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INTRODUCTION Recall that we began our study of vectors by viewing them as directed line segments
(arrows). We then extended this idea by introducing rectangular coordinate systems,
which enabled us to view vectors as ordered pairs and ordered triples of real numbers.
As we developed properties of these vectors we noticed patterns in various formulas
that enabled us to extend the notion of a vector to an n-tuple of real numbers.
Although n-tuples took us outside the realm of our “visual experience,” it gave us a
valuable tool for understanding and studying systems of linear equations. In this
chapter we will extend the concept of a vector yet again by using the most important
algebraic properties of vectors in Rn as axioms. These axioms, if satisfied by a set of
objects, will enable us to think of those objects as vectors.

4.1 Real Vector Spaces
In this section we will extend the concept of a vector by using the basic properties of vectors
in Rn as axioms, which if satisfied by a set of objects, guarantee that those objects behave
like familiar vectors.

Vector Space Axioms The following definition consists of ten axioms, eight of which are properties of vectors
in Rn that were stated in Theorem 3.1.1. It is important to keep in mind that one does
not prove axioms; rather, they are assumptions that serve as the starting point for proving
theorems.
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184 Chapter 4 GeneralVector Spaces

DEFINITION1 Let V be an arbitrary nonempty set of objects on which two operations
are defined: addition, and multiplication by numbers called scalars. By addition we
mean a rule for associating with each pair of objects u and v in V an object u + v,
called the sum of u and v; by scalar multiplication we mean a rule for associating with
each scalar k and each object u in V an object ku, called the scalar multiple of u by k.
If the following axioms are satisfied by all objects u, v, w in V and all scalars k and
m, then we call V a vector space and we call the objects in V vectors.

1. If u and v are objects in V, then u + v is in V.

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. There is an object 0 in V, called a zero vector for V, such that 0 + u = u + 0 = u
for all u in V.

5. For each u in V, there is an object −u in V, called a negative of u, such that
u + (−u) = (−u) + u = 0.

6. If k is any scalar and u is any object in V, then ku is in V.

7. k(u + v) = ku + kv

8. (k + m)u = ku + mu

9. k(mu) = (km)(u)

10. 1u = u

In this text scalars will be ei-
ther real numbers or complex
numbers. Vector spaces with
real scalars will be called real
vector spaces and those with
complex scalars will be called
complex vector spaces. There
is a more general notion of a
vector space in which scalars
can come from a mathematical
structure known as a “field,”
but we will not be concerned
with that level of generality.
For now, we will focus exclu-
sively on real vector spaces,
which we will refer to sim-
ply as “vector spaces.” We
will consider complex vector
spaces later.

Observe that the definition of a vector space does not specify the nature of the vectors
or the operations. Any kind of object can be a vector, and the operations of addition
and scalar multiplication need not have any relationship to those on Rn. The only
requirement is that the ten vector space axioms be satisfied. In the examples that follow
we will use four basic steps to show that a set with two operations is a vector space.

To Show That a Set with Two Operations Is a Vector Space

Step 1. Identify the set V of objects that will become vectors.

Step 2. Identify the addition and scalar multiplication operations on V.

Step 3. Verify Axioms 1 and 6; that is, adding two vectors in V produces a vector
in V, and multiplying a vector in V by a scalar also produces a vector in V.
Axiom 1 is called closure under addition, and Axiom 6 is called closure under
scalar multiplication.

Step 4. Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold.

Hermann Günther
Grassmann
(1809–1877)

Historical Note The notion of an “abstract vector
space” evolved over many years and had many
contributors. The idea crystallized with the work
of the German mathematician H. G. Grassmann,
who published a paper in 1862 in which he con-
sidered abstract systems of unspecified elements
on which he defined formal operations of addi-
tion and scalar multiplication. Grassmann’s work
was controversial, and others, including Augustin
Cauchy (p. 121), laid reasonable claim to the idea.
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4.1 RealVector Spaces 185

Our first example is the simplest of all vector spaces in that it contains only one
object. Since Axiom 4 requires that every vector space contain a zero vector, the object
will have to be that vector.

EXAMPLE 1 The ZeroVector Space

Let V consist of a single object, which we denote by 0, and define

0 + 0 = 0 and k0 = 0

for all scalars k. It is easy to check that all the vector space axioms are satisfied. We call
this the zero vector space.

Our second example is one of the most important of all vector spaces—the familiar
space Rn. It should not be surprising that the operations on Rn satisfy the vector space
axioms because those axioms were based on known properties of operations on Rn.

EXAMPLE 2 Rn Is aVector Space

Let V = Rn, and define the vector space operations on V to be the usual operations of
addition and scalar multiplication of n-tuples; that is,

u + v = (u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn)

ku = (ku1, ku2, . . . , kun)

The set V = Rn is closed under addition and scalar multiplication because the foregoing
operations produce n-tuples as their end result, and these operations satisfy Axioms 2,
3, 4, 5, 7, 8, 9, and 10 by virtue of Theorem 3.1.1.

Our next example is a generalization of Rn in which we allow vectors to have infinitely
many components.

EXAMPLE 3 TheVector Space of Infinite Sequences of Real Numbers

Let V consist of objects of the form

u = (u1, u2, . . . , un, . . .)

in which u1, u2, . . . , un, . . . is an infinite sequence of real numbers. We define two infi-
nite sequences to be equal if their corresponding components are equal, and we define
addition and scalar multiplication componentwise by

u + v = (u1, u2, . . . , un, . . .) + (v1, v2, . . . , vn, . . .)

= (u1 + v1, u2 + v2, . . . , un + vn, . . .)

ku = (ku1, ku2, . . . , kun, . . .)

In the exercises we ask you to confirm that V with these operations is a vector space. We
will denote this vector space by the symbol R!.

Vector spaces of the type in Example 3 arise when a transmitted signal of indefinite
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duration is digitized by sampling its values at discrete time intervals (Figure 4.1.1).
In the next example our vectors will be matrices. This may be a little confusing at

first because matrices are composed of rows and columns, which are themselves vectors
(row vectors and column vectors). However, from the vector space viewpoint we are not
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concerned with the individual rows and columns but rather with the properties of the
matrix operations as they relate to the matrix as a whole.

EXAMPLE 4 TheVector Space of 2 × 2 Matrices

Let V be the set of 2 × 2 matrices with real entries, and take the vector space operations
on V to be the usual operations of matrix addition and scalar multiplication; that is,

Note that Equation (1) in-
volves three different addition
operations: the addition op-
eration on vectors, the ad-
dition operation on matrices,
and the addition operation on
real numbers.

u + v =
[
u11 u12

u21 u22

]
+

[
v11 v12

v21 v22

]
=

[
u11 + v11 u12 + v12

u21 + v21 u22 + v22

]

ku = k

[
u11 u12

u21 u22

]
=

[
ku11 ku12

ku21 ku22

]

(1)

The set V is closed under addition and scalar multiplication because the foregoing oper-
ations produce 2 × 2 matrices as the end result. Thus, it remains to confirm that Axioms
2, 3, 4, 5, 7, 8, 9, and 10 hold. Some of these are standard properties of matrix operations.
For example, Axiom 2 follows from Theorem 1.4.1(a) since

u + v =
[
u11 u12

u21 u22

]
+

[
v11 v12

v21 v22

]
=

[
v11 v12

v21 v22

]
+

[
u11 u12

u21 u22

]
= v + u

Similarly, Axioms 3, 7, 8, and 9 follow from parts (b), (h), ( j), and (e), respectively, of
that theorem (verify). This leaves Axioms 4, 5, and 10 that remain to be verified.

To confirm that Axiom 4 is satisfied, we must find a 2 × 2 matrix 0 in V for which
u + 0 = 0 + u for all 2 × 2 matrices in V. We can do this by taking

0 =
[

0 0
0 0

]

With this definition,

0 + u =
[

0 0
0 0

]
+

[
u11 u12

u21 u22

]
=

[
u11 u12

u21 u22

]
= u

and similarly u + 0 = u. To verify that Axiom 5 holds we must show that each object
u in V has a negative −u in V such that u + (−u) = 0 and (−u) + u = 0. This can be
done by defining the negative of u to be

−u =
[−u11 −u12

−u21 −u22

]

With this definition,

u + (−u) =
[
u11 u12

u21 u22

]
+

[−u11 −u12

−u21 −u22

]
=

[
0 0
0 0

]
= 0

and similarly (−u) + u = 0. Finally, Axiom 10 holds because

1u = 1
[
u11 u12

u21 u22

]
=

[
u11 u12

u21 u22

]
= u

EXAMPLE 5 TheVector Space ofm × n Matrices

Example 4 is a special case of a more general class of vector spaces. You should have
no trouble adapting the argument used in that example to show that the set V of all
m × n matrices with the usual matrix operations of addition and scalar multiplication is
a vector space. We will denote this vector space by the symbol Mmn. Thus, for example,
the vector space in Example 4 is denoted as M22.
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EXAMPLE 6 TheVector Space of Real-Valued Functions

Let V be the set of real-valued functions that are defined at each x in the interval (−!, !).
If f = f(x) and g = g(x) are two functions in V and if k is any scalar, then define the
operations of addition and scalar multiplication by

(f + g)(x) = f(x) + g(x) (2)

(kf)(x) = kf(x) (3)

One way to think about these operations is to view the numbers f(x) and g(x) as “com-
ponents” of f and g at the point x, in which case Equations (2) and (3) state that two
functions are added by adding corresponding components, and a function is multiplied
by a scalar by multiplying each component by that scalar—exactly as in Rn and R!. This
idea is illustrated in parts (a) and (b) of Figure 4.1.2. The set V with these operations is
denoted by the symbol F(−!, !). We can prove that this is a vector space as follows:

Axioms 1 and 6: These closure axioms require that if we add two functions that are
defined at each x in the interval (−!, !), then sums and scalar multiples of those func-
tions must also be defined at each x in the interval (−!, !). This follows from Formulas
(2) and (3).

Axiom 4: This axiom requires that there exists a function 0 in F(−!, !), which when
added to any other function f in F(−!, !) produces f back again as the result. The
function whose value at every point x in the interval (−!, !) is zero has this property.
Geometrically, the graph of the function 0 is the line that coincides with the x-axis.

Axiom 5: This axiom requires that for each function f in F(−!, !) there exists a function
−f in F(−!, !), which when added to f produces the function 0. The function defined
by −f(x) = −f(x) has this property. The graph of −f can be obtained by reflecting the
graph of f about the x-axis (Figure 4.1.2c).

Axioms 2, 3, 7, 8, 9, 10: The validity of each of these axioms follows from properties of
real numbers. For example, if f and g are functions in F(−!, !), then Axiom 2 requires
that f + g = g + f. This follows from the computation

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)

in which the first and last equalities follow from (2), and the middle equality is a property

In Example 6 the functions
were defined on the entire in-
terval (−!, !). However, the
arguments used in that exam-
ple apply as well on all subin-
tervals of (−!, !), such as
a closed interval [a, b] or an
open interval (a, b). We will
denote the vector spaces of
functions on these intervals by
F [a, b] and F(a, b), respec-
tively.

of real numbers. We will leave the proofs of the remaining parts as exercises.
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It is important to recognize that you cannot impose any two operations on any set
V and expect the vector space axioms to hold. For example, if V is the set of n-tuples
with positive components, and if the standard operations from Rn are used, then V is not
closed under scalar multiplication, because if u is a nonzero n-tuple in V, then (−1)u has
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188 Chapter 4 GeneralVector Spaces

at least one negative component and hence is not in V. The following is a less obvious
example in which only one of the ten vector space axioms fails to hold.

EXAMPLE 7 A Set That Is Not aVector Space

Let V = R2 and define addition and scalar multiplication operations as follows: If
u = (u1, u2) and v = (v1, v2), then define

u + v = (u1 + v1, u2 + v2)

and if k is any real number, then define

ku = (ku1, 0)

For example, if u = (2, 4), v = (−3, 5), and k = 7, then

u + v = (2 + (−3), 4 + 5) = (−1, 9)

ku = 7u = (7 · 2, 0) = (14, 0)

The addition operation is the standard one from R2, but the scalar multiplication is not.
In the exercises we will ask you to show that the first nine vector space axioms are satisfied.
However, Axiom 10 fails to hold for certain vectors. For example, if u = (u1, u2) is such
that u2 #= 0, then

1u = 1(u1, u2) = (1 · u1, 0) = (u1, 0) #= u
Thus, V is not a vector space with the stated operations.

Our final example will be an unusual vector space that we have included to illustrate
how varied vector spaces can be. Since the vectors in this space will be real numbers,
it will be important for you to keep track of which operations are intended as vector
operations and which ones as ordinary operations on real numbers.

EXAMPLE 8 An UnusualVector Space

Let V be the set of positive real numbers, let u = u and v = v be any vectors (i.e., positive
real numbers) in V , and let k be any scalar. Define the operations on V to be

u + v = uv [ Vector addition is numerical multiplication. ]

ku = uk [ Scalar multiplication is numerical exponentiation. ]

Thus, for example, 1 + 1 = 1 and (2)(1) = 12 = 1—strange indeed, but nevertheless
the set V with these operations satisfies the ten vector space axioms and hence is a vector
space. We will confirm Axioms 4, 5, and 7, and leave the others as exercises.

• Axiom 4—The zero vector in this space is the number 1 (i.e., 0 = 1) since

u + 1 = u · 1 = u

• Axiom 5—The negative of a vector u is its reciprocal (i.e., −u = 1/u) since

u + 1
u

= u

(
1
u

)
= 1 (= 0)

• Axiom 7—k(u + v) = (uv)k = ukvk = (ku) + (kv).

Some Properties of Vectors The following is our first theorem about vector spaces. The proof is very formal with
each step being justified by a vector space axiom or a known property of real numbers.
There will not be many rigidly formal proofs of this type in the text, but we have included
this one to reinforce the idea that the familiar properties of vectors can all be derived
from the vector space axioms.
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THEOREM 4.1.1 Let V be a vector space, u a vector in V, and k a scalar; then:

(a) 0u = 0

(b) k0 = 0

(c) (−1)u = −u

(d ) If ku = 0, then k = 0 or u = 0.

We will prove parts (a) and (c) and leave proofs of the remaining parts as exercises.

Proof (a) We can write

0u + 0u = (0 + 0)u [ Axiom 8 ]

= 0u [ Property of the number 0 ]

By Axiom 5 the vector 0u has a negative, −0u. Adding this negative to both sides above
yields

[0u + 0u] + (−0u) = 0u + (−0u)

or
0u + [0u + (−0u)] = 0u + (−0u) [ Axiom 3 ]

0u + 0 = 0 [ Axiom 5 ]

0u = 0 [ Axiom 4 ]

Proof (c) To prove that (−1)u = −u, we must show that u + (−1)u = 0. The proof is
as follows:

u + (−1)u = 1u + (−1)u [ Axiom 10 ]

= (1 + (−1))u [ Axiom 8 ]

= 0u [ Property of numbers ]

= 0 [ Part (a) of this theorem ]

A Closing Observation This section of the text is important to the overall plan of linear algebra in that it estab-
lishes a common thread among such diverse mathematical objects as geometric vectors,
vectors in Rn, infinite sequences, matrices, and real-valued functions, to name a few.
As a result, whenever we discover a new theorem about general vector spaces, we will
at the same time be discovering a theorem about geometric vectors, vectors in Rn, se-
quences, matrices, real-valued functions, and about any new kinds of vectors that we
might discover.

To illustrate this idea, consider what the rather innocent-looking result in part (a)
of Theorem 4.1.1 says about the vector space in Example 8. Keeping in mind that the
vectors in that space are positive real numbers, that scalar multiplication means numerical
exponentiation, and that the zero vector is the number 1, the equation

0u = 0

is really a statement of the familiar fact that if u is a positive real number, then

u0 = 1

ab=o
a=
orb

=0

->

->
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-
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Exercise Set 4.1
1. Let V be the set of all ordered pairs of real numbers, and

consider the following addition and scalar multiplication op-
erations on u = (u1, u2) and v = (v1, v2):

u + v = (u1 + v1, u2 + v2), ku = (0, ku2)

(a) Compute u + v and ku for u = (−1, 2), v = (3, 4), and
k = 3.

(b) In words, explain why V is closed under addition and
scalar multiplication.

(c) Since addition on V is the standard addition operation on
R2, certain vector space axioms hold for V because they
are known to hold for R2. Which axioms are they?

(d) Show that Axioms 7, 8, and 9 hold.

(e) Show that Axiom 10 fails and hence that V is not a vector
space under the given operations.

2. Let V be the set of all ordered pairs of real numbers, and
consider the following addition and scalar multiplication op-
erations on u = (u1, u2) and v = (v1, v2):

u + v = (u1 + v1 + 1, u2 + v2 + 1), ku = (ku1, ku2)

(a) Compute u + v and ku for u = (0, 4), v = (1, −3), and
k = 2.

(b) Show that (0, 0) #= 0.

(c) Show that (−1, −1) = 0.

(d) Show that Axiom 5 holds by producing an ordered pair
−u such that u + (−u) = 0 for u = (u1, u2).

(e) Find two vector space axioms that fail to hold.

In Exercises 3–12, determine whether each set equipped with
the given operations is a vector space. For those that are not vector
spaces identify the vector space axioms that fail.

3. The set of all real numbers with the standard operations of
addition and multiplication.

4. The set of all pairs of real numbers of the form (x, 0) with the
standard operations on R2.

5. The set of all pairs of real numbers of the form (x, y), where
x ≥ 0, with the standard operations on R2.

6. The set of all n-tuples of real numbers that have the form
(x, x, . . . , x) with the standard operations on Rn.

7. The set of all triples of real numbers with the standard vector
addition but with scalar multiplication defined by

k(x, y, z) = (k2x, k2y, k2z)

8. The set of all 2 × 2 invertible matrices with the standard ma-
trix addition and scalar multiplication.

9. The set of all 2 × 2 matrices of the form
[
a 0
0 b

]

with the standard matrix addition and scalar multiplication.

10. The set of all real-valued functions f defined everywhere on
the real line and such that f(1) = 0 with the operations used
in Example 6.

11. The set of all pairs of real numbers of the form (1, x) with the
operations

(1, y) + (1, y ′) = (1, y + y ′) and k(1, y) = (1, ky)

12. The set of polynomials of the form a0 + a1x with the opera-
tions

(a0 + a1x) + (b0 + b1x) = (a0 + b0) + (a1 + b1)x

and
k(a0 + a1x) = (ka0) + (ka1)x

13. Verify Axioms 3, 7, 8, and 9 for the vector space given in Ex-
ample 4.

14. Verify Axioms 1, 2, 3, 7, 8, 9, and 10 for the vector space given
in Example 6.

15. With the addition and scalar multiplication operations defined
in Example 7, show that V = R2 satisfies Axioms 1–9.

16. Verify Axioms 1, 2, 3, 6, 8, 9, and 10 for the vector space given
in Example 8.

17. Show that the set of all points in R2 lying on a line is a vector
space with respect to the standard operations of vector ad-
dition and scalar multiplication if and only if the line passes
through the origin.

18. Show that the set of all points in R3 lying in a plane is a vector
space with respect to the standard operations of vector addi-
tion and scalar multiplication if and only if the plane passes
through the origin.

In Exercises 19–20, let V be the vector space of positive real
numbers with the vector space operations given in Example 8. Let
u = u be any vector in V , and rewrite the vector statement as a
statement about real numbers.
19. −u = (−1)u

20. ku = 0 if and only if k = 0 or u = 0.

Working with Proofs

21. The argument that follows proves that if u, v, and w are vectors
in a vector space V such that u + w = v + w, then u = v (the
cancellation law for vector addition). As illustrated, justify the
steps by filling in the blanks.
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u + w = v + w Hypothesis
(u + w) + (−w) = (v + w) + (−w) Add −w to both sides.
u + [w + (−w)] = v + [w + (−w)]
u + 0 = v + 0
u = v

22. Below is a seven-step proof of part (b) of Theorem 4.1.1.
Justify each step either by stating that it is true by hypothesis
or by specifying which of the ten vector space axioms applies.

Hypothesis: Let u be any vector in a vector space V, let 0 be
the zero vector in V, and let k be a scalar.

Conclusion: Then k0 = 0.

Proof: (1) k0 + ku = k(0 + u)

(2) = ku

(3) Since ku is in V, −ku is in V.

(4) Therefore, (k0 + ku) + (−ku) = ku + (−ku).

(5) k0 + (ku + (−ku)) = ku + (−ku)

(6) k0 + 0 = 0

(7) k0 = 0

In Exercises 23–24, let u be any vector in a vector space V .
Give a step-by-step proof of the stated result using Exercises 21
and 22 as models for your presentation.

23. 0u = 0 24. −u = (−1)u

In Exercises 25–27, prove that the given set with the stated
operations is a vector space.

25. The set V = {0} with the operations of addition and scalar
multiplication given in Example 1.

26. The set R! of all infinite sequences of real numbers with the
operations of addition and scalar multiplication given in Ex-
ample 3.

27. The set Mmn of all m × n matrices with the usual operations
of addition and scalar multiplication.

28. Prove: If u is a vector in a vector space V and k a scalar such
that ku = 0, then either k = 0 or u = 0. [Suggestion: Show
that if ku = 0 and k #= 0, then u = 0. The result then follows
as a logical consequence of this.]

True-False Exercises

TF. In parts (a)–(f) determine whether the statement is true or
false, and justify your answer.

(a) A vector is any element of a vector space.

(b) A vector space must contain at least two vectors.

(c) If u is a vector and k is a scalar such that ku = 0, then it must
be true that k = 0.

(d) The set of positive real numbers is a vector space if vector
addition and scalar multiplication are the usual operations of
addition and multiplication of real numbers.

(e) In every vector space the vectors (−1)u and −u are the same.

(f ) In the vector space F(−!, !) any function whose graph passes
through the origin is a zero vector.

4.2 Subspaces
It is often the case that some vector space of interest is contained within a larger vector space
whose properties are known. In this section we will show how to recognize when this is the
case, we will explain how the properties of the larger vector space can be used to obtain
properties of the smaller vector space, and we will give a variety of important examples.

We begin with some terminology.

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is itself
a vector space under the addition and scalar multiplication defined on V.

In general, to show that a nonempty set W with two operations is a vector space one
must verify the ten vector space axioms. However, if W is a subspace of a known vector
space V, then certain axioms need not be verified because they are “inherited” from V.
For example, it is not necessary to verify that u + v = v + u holds in W because it holds
for all vectors in V including those in W . On the other hand, it is necessary to verify


