, explain why the sets of vectors in parts (a) to (d) are
not bases for the indicated vector spaces.

(a) u1 = (1, 2), u2 = (0, 3), u3 = (1, 5) for R2

(b) u1 = (−1, 3, 2), u2 = (6, 1, 1) for R3

(c) p1 = 1 + x + x2, p2 = x for P2

(d) A =
[

1 0
2 3

]

, B =
[

6 0
−1 4

]

, C =
[

3 0
1 7

]

,

D =
[

5 0
4 2

]

for M22

20. In any vector space a set that contains the zero vector must be
linearly dependent. Explain why this is so.

21. In each part, let TA: R3 →R3 be multiplication by A, and let
{e1, e2, e3} be the standard basis for R3. Determine whether
the set {TA(e1), TA(e2), TA(e3)} is linearly independent in R2.

(a) A =




1 1 1
0 1 −3

−1 2 0



 (b) A =




1 1 2
0 1 1

−1 2 1





22. In each part, let TA: R3 →R3 be multiplication by A, and let
u = (1, −2, −1). Find the coordinate vector of TA(u) relative
to the basis S = {(1, 1, 0), (0, 1, 1), (1, 1, 1)} for R3.

(a) A =




2 −1 0
1 1 1
0 −1 2



 (b) A =




0 1 0
1 0 1
0 0 1





23. The accompanying figure shows a rectangular xy-coordin-
ate system determined by the unit basis vectors i and j and
an x ′y ′-coordinate system determined by unit basis vectors u1

and u2. Find the x ′y ′-coordinates of the points whose xy-
coordinates are given.

(a) (
√

3, 1) (b) (1, 0) (c) (0, 1) (d) (a, b)

x

y and y'

x'

30°

i

j and u2

u1

Figure Ex-23

24. The accompanying figure shows a rectangular xy-coordinate
system and an x ′y ′-coordinate system with skewed axes. As-
suming that 1-unit scales are used on all the axes, find the x ′y ′-
coordinates of the points whose xy-coordinates are given.

(a) (1, 1) (b) (1, 0) (c) (0, 1) (d) (a, b)

x and x´

y y´

45°

Figure Ex-24

25. The first four Hermite polynomials [named for the French
mathematician Charles Hermite (1822–1901)] are

1, 2t, −2 + 4t2, −12t + 8t3

These polynomials have a wide variety of applications in
physics and engineering.

(a) Show that the first four Hermite polynomials form a basis
for P3.

(b) Let B be the basis in part (a). Find the coordinate vector
of the polynomial

p(t) = −1 − 4t + 8t2 + 8t3

relative to B.

26. The first four Laguerre polynomials [named for the French
mathematician Edmond Laguerre (1834–1886)] are

1, 1 − t, 2 − 4t + t2, 6 − 18t + 9t2 − t3

(a) Show that the first four Laguerre polynomials form a basis
for P3.

(b) Let B be the basis in part (a). Find the coordinate vector
of the polynomial

p(t) = −10t + 9t2 − t3

relative to B.
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27. Consider the coordinate vectors

[w]S =




6

−1
4



 , [q]S =




3
0
4



 , [B]S =





−8
7
6
3





(a) Find w if S is the basis in Exercise 2.

(b) Find q if S is the basis in Exercise 3.

(c) Find B if S is the basis in Exercise 5.

28. The basis that we gave for M22 in Example 4 consisted of non-
invertible matrices. Do you think that there is a basis for M22

consisting of invertible matrices? Justify your answer.

Working with Proofs

29. Prove that R! is an infinite-dimensional vector space.

30. Let TA: Rn →Rn be multiplication by an invertible matrix
A, and let {u1, u2, . . . , un} be a basis for Rn. Prove that
{TA(u1), TA(u2), . . . , TA(un)} is also a basis for Rn.

31. Prove that if V is a subspace of a vector space W and if V is
infinite-dimensional, then so is W .

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) If V = span{v1, . . . , vn}, then {v1, . . . , vn} is a basis for V.

(b) Every linearly independent subset of a vector space V is a
basis for V.

(c) If {v1, v2, . . . , vn} is a basis for a vector space V, then ev-
ery vector in V can be expressed as a linear combination of
v1, v2, . . . , vn.

(d) The coordinate vector of a vector x in Rn relative to the stan-
dard basis for Rn is x.

(e) Every basis of P4 contains at least one polynomial of degree 3
or less.

Working withTechnology

T1. Let V be the subspace of P3 spanned by the vectors

p1 = 1 + 5x − 3x2 − 11x3, p2 = 7 + 4x − x2 + 2x3,

p3 = 5 + x + 9x2 + 2x3, p4 = 3 − x + 7x2 + 5x3

(a) Find a basis S for V .

(b) Find the coordinate vector of p = 19 + 18x − 13x2 − 10x3

relative to the basis S you obtained in part (a).

T2. Let V be the subspace of C!(−!, !) spanned by the vectors
in the set

B = {1, cos x, cos2 x, cos3 x, cos4 x, cos5 x}

and accept without proof that B is a basis for V . Confirm that
the following vectors are in V , and find their coordinate vectors
relative to B.

f0 = 1, f1 = cos x, f2 = cos 2x, f3 = cos 3x,

f4 = cos 4x, f5 = cos 5x

4.5 Dimension
We showed in the previous section that the standard basis for Rn has n vectors and hence
that the standard basis for R3 has three vectors, the standard basis for R2 has two vectors, and
the standard basis for R1(= R) has one vector. Since we think of space as three-dimensional,
a plane as two-dimensional, and a line as one-dimensional, there seems to be a link between
the number of vectors in a basis and the dimension of a vector space. We will develop this
idea in this section.

Number of Vectors in a
Basis

Our first goal in this section is to establish the following fundamental theorem.

THEOREM 4.5.1 All bases for a finite-dimensional vector space have the same number
of vectors.

To prove this theorem we will need the following preliminary result, whose proof is
deferred to the end of the section.


