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u + w = v + w Hypothesis
(u + w) + (−w) = (v + w) + (−w) Add −w to both sides.
u + [w + (−w)] = v + [w + (−w)]
u + 0 = v + 0
u = v

22. Below is a seven-step proof of part (b) of Theorem 4.1.1.
Justify each step either by stating that it is true by hypothesis
or by specifying which of the ten vector space axioms applies.

Hypothesis: Let u be any vector in a vector space V, let 0 be
the zero vector in V, and let k be a scalar.

Conclusion: Then k0 = 0.

Proof: (1) k0 + ku = k(0 + u)

(2) = ku

(3) Since ku is in V, −ku is in V.

(4) Therefore, (k0 + ku) + (−ku) = ku + (−ku).

(5) k0 + (ku + (−ku)) = ku + (−ku)

(6) k0 + 0 = 0

(7) k0 = 0

In Exercises 23–24, let u be any vector in a vector space V .
Give a step-by-step proof of the stated result using Exercises 21
and 22 as models for your presentation.

23. 0u = 0 24. −u = (−1)u

In Exercises 25–27, prove that the given set with the stated
operations is a vector space.

25. The set V = {0} with the operations of addition and scalar
multiplication given in Example 1.

26. The set R! of all infinite sequences of real numbers with the
operations of addition and scalar multiplication given in Ex-
ample 3.

27. The set Mmn of all m × n matrices with the usual operations
of addition and scalar multiplication.

28. Prove: If u is a vector in a vector space V and k a scalar such
that ku = 0, then either k = 0 or u = 0. [Suggestion: Show
that if ku = 0 and k #= 0, then u = 0. The result then follows
as a logical consequence of this.]

True-False Exercises

TF. In parts (a)–(f) determine whether the statement is true or
false, and justify your answer.

(a) A vector is any element of a vector space.

(b) A vector space must contain at least two vectors.

(c) If u is a vector and k is a scalar such that ku = 0, then it must
be true that k = 0.

(d) The set of positive real numbers is a vector space if vector
addition and scalar multiplication are the usual operations of
addition and multiplication of real numbers.

(e) In every vector space the vectors (−1)u and −u are the same.

(f ) In the vector space F(−!, !) any function whose graph passes
through the origin is a zero vector.

4.2 Subspaces
It is often the case that some vector space of interest is contained within a larger vector space
whose properties are known. In this section we will show how to recognize when this is the
case, we will explain how the properties of the larger vector space can be used to obtain
properties of the smaller vector space, and we will give a variety of important examples.

We begin with some terminology.

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is itself
a vector space under the addition and scalar multiplication defined on V.

In general, to show that a nonempty set W with two operations is a vector space one
must verify the ten vector space axioms. However, if W is a subspace of a known vector
space V, then certain axioms need not be verified because they are “inherited” from V.
For example, it is not necessary to verify that u + v = v + u holds in W because it holds
for all vectors in V including those in W . On the other hand, it is necessary to verify

V vector
space

⑩ws
-

WEV

W subspace
of V

-
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that W is closed under addition and scalar multiplication since it is possible that adding
two vectors in W or multiplying a vector in W by a scalar produces a vector in V that is
outside of W (Figure 4.2.1). Those axioms that are not inherited by W are

Axiom 1—Closure of W under addition

Axiom 4—Existence of a zero vector in W

Axiom 5—Existence of a negative in W for every vector in W

Axiom 6—Closure of W under scalar multiplication

so these must be verified to prove that it is a subspace of V. However, the next theorem
shows that if Axiom 1 and Axiom 6 hold in W , then Axioms 4 and 5 hold in W as a
consequence and hence need not be verified.

Figure 4.2.1 The vectors u
and v are in W , but the vectors
u + v and ku are not.

ku

W

V

u
v

u + v

THEOREM 4.2.1 If W is a set of one or more vectors in a vector space V, then W is a
subspace of V if and only if the following conditions are satisfied.

(a) If u and v are vectors in W, then u + v is in W .

(b) If k is a scalar and u is a vector in W, then ku is in W .

Proof If W is a subspace of V, then all the vector space axioms hold in W , including
Axioms 1 and 6, which are precisely conditions (a) and (b).

Conversely, assume that conditions (a) and (b) hold. Since these are Axioms 1 and
Theorem 4.2.1 states that W is
a subspace of V if and only if
it is closed under addition and
scalar multiplication.

6, and since Axioms 2, 3, 7, 8, 9, and 10 are inherited from V, we only need to show
that Axioms 4 and 5 hold in W . For this purpose, let u be any vector in W . It follows
from condition (b) that ku is a vector in W for every scalar k. In particular, 0u = 0 and
(−1)u = −u are in W , which shows that Axioms 4 and 5 hold in W .

EXAMPLE 1 The Zero Subspace

If V is any vector space, and if W = {0} is the subset of V that consists of the zero vector
Note that every vector space
has at least two subspaces, it-
self and its zero subspace.

only, then W is closed under addition and scalar multiplication since

0 + 0 = 0 and k0 = 0

for any scalar k. We call W the zero subspace of V.

EXAMPLE 2 LinesThrough the Origin Are Subspaces of R2 and of R3

If W is a line through the origin of either R2 or R3, then adding two vectors on the line
or multiplying a vector on the line by a scalar produces another vector on the line, so
W is closed under addition and scalar multiplication (see Figure 4.2.2 for an illustration
in R3).
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Figure 4.2.2

u
v

u + v
W

(a)  W is closed under addition.

u

ku

W

(b)  W is closed under scalar
       multiplication.

EXAMPLE 3 Planes Through the Origin Are Subspaces of R3

If u and v are vectors in a planeW through the origin of R3, then it is evident geometrically

u

v

ku

u + v

W

Figure 4.2.3 The vectors
u + v and ku both lie in the same
plane as u and v.

that u + v and ku also lie in the same plane W for any scalar k (Figure 4.2.3). Thus W

is closed under addition and scalar multiplication.

Table 1 below gives a list of subspaces of R2 and of R3 that we have encountered thus
far. We will see later that these are the only subspaces of R2 and of R3.

Table 1

Subspaces of R2 Subspaces of R3

• {0} • {0}
• Lines through the origin • Lines through the origin
• R2 • Planes through the origin

• R3

EXAMPLE 4 A Subset of R2 That Is Not a Subspace

Let W be the set of all points (x, y) in R2 for which x ≥ 0 and y ≥ 0 (the shaded region
in Figure 4.2.4). This set is not a subspace of R2 because it is not closed under scalar
multiplication. For example, v = (1, 1) is a vector in W , but (−1)v = (−1, −1) is not.

y

x

W (1, 1)

(–1, –1)

Figure 4.2.4 W is not closed
under scalar multiplication.

EXAMPLE 5 Subspaces ofMnn

We know from Theorem 1.7.2 that the sum of two symmetric n × n matrices is symmetric
and that a scalar multiple of a symmetric n × n matrix is symmetric. Thus, the set of
symmetric n × n matrices is closed under addition and scalar multiplication and hence
is a subspace of Mnn. Similarly, the sets of upper triangular matrices, lower triangular
matrices, and diagonal matrices are subspaces of Mnn.

EXAMPLE 6 A Subset ofMnn That Is Not a Subspace

The set W of invertible n × n matrices is not a subspace of Mnn, failing on two counts—it
is not closed under addition and not closed under scalar multiplication. We will illustrate
this with an example in M22 that you can readily adapt to Mnn. Consider the matrices

U =
[

1 2
2 5

]
and V =

[−1 2
−2 5

]

The matrix 0U is the 2 × 2 zero matrix and hence is not invertible, and the matrix U + V

has a column of zeros so it also is not invertible.
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EXAMPLE 7 The Subspace C (−!, !)

There is a theorem in calculus which states that a sum of continuous functions is con-

CA L C U L U S R E Q U I R E D

tinuous and that a constant times a continuous function is continuous. Rephrased in
vector language, the set of continuous functions on (−!, !) is a subspace of F(−!, !).
We will denote this subspace by C(−!, !).

EXAMPLE 8 Functions with Continuous Derivatives

A function with a continuous derivative is said to be continuously differentiable. There

CA L C U L U S R E Q U I R E D

is a theorem in calculus which states that the sum of two continuously differentiable
functions is continuously differentiable and that a constant times a continuously differ-
entiable function is continuously differentiable. Thus, the functions that are continuously
differentiable on (−!, !) form a subspace of F(−!, !). We will denote this subspace
by C1(−!, !), where the superscript emphasizes that the first derivatives are continuous.
To take this a step further, the set of functions with m continuous derivatives on (−!, !)

is a subspace of F(−!, !) as is the set of functions with derivatives of all orders on
(−!, !). We will denote these subspaces by Cm(−!, !) and C!(−!, !), respectively.

EXAMPLE 9 The Subspace of All Polynomials

Recall that a polynomial is a function that can be expressed in the form

p(x) = a0 + a1x + · · · + anx
n (1)

where a0, a1, . . . , an are constants. It is evident that the sum of two polynomials is a
polynomial and that a constant times a polynomial is a polynomial. Thus, the set W of all
polynomials is closed under addition and scalar multiplication and hence is a subspace
of F(−!, !). We will denote this space by P!.

EXAMPLE 10 The Subspace of Polynomials of Degree ≤ n

Recall that the degree of a polynomial is the highest power of the variable that occurs with

In this text we regard all con-
stants to be polynomials of de-
gree zero. Be aware, however,
that some authors do not as-
sign a degree to the constant 0.

a nonzero coefficient. Thus, for example, if an #= 0 in Formula (1), then that polynomial
has degree n. It is not true that the set W of polynomials with positive degree n is a
subspace of F(−!, !) because that set is not closed under addition. For example, the
polynomials

1 + 2x + 3x2 and 5 + 7x − 3x2

both have degree 2, but their sum has degree 1. What is true, however, is that for each
nonnegative integer n the polynomials of degree n or less form a subspace of F(−!, !).
We will denote this space by Pn.

The Hierarchy of Function
Spaces

It is proved in calculus that polynomials are continuous functions and have continuous
derivatives of all orders on (−!, !). Thus, it follows that P! is not only a subspace of
F(−!, !), as previously observed, but is also a subspace of C!(−!, !). We leave it
for you to convince yourself that the vector spaces discussed in Examples 7 to 10 are
“nested” one inside the other as illustrated in Figure 4.2.5.

Remark In our previous examples we considered functions that were defined at all points of the
interval (−!, !). Sometimes we will want to consider functions that are only defined on some
subinterval of (−!, !), say the closed interval [a, b] or the open interval (a, b). In such cases
we will make an appropriate notation change. For example, C[a, b] is the space of continuous
functions on [a, b] and C(a, b) is the space of continuous functions on (a, b).

f( - 8,x) vector space
->
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Figure 4.2.5

Pn

C∞(–∞, ∞)
Cm(–∞, ∞)

C1(–∞, ∞)

F(–∞, ∞)
C(–∞, ∞)

Building Subspaces The following theorem provides a useful way of creating a new subspace from known
subspaces.

THEOREM 4.2.2 If W1, W2, . . . , Wr are subspaces of a vector space V, then the inter-
section of these subspaces is also a subspace of V.

Proof Let W be the intersection of the subspaces W1, W2, . . . , Wr . This set is not
empty because each of these subspaces contains the zero vector of V, and hence so does
their intersection. Thus, it remains to show that W is closed under addition and scalar
multiplication.

To prove closure under addition, let u and v be vectors in W . Since W is the inter-
Note that the first step in
proving Theorem 4.2.2 was
to establish that W contained
at least one vector. This is im-
portant, for otherwise the sub-
sequent argument might be
logically correct but meaning-
less.

section of W1, W2, . . . , Wr , it follows that u and v also lie in each of these subspaces.
Moreover, since these subspaces are closed under addition and scalar multiplication, they
also all contain the vectors u + v and ku for every scalar k, and hence so does their inter-
section W . This proves that W is closed under addition and scalar multiplication.

Sometimes we will want to find the “smallest” subspace of a vector space V that con-
tains all of the vectors in some set of interest. The following definition, which generalizes
Definition 4 of Section 3.1, will help us to do that.

If k = 1, then Equation (2) has
the form w = k1v1, in which
case the linear combination is
just a scalar multiple of v1.

DEFINITION 2 If w is a vector in a vector space V, then w is said to be a linear
combination of the vectors v1, v2, . . . , vr in V if w can be expressed in the form

w = k1v1 + k2v2 + · · · + krvr (2)

where k1, k2, . . . , kr are scalars. These scalars are called the coefficients of the linear
combination.

THEOREM 4.2.3 If S = {w1, w2, . . . , wr} is a nonempty set of vectors in a vector space
V, then:
(a) The setW of all possible linear combinations of the vectors in S is a subspace of V.

(b) The setW in part (a) is the “smallest” subspace ofV that contains all of the vectors
in S in the sense that any other subspace that contains those vectors contains W .

Proof (a) Let W be the set of all possible linear combinations of the vectors in S. We
must show that W is closed under addition and scalar multiplication. To prove closure
under addition, let

u = c1w1 + c2w2 + · · · + crwr and v = k1w1 + k2w2 + · · · + krwr

be two vectors in W . It follows that their sum can be written as

u + v = (c1 + k1)w1 + (c2 + k2)w2 + · · · + (cr + kr)wr

V =3 5 vector
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which is a linear combination of the vectors in S. Thus, W is closed under addition. We
leave it for you to prove that W is also closed under scalar multiplication and hence is a
subspace of V.

Proof (b) Let W ′ be any subspace of V that contains all of the vectors in S. Since W ′

is closed under addition and scalar multiplication, it contains all linear combinations of
the vectors in S and hence contains W .

The following definition gives some important notation and terminology related to

In the case where S is the
empty set, it will be convenient
to agree that span(Ø) = {0}.

Theorem 4.2.3.

DEFINITION 3 If S = {w1, w2, . . . , wr} is a nonempty set of vectors in a vector space
V , then the subspace W of V that consists of all possible linear combinations of the
vectors in S is called the subspace of V generated by S, and we say that the vectors
w1, w2, . . . , wr span W . We denote this subspace as

W = span{w1, w2, . . . , wr} or W = span(S)

EXAMPLE 11 The Standard UnitVectors Span Rn

Recall that the standard unit vectors in Rn are

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

These vectors span Rn since every vector v = (v1, v2, . . . , vn) in Rn can be expressed as

v = v1e1 + v2e2 + · · · + vnen

which is a linear combination of e1, e2, . . . , en. Thus, for example, the vectors

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

span R3 since every vector v = (a, b, c) in this space can be expressed as

v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai + bj + ck

EXAMPLE 12 A GeometricView of Spanning in R2 and R3

(a) If v is a nonzero vector in R2 or R3 that has its initial point at the origin, then span{v},
which is the set of all scalar multiples of v, is the line through the origin determined
by v. You should be able to visualize this from Figure 4.2.6a by observing that the
tip of the vector kv can be made to fall at any point on the line by choosing the
value of k to lengthen, shorten, or reverse the direction of v appropriately.

George William Hill
(1838–1914)

Historical Note The term linear combination is due to the American
mathematicianG.W.Hill, who introduced it in a research paper on plan-
etary motion published in 1900. Hill was a “loner” who preferred to
work out of his home inWest Nyack, NewYork, rather than in academia,
though he did try lecturing at Columbia University for a few years. In-
terestingly, he apparently returned the teaching salary, indicating that
he did not need the money and did not want to be bothered looking
after it. Although technically a mathematician, Hill had little interest in
modern developments of mathematics and worked almost entirely on
the theory of planetary orbits.

[Image: Courtesy of the American Mathematical Society
www.ams.org]
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(b) If v1 and v2 are nonzero vectors in R3 that have their initial points at the origin,
then span{v1, v2}, which consists of all linear combinations of v1 and v2, is the plane
through the origin determined by these two vectors. You should be able to visualize
this from Figure 4.2.6b by observing that the tip of the vector k1v1 + k2v2 can be
made to fall at any point in the plane by adjusting the scalars k1 and k2 to lengthen,
shorten, or reverse the directions of the vectors k1v1 and k2v2 appropriately.

Figure 4.2.6

z

y

x

v1
k1v1

span{v1, v2}

v2

k2v2

k1v1 + k2v2

(b)  Span{v1, v2} is the plane through the
       origin determined by v1 and v2.

z

y

x

v

kv

span{v}

(a)  Span{v} is the line through the
       origin determined by v.

EXAMPLE 13 A Spanning Set for Pn
The polynomials 1, x, x2, . . . , xn span the vector space Pn defined in Example 10 since
each polynomial p in Pn can be written as

p = a0 + a1x + · · · + anx
n

which is a linear combination of 1, x, x2, . . . , xn. We can denote this by writing

Pn = span{1, x, x2, . . . , xn}

The next two examples are concerned with two important types of problems:

• Given a nonempty set S of vectors in Rn and a vector v in Rn, determine whether v is
a linear combination of the vectors in S.

• Given a nonempty set S of vectors in Rn, determine whether the vectors span Rn.

EXAMPLE 14 Linear Combinations

Consider the vectors u = (1, 2, −1) and v = (6, 4, 2) in R3. Show that w = (9, 2, 7) is
a linear combination of u and v and that w′ = (4, −1, 8) is not a linear combination of
u and v.

Solution In order for w to be a linear combination of u and v, there must be scalars k1

and k2 such that w = k1u + k2v; that is,

(9, 2, 7) = k1(1, 2, −1) + k2(6, 4, 2) = (k1 + 6k2, 2k1 + 4k2, −k1 + 2k2)

Equating corresponding components gives

k1 + 6k2 = 9

2k1 + 4k2 = 2

−k1 + 2k2 = 7

Solving this system using Gaussian elimination yields k1 = −3, k2 = 2, so

w = −3u + 2v

X
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Similarly, for w′ to be a linear combination of u and v, there must be scalars k1 and
k2 such that w′ = k1u + k2v; that is,

(4, −1, 8) = k1(1, 2, −1) + k2(6, 4, 2) = (k1 + 6k2, 2k1 + 4k2, −k1 + 2k2)

Equating corresponding components gives

k1 + 6k2 = 4

2k1 + 4k2 = −1

−k1 + 2k2 = 8

This system of equations is inconsistent (verify), so no such scalars k1 and k2 exist.
Consequently, w′ is not a linear combination of u and v.

EXAMPLE 15 Testing for Spanning

Determine whether the vectors v1 = (1, 1, 2), v2 = (1, 0, 1), and v3 = (2, 1, 3) span the
vector space R3.

Solution We must determine whether an arbitrary vector b = (b1, b2, b3) in R3 can be
expressed as a linear combination

b = k1v1 + k2v2 + k3v3

of the vectors v1, v2, and v3. Expressing this equation in terms of components gives

(b1, b2, b3) = k1(1, 1, 2) + k2(1, 0, 1) + k3(2, 1, 3)

or
(b1, b2, b3) = (k1 + k2 + 2k3, k1 + k3, 2k1 + k2 + 3k3)

or
k1 + k2 + 2k3 = b1

k1 + k3 = b2

2k1 + k2 + 3k3 = b3

Thus, our problem reduces to ascertaining whether this system is consistent for all values
of b1, b2, and b3. One way of doing this is to use parts (e) and (g) of Theorem 2.3.8,
which state that the system is consistent if and only if its coefficient matrix

A =




1 1 2
1 0 1
2 1 3





has a nonzero determinant. But this is not the case here since det(A) = 0 (verify), so v1,
v2, and v3 do not span R3.

Solution Spaces of
Homogeneous Systems

The solutions of a homogeneous linear system Ax = 0 of m equations in n unknowns
can be viewed as vectors in Rn. The following theorem provides a useful insight into the
geometric structure of the solution set.

THEOREM 4.2.4 The solution set of a homogeneous linear system Ax = 0 of m equa-
tions in n unknowns is a subspace of Rn.

Proof Let W be the solution set of the system. The set W is not empty because it
contains at least the trivial solution x = 0.
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To show that W is a subspace of Rn, we must show that it is closed under addition
and scalar multiplication. To do this, let x1 and x2 be vectors in W . Since these vectors
are solutions of Ax = 0, we have

Ax1 = 0 and Ax2 = 0

It follows from these equations and the distributive property of matrix multiplication
that

A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0

so W is closed under addition. Similarly, if k is any scalar then

A(kx1) = kAx1 = k0 = 0

so W is also closed under scalar multiplication.

Because the solution set of a homogeneous system in n unknowns is actually a
subspace of Rn, we will generally refer to it as the solution space of the system.

EXAMPLE 16 Solution Spaces of Homogeneous Systems

In each part, solve the system by any method and then give a geometric description of
the solution set.

(a)




1 −2 3
2 −4 6
3 −6 9








x

y

z



 =




0
0
0



 (b)




1 −2 3

−3 7 −8
−2 4 −6








x

y

z



 =




0
0
0





(c)




1 −2 3

−3 7 −8
4 1 2








x

y

z



 =




0
0
0



 (d)




0 0 0
0 0 0
0 0 0








x

y

z



 =




0
0
0





Solution

(a) The solutions are
x = 2s − 3t, y = s, z = t

from which it follows that

x = 2y − 3z or x − 2y + 3z = 0

This is the equation of a plane through the origin that has n = (1, −2, 3) as a
normal.

(b) The solutions are
x = −5t, y = −t, z = t

which are parametric equations for the line through the origin that is parallel to the
vector v = (−5, −1, 1).

(c) The only solution is x = 0, y = 0, z = 0, so the solution space consists of the single
point {0}.

(d) This linear system is satisfied by all real values of x, y, and z, so the solution space
is all of R3.

Remark Whereas the solution set of every homogeneous system of m equations in n unknowns is
a subspace of Rn, it is never true that the solution set of a nonhomogeneous system of m equations
in n unknowns is a subspace of Rn. There are two possible scenarios: first, the system may not
have any solutions at all, and second, if there are solutions, then the solution set will not be closed
either under addition or under scalar multiplication (Exercise 18).
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The LinearTransformation
Viewpoint

Theorem 4.2.4 can be viewed as a statement about matrix transformations by letting
TA: Rn →Rm be multiplication by the coefficient matrix A. From this point of view
the solution space of Ax = 0 is the set of vectors in Rn that TA maps into the zero
vector in Rm. This set is sometimes called the kernel of the transformation, so with this
terminology Theorem 4.2.4 can be rephrased as follows.

THEOREM 4.2.5 IfA is anm × nmatrix, then the kernel of the matrix transformation
TA: Rn →Rm is a subspace of Rn.

A Concluding Observation It is important to recognize that spanning sets are not unique. For example, any nonzero
vector on the line in Figure 4.2.6a will span that line, and any two noncollinear vectors
in the plane in Figure 4.2.6b will span that plane. The following theorem, whose proof
is left as an exercise, states conditions under which two sets of vectors will span the same
space.

THEOREM 4.2.6 If S = {v1, v2, . . . , vr} and S ′ = {w1, w2, . . . , wk} are nonempty sets
of vectors in a vector space V, then

span{v1, v2, . . . , vr} = span{w1, w2, . . . , wk}
if and only if each vector in S is a linear combination of those in S ′, and each vector in
S ′ is a linear combination of those in S.

Exercise Set 4.2
1. Use Theorem 4.2.1 to determine which of the following are

subspaces of R3.

(a) All vectors of the form (a, 0, 0).

(b) All vectors of the form (a, 1, 1).

(c) All vectors of the form (a, b, c), where b = a + c.

(d) All vectors of the form (a, b, c), where b = a + c + 1.

(e) All vectors of the form (a, b, 0).

2. Use Theorem 4.2.1 to determine which of the following are
subspaces of Mnn.

(a) The set of all diagonal n × n matrices.

(b) The set of all n × n matrices A such that det(A) = 0.

(c) The set of all n × n matrices A such that tr(A) = 0.

(d) The set of all symmetric n × n matrices.

(e) The set of all n × n matrices A such that AT = −A.

(f ) The set of all n × n matrices A for which Ax = 0 has only
the trivial solution.

(g) The set of all n × n matrices A such that AB = BA for
some fixed n × n matrix B.

3. Use Theorem 4.2.1 to determine which of the following are
subspaces of P3.

(a) All polynomials a0 + a1x + a2x
2 + a3x

3 for which
a0 = 0.

(b) All polynomials a0 + a1x + a2x
2 + a3x

3 for which
a0 + a1 + a2 + a3 = 0.

(c) All polynomials of the form a0 + a1x + a2x
2 + a3x

3 in
which a0, a1, a2, and a3 are rational numbers.

(d) All polynomials of the form a0 + a1x, where a0 and a1 are
real numbers.

4. Which of the following are subspaces of F(−!, !)?

(a) All functions f in F(−!, !) for which f(0) = 0.

(b) All functions f in F(−!, !) for which f(0) = 1.

(c) All functions f in F(−!, !) for which f(−x) = f(x).

(d) All polynomials of degree 2.

5. Which of the following are subspaces of R!?

(a) All sequences v in R! of the form
v = (v, 0, v, 0, v, 0, . . .).

T:R-R

Ax=0

-

S. ↑
d

IR cai,- ⑧ 0

-
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(b) All sequences v in R! of the form
v = (v, 1, v, 1, v, 1, . . .).

(c) All sequences v in R! of the form
v = (v, 2v, 4v, 8v, 16v, . . .).

(d) All sequences in R! whose components are 0 from some
point on.

6. A line L through the origin in R3 can be represented by para-
metric equations of the form x = at , y = bt , and z = ct . Use
these equations to show that L is a subspace of R3 by showing
that if v1 = (x1, y1, z1) and v2 = (x2, y2, z2) are points on L

and k is any real number, then kv1 and v1 + v2 are also points
on L.

7. Which of the following are linear combinations of
u = (0, −2, 2) and v = (1, 3, −1)?

(a) (2, 2, 2) (b) (0, 4, 5) (c) (0, 0, 0)

8. Express the following as linear combinations of u = (2, 1, 4),
v = (1, −1, 3), and w = (3, 2, 5).

(a) (−9, −7, −15) (b) (6, 11, 6) (c) (0, 0, 0)

9. Which of the following are linear combinations of

A =
[

4 0
−2 −2

]
, B =

[
1 −1
2 3

]
, C =

[
0 2
1 4

]
?

(a)
[

6 −8
−1 −8

]
(b)

[
0 0
0 0

]
(c)

[−1 5
7 1

]

10. In each part express the vector as a linear combination of
p1 = 2 + x + 4x2, p2 = 1 − x + 3x2, and
p3 = 3 + 2x + 5x2.

(a) −9 − 7x − 15x2 (b) 6 + 11x + 6x2

(c) 0 (d) 7 + 8x + 9x2

11. In each part, determine whether the vectors span R3.

(a) v1 = (2, 2, 2), v2 = (0, 0, 3), v3 = (0, 1, 1)

(b) v1 = (2, −1, 3), v2 = (4, 1, 2), v3 = (8, −1, 8)

12. Suppose that v1 = (2, 1, 0, 3), v2 = (3, −1, 5, 2), and
v3 = (−1, 0, 2, 1). Which of the following vectors are in
span{v1, v2, v3}?
(a) (2, 3, −7, 3) (b) (0, 0, 0, 0)

(c) (1, 1, 1, 1) (d) (−4, 6, −13, 4)

13. Determine whether the following polynomials span P2.

p1 = 1 − x + 2x2, p2 = 3 + x,

p3 = 5 − x + 4x2, p4 = −2 − 2x + 2x2

14. Let f = cos2 x and g = sin2 x. Which of the following lie in
the space spanned by f and g?

(a) cos 2x (b) 3 + x2 (c) 1 (d) sin x (e) 0

15. Determine whether the solution space of the system Ax = 0
is a line through the origin, a plane through the origin, or the

origin only. If it is a plane, find an equation for it. If it is a
line, find parametric equations for it.

(a) A =




−1 1 1

3 −1 0
2 −4 −5



 (b) A =




1 2 3
2 5 3
1 0 8





(c) A =




1 −3 1
2 −6 2
3 −9 3



 (d) A =




1 −1 1
2 −1 4
3 1 11





16. (Calculus required ) Show that the following sets of functions
are subspaces of F(−!, !).

(a) All continuous functions on (−!, !).

(b) All differentiable functions on (−!, !).

(c) All differentiable functions on (−!, !) that satisfy
f ′ + 2f = 0.

17. (Calculus required ) Show that the set of continuous functions
f = f(x) on [a, b] such that

∫ b

a

f(x) dx = 0

is a subspace of C [a, b].

18. Show that the solution vectors of a consistent nonhomoge-
neous system of m linear equations in n unknowns do not
form a subspace of Rn.

19. In each part, let TA: R2 →R2 be multiplication by A, and
let u1 = (1, 2) and u2 = (−1, 1). Determine whether the set
{TA(u1), TA(u2)} spans R2.

(a) A =
[

1 −1
0 2

]

(b) A =
[

1 −1
−2 2

]

20. In each part, let TA: R3 →R2 be multiplication by A, and let
u1 = (0, 1, 1) and u2 = (2, −1, 1) and u3 = (1, 1, −2). De-
termine whether the set {TA(u1), TA(u2), TA(u3)} spans R2.

(a) A =
[

1 1 0
0 1 −1

]

(b) A =
[

0 1 0
1 1 −3

]

21. If TA is multiplication by a matrix A with three columns, then
the kernel ofTA is one of four possible geometric objects. What
are they? Explain how you reached your conclusion.

22. Let v1 = (1, 6, 4), v2 = (2, 4, −1), v3 = (−1, 2, 5), and
w1 = (1, −2, −5), w2 = (0, 8, 9). Use Theorem 4.2.6 to show
that span{v1, v2, v3} = span{w1, w2}.

23. The accompanying figure shows a mass-spring system in which
a block of mass m is set into vibratory motion by pulling the
block beyond its natural position at x = 0 and releasing it at
time t = 0. If friction and air resistance are ignored, then the
x-coordinate x(t) of the block at time t is given by a function
of the form

x(t) = c1 cos ωt + c2 sin ωt
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where ω is a fixed constant that depends on the mass of the
block and the stiffness of the spring and c1 and c2 are arbi-
trary. Show that this set of functions forms a subspace of
C!(−!, !).

Natural position

m

Released

m

Stretched

m

0

x

0

x

0

x

Figure Ex-23

Working with Proofs

24. Prove Theorem 4.2.6.

True-False Exercises

TF. In parts (a)–(k) determine whether the statement is true or
false, and justify your answer.

(a) Every subspace of a vector space is itself a vector space.

(b) Every vector space is a subspace of itself.

(c) Every subset of a vector space V that contains the zero vector
in V is a subspace of V.

(d) The kernel of a matrix transformation TA: Rn →Rm is a sub-
space of Rm.

(e) The solution set of a consistent linear system Ax = b of m

equations in n unknowns is a subspace of Rn.

(f ) The span of any finite set of vectors in a vector space is closed
under addition and scalar multiplication.

(g) The intersection of any two subspaces of a vector space V is a
subspace of V.

(h) The union of any two subspaces of a vector space V is a sub-
space of V.

(i) Two subsets of a vector space V that span the same subspace
of V must be equal.

( j) The set of upper triangular n × n matrices is a subspace of the
vector space of all n × n matrices.

(k) The polynomials x − 1, (x − 1)2, and (x − 1)3 span P3.

Working withTechnology

T1. Recall from Theorem 1.3.1 that a product Ax can be expressed
as a linear combination of the column vectors of the matrix A in
which the coefficients are the entries of x. Use matrix multiplica-
tion to compute

v = 6(8, −2, 1, −4) + 17(−3, 9, 11, 6) − 9(13, −1, 2, 4)

T2. Use the idea in Exercise T1 and matrix multiplication to de-
termine whether the polynomial

p = 1 + x + x2 + x3

is in the span of

p1 = 8 − 2x + x2 − 4x3, p2 = −3 + 9x + 11x2 + 6x3,

p3 = 13 − x + 2x2 + 4x3

T3. For the vectors that follow, determine whether

span{v1, v2, v3} = span{w1, w2, w3}

v1 = (−1, 2, 0, 1, 3), v2 = (7, 4, 6, −3, 1),

v3 = (−5, 3, 1, 2, 4)

w1 = (−6, 5, 1, 3, 7), w2 = (6, 6, 6, −2, 4),

w3 = (2, 7, 7, −1, 5)

4.3 Linear Independence
In this section we will consider the question of whether the vectors in a given set are
interrelated in the sense that one or more of them can be expressed as a linear combination
of the others. This is important to know in applications because the existence of such
relationships often signals that some kind of complication is likely to occur.

Linear Independence and
Dependence

In a rectangular xy-coordinate system every vector in the plane can be expressed in
exactly one way as a linear combination of the standard unit vectors. For example, the
only way to express the vector (3, 2) as a linear combination of i = (1, 0) and j = (0, 1)
is

(3, 2) = 3(1, 0) + 2(0, 1) = 3i + 2j (1)


