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where ω is a fixed constant that depends on the mass of the
block and the stiffness of the spring and c1 and c2 are arbi-
trary. Show that this set of functions forms a subspace of
C!(−!, !).
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Working with Proofs

24. Prove Theorem 4.2.6.

True-False Exercises

TF. In parts (a)–(k) determine whether the statement is true or
false, and justify your answer.

(a) Every subspace of a vector space is itself a vector space.

(b) Every vector space is a subspace of itself.

(c) Every subset of a vector space V that contains the zero vector
in V is a subspace of V.

(d) The kernel of a matrix transformation TA: Rn →Rm is a sub-
space of Rm.

(e) The solution set of a consistent linear system Ax = b of m

equations in n unknowns is a subspace of Rn.

(f ) The span of any finite set of vectors in a vector space is closed
under addition and scalar multiplication.

(g) The intersection of any two subspaces of a vector space V is a
subspace of V.

(h) The union of any two subspaces of a vector space V is a sub-
space of V.

(i) Two subsets of a vector space V that span the same subspace
of V must be equal.

( j) The set of upper triangular n × n matrices is a subspace of the
vector space of all n × n matrices.

(k) The polynomials x − 1, (x − 1)2, and (x − 1)3 span P3.

Working withTechnology

T1. Recall from Theorem 1.3.1 that a product Ax can be expressed
as a linear combination of the column vectors of the matrix A in
which the coefficients are the entries of x. Use matrix multiplica-
tion to compute

v = 6(8, −2, 1, −4) + 17(−3, 9, 11, 6) − 9(13, −1, 2, 4)

T2. Use the idea in Exercise T1 and matrix multiplication to de-
termine whether the polynomial

p = 1 + x + x2 + x3

is in the span of

p1 = 8 − 2x + x2 − 4x3, p2 = −3 + 9x + 11x2 + 6x3,

p3 = 13 − x + 2x2 + 4x3

T3. For the vectors that follow, determine whether

span{v1, v2, v3} = span{w1, w2, w3}

v1 = (−1, 2, 0, 1, 3), v2 = (7, 4, 6, −3, 1),

v3 = (−5, 3, 1, 2, 4)

w1 = (−6, 5, 1, 3, 7), w2 = (6, 6, 6, −2, 4),

w3 = (2, 7, 7, −1, 5)

4.3 Linear Independence
In this section we will consider the question of whether the vectors in a given set are
interrelated in the sense that one or more of them can be expressed as a linear combination
of the others. This is important to know in applications because the existence of such
relationships often signals that some kind of complication is likely to occur.

Linear Independence and
Dependence

In a rectangular xy-coordinate system every vector in the plane can be expressed in
exactly one way as a linear combination of the standard unit vectors. For example, the
only way to express the vector (3, 2) as a linear combination of i = (1, 0) and j = (0, 1)
is

(3, 2) = 3(1, 0) + 2(0, 1) = 3i + 2j (1)
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(Figure 4.3.1). Suppose, however, that we were to introduce a third coordinate axis thaty
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Figure 4.3.1

makes an angle of 45◦ with the x-axis. Call it the w-axis. As illustrated in Figure 4.3.2,
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the unit vector along the w-axis is

w =
(

1√
2
,

1√
2

)

Whereas Formula (1) shows the only way to express the vector (3, 2) as a linear combina-
tion of i and j, there are infinitely many ways to express this vector as a linear combination
of i, j, and w. Three possibilities are

(3, 2) = 3(1, 0) + 2(0, 1) + 0
(

1√
2
,

1√
2

)
= 3i + 2j + 0w

(3, 2) = 2(1, 0) + (0, 1) +
√

2
(

1√
2
,

1√
2

)
= 3i + j +

√
2w

(3, 2) = 4(1, 0) + 3(0, 1) −
√

2
(

1√
2
,

1√
2

)
= 4i + 3j −

√
2w

In short, by introducing a superfluous axis we created the complication of having mul-
tiple ways of assigning coordinates to points in the plane. What makes the vector w
superfluous is the fact that it can be expressed as a linear combination of the vectors i
and j, namely,

w =
(

1√
2
,

1√
2

)
= 1√

2
i + 1√

2
j

This leads to the following definition.

DEFINITION 1 If S = {v1, v2, . . . , vr} is a set of two or more vectors in a vector space
V , then S is said to be a linearly independent set if no vector in S can be expressed as
a linear combination of the others. A set that is not linearly independent is said to be
linearly dependent.

In general, the most efficient way to determine whether a set is linearly independent
In the case where the set S in
Definition 1 has only one vec-
tor, we will agree that S is lin-
early independent if and only
if that vector is nonzero.

or not is to use the following theorem whose proof is given at the end of this section.

THEOREM 4.3.1 A nonempty set S = {v1, v2, . . . , vr} in a vector space V is linearly
independent if and only if the only coefficients satisfying the vector equation

k1v1 + k2v2 + · · · + krvr = 0

are k1 = 0, k2 = 0, . . . , kr = 0.

EXAMPLE 1 Linear Independence of the Standard UnitVectors in Rn

The most basic linearly independent set in Rn is the set of standard unit vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

To illustrate this in R3, consider the standard unit vectors

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

0 i,j, w
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To prove linear independence we must show that the only coefficients satisfying the vector
equation

k1i + k2j + k3k = 0

are k1 = 0, k2 = 0, k3 = 0. But this becomes evident by writing this equation in its
component form

(k1, k2, k3) = (0, 0, 0)

You should have no trouble adapting this argument to establish the linear independence
of the standard unit vectors in Rn.

EXAMPLE 2 Linear Independence in R3

Determine whether the vectors

v1 = (1, −2, 3), v2 = (5, 6, −1), v3 = (3, 2, 1) (2)

are linearly independent or linearly dependent in R3.

Solution The linear independence or dependence of these vectors is determined by
whether the vector equation

k1v1 + k2v2 + k3v3 = 0 (3)

can be satisfied with coefficients that are not all zero. To see whether this is so, let us
rewrite (3) in the component form

k1(1, −2, 3) + k2(5, 6, −1) + k3(3, 2, 1) = (0, 0, 0)

Equating corresponding components on the two sides yields the homogeneous linear
system

k1 + 5k2 + 3k3 = 0

−2k1 + 6k2 + 2k3 = 0

3k1 − k2 + k3 = 0

(4)

Thus, our problem reduces to determining whether this system has nontrivial solutions.
There are various ways to do this; one possibility is to simply solve the system, which
yields

k1 = − 1
2 t, k2 = − 1

2 t, k3 = t

(we omit the details). This shows that the system has nontrivial solutions and hence
that the vectors are linearly dependent. A second method for establishing the linear
dependence is to take advantage of the fact that the coefficient matrix

A =




1 5 3

−2 6 2
3 −1 1





is square and compute its determinant. We leave it for you to show that det(A) = 0 from
which it follows that (4) has nontrivial solutions by parts (b) and (g) of Theorem 2.3.8.

Because we have established that the vectors v1, v2, and v3 in (2) are linearly depen-
dent, we know that at least one of them is a linear combination of the others. We leave
it for you to confirm, for example, that

v3 = 1
2 v1 + 1

2 v2
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EXAMPLE 3 Linear Independence in R4

Determine whether the vectors

v1 = (1, 2, 2, −1), v2 = (4, 9, 9, −4), v3 = (5, 8, 9, −5)

in R4 are linearly dependent or linearly independent.

Solution The linear independence or linear dependence of these vectors is determined
by whether there exist nontrivial solutions of the vector equation

k1v1 + k2v2 + k3v3 = 0

or, equivalently, of

k1(1, 2, 2, −1) + k2(4, 9, 9, −4) + k3(5, 8, 9, −5) = (0, 0, 0, 0)

Equating corresponding components on the two sides yields the homogeneous linear
system

k1 + 4k2 + 5k3 = 0
2k1 + 9k2 + 8k3 = 0
2k1 + 9k2 + 9k3 = 0
−k1 − 4k2 − 5k3 = 0

We leave it for you to show that this system has only the trivial solution

k1 = 0, k2 = 0, k3 = 0

from which you can conclude that v1, v2, and v3 are linearly independent.

EXAMPLE 4 An Important Linearly Independent Set in Pn
Show that the polynomials

1, x, x2, . . . , xn

form a linearly independent set in Pn.

Solution For convenience, let us denote the polynomials as

p0 = 1, p1 = x, p2 = x2, . . . , pn = xn

We must show that the only coefficients satisfying the vector equation

a0p0 + a1p1 + a2p2 + · · · + anpn = 0 (5)

are
a0 = a1 = a2 = · · · = an = 0

But (5) is equivalent to the statement that

a0 + a1x + a2x
2 + · · · + anx

n = 0 (6)

for all x in (−!, !), so we must show that this is true if and only if each coefficient in
(6) is zero. To see that this is so, recall from algebra that a nonzero polynomial of degree
n has at most n distinct roots. That being the case, each coefficient in (6) must be zero,
for otherwise the left side of the equation would be a nonzero polynomial with infinitely
many roots. Thus, (5) has only the trivial solution.

The following example shows that the problem of determining whether a given set of
vectors in Pn is linearly independent or linearly dependent can be reduced to determining
whether a certain set of vectors in Rn is linearly dependent or independent.
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EXAMPLE 5 Linear Independence of Polynomials

Determine whether the polynomials

p1 = 1 − x, p2 = 5 + 3x − 2x2, p3 = 1 + 3x − x2

are linearly dependent or linearly independent in P2.

Solution The linear independence or dependence of these vectors is determined by
whether the vector equation

k1p1 + k2p2 + k3p3 = 0 (7)

can be satisfied with coefficients that are not all zero. To see whether this is so, let us
rewrite (7) in its polynomial form

k1(1 − x) + k2(5 + 3x − 2x2) + k3(1 + 3x − x2) = 0 (8)

or, equivalently, as

(k1 + 5k2 + k3) + (−k1 + 3k2 + 3k3)x + (−2k2 − k3)x
2 = 0

Since this equation must be satisfied by all x in (−!, !), each coefficient must be zero
(as explained in the previous example). Thus, the linear dependence or independence
of the given polynomials hinges on whether the following linear system has a nontrivial
solution:

k1 + 5k2 + k3 = 0

−k1 + 3k2 + 3k3 = 0

− 2k2 − k3 = 0

(9)

We leave it for you to show that this linear system has nontrivial solutions either by

In Example 5, what rela-
tionship do you see between
the coefficients of the given
polynomials and the column
vectors of the coefficient ma-
trix of system (9)? solving it directly or by showing that the coefficient matrix has determinant zero. Thus,

the set {p1, p2, p3} is linearly dependent.

Sets with One orTwo
Vectors

The following useful theorem is concerned with the linear independence and linear de-
pendence of sets with one or two vectors and sets that contain the zero vector.

THEOREM 4.3.2
(a) A finite set that contains 0 is linearly dependent.

(b) A set with exactly one vector is linearly independent if and only if that vector is
not 0.

(c) A set with exactly two vectors is linearly independent if and only if neither vector
is a scalar multiple of the other.

We will prove part (a) and leave the rest as exercises.

Proof (a) For any vectors v1, v2, . . . , vr , the set S = {v1, v2, . . . , vr , 0} is linearly depen-
dent since the equation

0v1 + 0v2 + · · · + 0vr + 1(0) = 0
expresses 0 as a linear combination of the vectors in S with coefficients that are not
all zero.

EXAMPLE 6 Linear Independence of Two Functions

The functions f1 = x and f2 = sin x are linearly independent vectors in F(−!, !) since
neither function is a scalar multiple of the other. On the other hand, the two functions
g1 = sin 2x and g2 = sin x cos x are linearly dependent because the trigonometric iden-
tity sin 2x = 2 sin x cos x reveals that g1 and g2 are scalar multiples of each other.

①S =(m,sinx] O

x fK,sinx
sinx 7 K2X

in dependent X
②=Esinze,

Sinncoss)

Sin zx
=K,sixcost

=2SinxcosX

dependent
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A Geometric Interpretation
of Linear Independence

Linear independence has the following useful geometric interpretations in R2 and R3:

• Two vectors in R2 or R3 are linearly independent if and only if they do not lie on the
same line when they have their initial points at the origin. Otherwise one would be a
scalar multiple of the other (Figure 4.3.3).

Figure 4.3.3
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• Three vectors in R3 are linearly independent if and only if they do not lie in the same
plane when they have their initial points at the origin. Otherwise at least one would
be a linear combination of the other two (Figure 4.3.4).

Figure 4.3.4
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At the beginning of this section we observed that a third coordinate axis in R2 is
superfluous by showing that a unit vector along such an axis would have to be expressible
as a linear combination of unit vectors along the positive x- and y-axis. That result is
a consequence of the next theorem, which shows that there can be at most n vectors in
any linearly independent set Rn.

THEOREM 4.3.3 Let S = {v1, v2, . . . , vr} be a set of vectors in Rn. If r > n, then S is
linearly dependent.

Proof Suppose that
v1 = (v11, v12, . . . , v1n)

v2 = (v21, v22, . . . , v2n)
...

...
vr = (vr1, vr2, . . . , vrn)

and consider the equation

k1v1 + k2v2 + · · · + krvr = 0

-

I, I
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-
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- r
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rin -> s dependant. XSindependal -> ren
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If we express both sides of this equation in terms of components and then equate the
It follows from Theorem 4.3.3
that a set in R2 with more than
two vectors is linearly depen-
dent and a set in R3 with more
than three vectors is linearly
dependent.

corresponding components, we obtain the system

v11k1 + v21k2 + · · · + vr1kr = 0

v12k1 + v22k2 + · · · + vr2kr = 0
...

...
...

...

v1nk1 + v2nk2 + · · · + vrnkr = 0

This is a homogeneous system of n equations in the r unknowns k1, . . . , kr . Since
r > n, it follows from Theorem 1.2.2 that the system has nontrivial solutions. Therefore,
S = {v1, v2, . . . , vr} is a linearly dependent set.

Linear Independence of
Functions

Sometimes linear dependence of functions can be deduced from known identities. ForCA L C U L U S R E Q U I R E D

example, the functions

f1 = sin2 x, f2 = cos2 x, and f3 = 5

form a linearly dependent set in F(−!, !), since the equation

5f1 + 5f2 − f3 = 5 sin2 x + 5 cos2 x − 5

= 5(sin2 x + cos2 x) − 5 = 0

expresses 0 as a linear combination of f1, f2, and f3 with coefficients that are not all zero.
However, it is relatively rare that linear independence or dependence of functions can

be ascertained by algebraic or trigonometric methods. To make matters worse, there is
no general method for doing that either. That said, there does exist a theorem that can
be useful for that purpose in certain cases. The following definition is needed for that
theorem.

DEFINITION 2 If f1 = f1(x), f2 = f2(x), . . . , fn = fn(x) are functions that are
n − 1 times differentiable on the interval (−!, !), then the determinant

W(x) =

∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fn(x)

f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

...

f
(n−1)

1 (x) f
(n−1)

2 (x) · · · f (n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣

is called the Wronskian of f1, f2, . . . , fn.

Józef Hoëné de Wroński
(1778–1853)

Historical Note The Polish-French mathematician Józef Hoëné de
Wroński was born Józef Hoëné and adopted the name Wroński after
he married. Wroński’s life was fraught with controversy and conflict,
which some say was due to psychopathic tendencies and his exag-
geration of the importance of his own work. AlthoughWroński’s work
was dismissed as rubbish for many years, and much of it was indeed
erroneous, some of his ideas contained hidden brilliance and have sur-
vived. Among other things, Wroński designed a caterpillar vehicle to
compete with trains (though it was never manufactured) and did re-
search on the famous problem of determining the longitude of a ship
at sea. His final years were spent in poverty.

[Image: © TopFoto/The ImageWorks]
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Suppose for the moment that f1 = f1(x), f2 = f2(x), . . . , fn = fn(x) are linearly
dependent vectors in C(n−1)(−!, !). This implies that the vector equation

k1f1 + k2f2 + · · · + knfn = 0

is satisfied by values of the coefficients k1, k2, . . . , kn that are not all zero, and for these
coefficients the equation

k1f1(x) + k2f2(x) + · · · + knfn(x) = 0

is satisfied for all x in (−!, !). Using this equation together with those that result by
differentiating it n − 1 times we obtain the linear system

k1f1(x) + k2f2(x) + · · · + knfn(x) = 0

k1f
′

1(x) + k2f
′

2(x) + · · · + knf
′
n(x) = 0

...
...

...
...

k1f
(n−1)

1 (x) + k2f
(n−1)

2 (x) + · · · + knf
(n−1)
n (x) = 0

Thus, the linear dependence of f1, f2, . . . , fn implies that the linear system




f1(x) f2(x) · · · fn(x)

f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

...

f
(n−1)

1 (x) f
(n−1)

2 (x) · · · f (n−1)
n (x)









k1

k2
...

kn




=





0
0
...

0




(10)

has a nontrivial solution for every x in the interval (−!, !), and this in turn implies
that the determinant of the coefficient matrix of (10) is zero for every such x. Since this
determinant is the Wronskian of f1, f2, . . . , fn, we have established the following result.

THEOREM 4.3.4 If the functions f1, f2, . . . , fn have n−1 continuous derivatives
on the interval (−!, !), and if the Wronskian of these functions is not identically
zero on (−!, !), then these functions form a linearly independent set of vectors in
C(n−1)(−!, !).

In Example 6 we showed that x and sin x are linearly independent functions by

WARNING The converse of
Theorem 4.3.4 is false. If the
Wronskian of f1, f2, . . . , fn is
identically zero on (−!, !),
then no conclusion can be
reached about the linear inde-
pendence of {f1, f2, . . . , fn}—
this set of vectors may be lin-
early independent or linearly
dependent.

observing that neither is a scalar multiple of the other. The following example illustrates
how to obtain the same result using the Wronskian (though it is a more complicated
procedure in this particular case).

EXAMPLE 7 Linear Independence Using theWronskian

Use the Wronskian to show that f1 = x and f2 = sin x are linearly independent vectors
in C!(−!, !).

Solution The Wronskian is

W(x) =
∣∣∣∣
x sin x

1 cos x

∣∣∣∣ = x cos x − sin x

This function is not identically zero on the interval (−!, !) since, for example,

W
(π

2

)
= π

2
cos

(π

2

)
− sin

(π

2

)
= π

2
Thus, the functions are linearly independent.

-
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-
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EXAMPLE 8 Linear Independence Using theWronskian

Use the Wronskian to show that f1 = 1, f2 = ex , and f3 = e2x are linearly independent
vectors in C!(−!, !).

Solution The Wronskian is

W(x) =

∣∣∣∣∣∣∣

1 ex e2x

0 ex 2e2x

0 ex 4e2x

∣∣∣∣∣∣∣
= 2e3x

This function is obviously not identically zero on (−!, !), so f1, f2, and f3 form a linearly
independent set.

We will close this section by proving Theorem 4.3.1.O PT I O NA L

Proof of Theorem 4.3.1 We will prove this theorem in the case where the set S has two
or more vectors, and leave the case where S has only one vector as an exercise. Assume
first that S is linearly independent. We will show that if the equation

k1v1 + k2v2 + · · · + krvr = 0 (11)

can be satisfied with coefficients that are not all zero, then at least one of the vectors in
S must be expressible as a linear combination of the others, thereby contradicting the
assumption of linear independence. To be specific, suppose that k1 '= 0. Then we can
rewrite (11) as

v1 =
(

−k2

k1

)
v2 + · · · +

(
−kr

k1

)
vr

which expresses v1 as a linear combination of the other vectors in S.
Conversely, we must show that if the only coefficients satisfying (11) are

k1 = 0, k2 = 0, . . . , kr = 0

then the vectors in S must be linearly independent. But if this were true of the coeffi-
cients and the vectors were not linearly independent, then at least one of them would be
expressible as a linear combination of the others, say

v1 = c2v2 + · · · + crvr

which we can rewrite as

v1 + (−c2)v2 + · · · + (−cr)vr = 0

But this contradicts our assumption that (11) can only be satisfied by coefficients that
are all zero. Thus, the vectors in S must be linearly independent.

Exercise Set 4.3
1. Explain why the following form linearly dependent sets of vec-

tors. (Solve this problem by inspection.)

(a) u1 = (−1, 2, 4) and u2 = (5, −10, −20) in R3

(b) u1 = (3, −1), u2 = (4, 5), u3 = (−4, 7) in R2

(c) p1 = 3 − 2x + x2 and p2 = 6 − 4x + 2x2 in P2

(d) A =
[
−3 4

2 0

]

and B =
[

3 −4
−2 0

]

in M22

2. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in R3.

(a) (−3, 0, 4), (5, −1, 2), (1, 1, 3)

(b) (−2, 0, 1), (3, 2, 5), (6, −1, 1), (7, 0, −2)

3. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in R4.

(a) (3, 8, 7, −3), (1, 5, 3, −1), (2, −1, 2, 6), (4, 2, 6, 4)

(b) (3, 0, −3, 6), (0, 2, 3, 1), (0, −2, −2, 0), (−2, 1, 2, 1)
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4. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in P2.

(a) 2 − x + 4x2, 3 + 6x + 2x2, 2 + 10x − 4x2

(b) 1 + 3x + 3x2, x + 4x2, 5 + 6x + 3x2, 7 + 2x − x2

5. In each part, determine whether the matrices are linearly in-
dependent or dependent.

(a)

[
1 0
1 2

]

,

[
1 2
2 1

]

,

[
0 1
2 1

]

in M22

(b)

[
1 0 0
0 0 0

]

,

[
0 0 1
0 0 0

]

,

[
0 0 0
0 1 0

]

in M23

6. Determine all values of k for which the following matrices are
linearly independent in M22.

[
1 0
1 k

]

,

[
−1 0

k 1

]

,

[
2 0
1 3

]

7. In each part, determine whether the three vectors lie in a plane
in R3.

(a) v1 = (2, −2, 0), v2 = (6, 1, 4), v3 = (2, 0, −4)

(b) v1 = (−6, 7, 2), v2 = (3, 2, 4), v3 = (4, −1, 2)

8. In each part, determine whether the three vectors lie on the
same line in R3.

(a) v1 = (−1, 2, 3), v2 = (2, −4, −6), v3 = (−3, 6, 0)

(b) v1 = (2, −1, 4), v2 = (4, 2, 3), v3 = (2, 7, −6)

(c) v1 = (4, 6, 8), v2 = (2, 3, 4), v3 = (−2, −3, −4)

9. (a) Show that the three vectors v1 = (0, 3, 1, −1),
v2 = (6, 0, 5, 1), and v3 = (4, −7, 1, 3) form a linearly
dependent set in R4.

(b) Express each vector in part (a) as a linear combination of
the other two.

10. (a) Show that the vectors v1 = (1, 2, 3, 4), v2 = (0, 1, 0, −1),
and v3 = (1, 3, 3, 3) form a linearly dependent set in R4.

(b) Express each vector in part (a) as a linear combination of
the other two.

11. For which real values of λ do the following vectors form a
linearly dependent set in R3?

v1 =
(
λ, − 1

2 , − 1
2

)
, v2 =

(
− 1

2 , λ, − 1
2

)
, v3 =

(
− 1

2 , − 1
2 , λ

)

12. Under what conditions is a set with one vector linearly inde-
pendent?

13. In each part, let TA: R2 →R2 be multiplication by A, and
let u1 = (1, 2) and u2 = (−1, 1). Determine whether the set
{TA(u1), TA(u2)} is linearly independent in R2.

(a) A =
[

1 −1
0 2

]

(b) A =
[

1 −1
−2 2

]

14. In each part, let TA: R3 →R3 be multiplication by A, and let
u1 = (1, 0, 0), u2 = (2, −1, 1), and u3 = (0, 1, 1). Determine

whether the set {TA(u1), TA(u2), TA(u3)} is linearly indepen-
dent in R3.

(a) A =




1 1 2
1 0 −3
2 2 0



 (b) A =




1 1 1
1 1 −3
2 2 0





15. Are the vectors v1, v2, and v3 in part (a) of the accompany-
ing figure linearly independent? What about those in part (b)?
Explain.

z

y

x

z

y

x

(a) (b)

v1

v1

v2

v2

v3 v3

Figure Ex-15

16. By using appropriate identities, where required, determine
which of the following sets of vectors in F(−!, !) are lin-
early dependent.

(a) 6, 3 sin2 x, 2 cos2 x (b) x, cos x

(c) 1, sin x, sin 2x (d) cos 2x, sin2 x, cos2 x

(e) (3 − x)2, x2 − 6x, 5 (f ) 0, cos3 πx, sin5 3πx

17. (Calculus required ) The functions

f1(x) = x and f2(x) = cos x

are linearly independent inF(−!, !)because neither function
is a scalar multiple of the other. Confirm the linear indepen-
dence using the Wronskian.

18. (Calculus required ) The functions

f1(x) = sin x and f2(x) = cos x

are linearly independent inF(−!, !)because neither function
is a scalar multiple of the other. Confirm the linear indepen-
dence using the Wronskian.

19. (Calculus required ) Use the Wronskian to show that the fol-
lowing sets of vectors are linearly independent.

(a) 1, x, ex (b) 1, x, x2

20. (Calculus required ) Use the Wronskian to show that the func-
tions f1(x) = ex, f2(x) = xex , and f3(x) = x2ex are linearly
independent vectors in C!(−!, !).

21. (Calculus required ) Use the Wronskian to show that the func-
tions f1(x) = sin x, f2(x) = cos x, and f3(x) = x cos x are
linearly independent vectors in C!(−!, !).
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22. Show that for any vectors u, v, and w in a vector space V, the
vectors u − v, v − w, and w − u form a linearly dependent set.

23. (a) In Example 1 we showed that the mutually orthogonal vec-
tors i, j, and k form a linearly independent set of vectors in
R3. Do you think that every set of three nonzero mutually
orthogonal vectors in R3 is linearly independent? Justify
your conclusion with a geometric argument.

(b) Justify your conclusion with an algebraic argument. [Hint:
Use dot products.]

Working with Proofs

24. Prove that if {v1, v2, v3} is a linearly independent set of vectors,
then so are {v1, v2}, {v1, v3}, {v2, v3}, {v1}, {v2}, and {v3}.

25. Prove that if S = {v1, v2, . . . , vr} is a linearly independent set
of vectors, then so is every nonempty subset of S.

26. Prove that if S = {v1, v2, v3} is a linearly dependent set of vec-
tors in a vector space V, and v4 is any vector in V that is not
in S, then {v1, v2, v3, v4} is also linearly dependent.

27. Prove that if S = {v1, v2, . . . , vr} is a linearly dependent set of
vectors in a vector space V, and if vr+1, . . . , vn are any vectors
in V that are not in S, then {v1, v2, . . . , vr , vr+1, . . . , vn} is also
linearly dependent.

28. Prove that in P2 every set with more than three vectors is lin-
early dependent.

29. Prove that if {v1, v2} is linearly independent and v3 does not lie
in span{v1, v2}, then {v1, v2, v3} is linearly independent.

30. Use part (a) of Theorem 4.3.1 to prove part (b).

31. Prove part (b) of Theorem 4.3.2.

32. Prove part (c) of Theorem 4.3.2.

True-False Exercises

TF. In parts (a)–(h) determine whether the statement is true or
false, and justify your answer.

(a) A set containing a single vector is linearly independent.

(b) The set of vectors {v, kv} is linearly dependent for every
scalar k.

(c) Every linearly dependent set contains the zero vector.

(d) If the set of vectors {v1, v2, v3} is linearly independent, then
{kv1, kv2, kv3} is also linearly independent for every nonzero
scalar k.

(e) If v1, . . . , vn are linearly dependent nonzero vectors, then
at least one vector vk is a unique linear combination of
v1, . . . , vk−1.

(f ) The set of 2 × 2 matrices that contain exactly two 1’s and two
0’s is a linearly independent set in M22.

(g) The three polynomials (x − 1)(x + 2), x(x + 2), and
x(x − 1) are linearly independent.

(h) The functions f1 and f2 are linearly dependent if there is a real
number x such that k1f1(x) + k2f2(x) = 0 for some scalars k1

and k2.

Working withTechnology

T1. Devise three different methods for using your technology util-
ity to determine whether a set of vectors in Rn is linearly indepen-
dent, and then use each of those methods to determine whether
the following vectors are linearly independent.

v1 = (4, −5, 2, 6), v2 = (2, −2, 1, 3),

v3 = (6, −3, 3, 9), v4 = (4, −1, 5, 6)

T2. Show that S = {cos t, sin t, cos 2t, sin 2t} is a linearly inde-
pendent set in C(−!, !) by evaluating the left side of the equation

c1 cos t + c2 sin t + c3 cos 2t + c4 sin 2t = 0

at sufficiently many values of t to obtain a linear system whose
only solution is c1 = c2 = c3 = c4 = 0.

4.4 Coordinates and Basis
We usually think of a line as being one-dimensional, a plane as two-dimensional, and the
space around us as three-dimensional. It is the primary goal of this section and the next to
make this intuitive notion of dimension precise. In this section we will discuss coordinate
systems in general vector spaces and lay the groundwork for a precise definition of
dimension in the next section.

Coordinate Systems in
Linear Algebra

In analytic geometry one uses rectangular coordinate systems to create a one-to-one cor-
respondence between points in 2-space and ordered pairs of real numbers and between
points in 3-space and ordered triples of real numbers (Figure 4.4.1). Although rectan-
gular coordinate systems are common, they are not essential. For example, Figure 4.4.2
shows coordinate systems in 2-space and 3-space in which the coordinate axes are not
mutually perpendicular.


