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In Exercises 29–30, show that det(A) = 0 without directly eval-
uating the determinant.

29. A =





−2 8 1 4
3 2 5 1
1 10 6 5
4 −6 4 −3





30. A =





−4 1 1 1 1
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
1 1 1 1 −4





It can be proved that if a square matrix M is partitioned into
block triangular form as

M =
[
A 0

C B

]

or M =
[
A C

0 B

]

in which A and B are square, then det(M) = det(A) det(B). Use
this result to compute the determinants of the matrices in Exer-
cises 31 and 32.

31. M =





1 2 0 8 6 −9
2 5 0 4 7 5

−1 3 2 6 9 −2

0 0 0 3 0 0
0 0 0 2 1 0
0 0 0 −3 8 −4





32. M =





1 2 0 0 0
0 1 2 0 0
0 0 1 0 0

0 0 0 1 2
2 0 0 0 1





33. Let A be an n × n matrix, and let B be the matrix that re-
sults when the rows of A are written in reverse order. State a
theorem that describes how det(A) and det(B) are related.

34. Find the determinant of the following matrix.





a b b b

b a b b

b b a b

b b b a





True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) If A is a 4 × 4 matrix and B is obtained from A by interchang-
ing the first two rows and then interchanging the last two rows,
then det(B) = det(A).

(b) If A is a 3 × 3 matrix and B is obtained from A by multiplying
the first column by 4 and multiplying the third column by 3

4 ,
then det(B) = 3 det(A).

(c) If A is a 3 × 3 matrix and B is obtained from A by adding 5
times the first row to each of the second and third rows, then
det(B) = 25 det(A).

(d) If A is an n × n matrix and B is obtained from A by multiply-
ing each row of A by its row number, then

det(B) = n(n + 1)
2

det(A)

(e) If A is a square matrix with two identical columns, then
det(A) = 0.

(f ) If the sum of the second and fourth row vectors of a 6 × 6
matrix A is equal to the last row vector, then det(A) = 0.

Working withTechnology

T1. Find the determinant of

A =





4.2 −1.3 1.1 6.0

0.0 0.0 −3.2 3.4

4.5 1.3 0.0 14.8

4.7 1.0 3.4 2.3





by reducing the matrix to reduced row echelon form, and compare
the result obtained in this way to that obtained in Exercise T1 of
Section 2.1.

2.3 Properties of Determinants; Cramer’s Rule
In this section we will develop some fundamental properties of matrices, and we will use
these results to derive a formula for the inverse of an invertible matrix and formulas for the
solutions of certain kinds of linear systems.

Basic Properties of
Determinants

Suppose that A and B are n × n matrices and k is any scalar. We begin by considering
possible relationships among det(A), det(B), and

det(kA), det(A + B), and det(AB)

Since a common factor of any row of a matrix can be moved through the determinant
sign, and since each of the n rows in kA has a common factor of k, it follows that
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det(kA) = kn det(A) (1)

For example, ∣∣∣∣∣∣∣

ka11 ka12 ka13

ka21 ka22 ka23

ka31 ka32 ka33

∣∣∣∣∣∣∣
= k3

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣

Unfortunately, no simple relationship exists among det(A), det(B), and det(A +B).
In particular, det(A + B) will usually not be equal to det(A) + det(B). The following
example illustrates this fact.

EXAMPLE 1 det(A + B) != det(A) + det(B)

Consider

A =
[

1 2
2 5

]
, B =

[
3 1
1 3

]
, A + B =

[
4 3
3 8

]

We have det(A) = 1, det(B) = 8, and det(A + B) = 23; thus

det(A + B) #= det(A) + det(B)

In spite of the previous example, there is a useful relationship concerning sums of
determinants that is applicable when the matrices involved are the same except for one
row (column). For example, consider the following two matrices that differ only in the
second row:

A =
[
a11 a12

a21 a22

]
and B =

[
a11 a12

b21 b22

]

Calculating the determinants of A and B, we obtain

det(A) + det(B) = (a11a22 − a12a21) + (a11b22 − a12b21)

= a11(a22 + b22) − a12(a21 + b21)

= det
[

a11 a12

a21 + b21 a22 + b22

]

Thus

det
[
a11 a12

a21 a22

]
+ det

[
a11 a12

b21 b22

]
= det

[
a11 a12

a21 + b21 a22 + b22

]

This is a special case of the following general result.

THEOREM 2.3.1 Let A, B, and C be n × n matrices that differ only in a single row,

say the rth, and assume that the rth row of C can be obtained by adding corresponding
entries in the rth rows of A and B. Then

det(C) = det(A) + det(B)

The same result holds for columns.

EXAMPLE 2 Sums of Determinants

We leave it to you to confirm the following equality by evaluating the determinants.

det




1 7 5
2 0 3

1 + 0 4 + 1 7 + (−1)



 = det




1 7 5
2 0 3
1 4 7



 + det




1 7 5
2 0 3
0 1 −1





vo-size

A E
* det(A+B)

⑳

⑧ O O
-32-
a

det A =5-4 =1 --

det B =9- 1 =87-18 F
-

5
-

* 5,6 AB



-

det A ==7)?i) +0 -4/2/3 b
->

=
- 7(14 - 3) - 4(3 - 10) det C

=
-7(1) - 4) - 7) = detA+ det

=
- 77 +20 =fa

-28 =- 49 +21

dets =0-12:/n::)) - 28--coI W

= - ( -7) - (- (n)
=7 +1 =i

7

det C=-2 I S El-0-31 I
=

- x(42 - 25) - 3/5 -7)
=- 2(17) - 3)- 2)
= - 34 +6 =

- 28
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Determinant of a Matrix
Product

Considering the complexity of the formulas for determinants and matrix multiplication,
it would seem unlikely that a simple relationship should exist between them. This is what
makes the simplicity of our next result so surprising. We will show that if A and B are
square matrices of the same size, then

det(AB) = det(A) det(B) (2)

The proof of this theorem is fairly intricate, so we will have to develop some preliminary
results first. We begin with the special case of (2) in which A is an elementary matrix.
Because this special case is only a prelude to (2), we call it a lemma.

LEMMA 2.3.2 If B is an n × n matrix and E is an n × n elementary matrix, then

det(EB) = det(E)det(B)

Proof We will consider three cases, each in accordance with the row operation that
produces the matrix E.

Case 1 If E results from multiplying a row of In by k, then by Theorem 1.5.1, EB results
from B by multiplying the corresponding row by k; so from Theorem 2.2.3(a) we have

det(EB) = k det(B)

But from Theorem 2.2.4(a) we have det(E) = k, so

det(EB) = det(E) det(B)

Cases 2 and 3 The proofs of the cases where E results from interchanging two rows of
In or from adding a multiple of one row to another follow the same pattern as Case 1
and are left as exercises.

Remark It follows by repeated applications of Lemma 2.3.2 that if B is an n × n matrix and
E1, E2, . . . , Er are n × n elementary matrices, then

det(E1E2 · · · ErB) = det(E1) det(E2) · · · det(Er) det(B) (3)

DeterminantTest for
Invertibility

Our next theorem provides an important criterion for determining whether a matrix is
invertible. It also takes us a step closer to establishing Formula (2).

THEOREM 2.3.3 A square matrix A is invertible if and only if det(A) #= 0.

Proof Let R be the reduced row echelon form of A. As a preliminary step, we will
show that det(A) and det(R) are both zero or both nonzero: Let E1, E2, . . . , Er be the
elementary matrices that correspond to the elementary row operations that produce R

from A. Thus
R = Er · · · E2E1A

and from (3),
det(R) = det(Er) · · · det(E2) det(E1) det(A) (4)

We pointed out in the margin note that accompanies Theorem 2.2.4 that the determinant
of an elementary matrix is nonzero. Thus, it follows from Formula (4) that det(A) and
det(R) are either both zero or both nonzero, which sets the stage for the main part of
the proof. If we assume first that A is invertible, then it follows from Theorem 1.6.4 that

X

I
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R = I and hence that det(R) = 1 (#= 0). This, in turn, implies that det(A) #= 0, which
is what we wanted to show.

Conversely, assume that det(A) #= 0. It follows from this that det(R) #= 0, which

It follows from Theorems 2.3.3
and 2.2.5 that a square matrix
with two proportional rows or
two proportional columns is
not invertible.

tells us that R cannot have a row of zeros. Thus, it follows from Theorem 1.4.3 that
R = I and hence that A is invertible by Theorem 1.6.4.

EXAMPLE 3 DeterminantTest for Invertibility

Since the first and third rows of

A =




1 2 3

1 0 1

2 4 6





are proportional, det(A) = 0. Thus A is not invertible.

We are now ready for the main result concerning products of matrices.

THEOREM 2.3.4 If A and B are square matrices of the same size, then

det(AB) = det(A) det(B)

Proof We divide the proof into two cases that depend on whether or not A is invertible.

Augustin Louis Cauchy
(1789–1857)

Historical Note In 1815 the great
French mathematician Augustin
Cauchy published a landmark pa-
per in which he gave the first sys-
tematic and modern treatment of
determinants. It was in that pa-
per thatTheorem 2.3.4 was stated
and proved in full generality for
the first time. Special cases of
the theorem had been stated and
proved earlier, but it was Cauchy
who made the final jump.

[Image: © Bettmann/CORBIS]

If the matrix A is not invertible, then by Theorem 1.6.5 neither is the product AB.
Thus, from Theorem 2.3.3, we have det(AB) = 0 and det(A) = 0, so it follows that
det(AB) = det(A) det(B).

Now assume that A is invertible. By Theorem 1.6.4, the matrix A is expressible as a
product of elementary matrices, say

A = E1E2 · · · Er (5)

so
AB = E1E2 · · · ErB

Applying (3) to this equation yields

det(AB) = det(E1) det(E2) · · · det(Er) det(B)

and applying (3) again yields

det(AB) = det(E1E2 · · · Er) det(B)

which, from (5), can be written as det(AB) = det(A) det(B).

EXAMPLE 4 Verifying that det(AB) = det(A) det(B)

Consider the matrices

A =
[

3 1

2 1

]
, B =

[−1 3

5 8

]
, AB =

[
2 17

3 14

]

We leave it for you to verify that

det(A) = 1, det(B) = −23, and det(AB) = −23

Thus det(AB) = det(A) det(B), as guaranteed by Theorem 2.3.4.

The following theorem gives a useful relationship between the determinant of an
invertible matrix and the determinant of its inverse.

%
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THEOREM 2.3.5 If A is invertible, then

det(A−1) = 1
det(A)

Proof Since A−1A = I , it follows that det(A−1A) = det(I). Therefore, we must have
det(A−1) det(A) = 1. Since det(A) #= 0, the proof can be completed by dividing through
by det(A).

Adjoint of a Matrix In a cofactor expansion we compute det(A) by multiplying the entries in a row or column
by their cofactors and adding the resulting products. It turns out that if one multiplies
the entries in any row by the corresponding cofactors from a different row, the sum of
these products is always zero. (This result also holds for columns.) Although we omit
the general proof, the next example illustrates this fact.

EXAMPLE 5 Entries and Cofactors from Different Rows

Let

A =




3 2 −1

1 6 3

2 −4 0





We leave it for you to verify that the cofactors of A are

C11 = 12 C12 = 6 C13 = −16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = −10 C33 = 16

so, for example, the cofactor expansion of det(A) along the first row is

det(A) = 3C11 + 2C12 + (−1)C13 = 36 + 12 + 16 = 64

and along the first column is

det(A) = 3C11 + C21 + 2C31 = 36 + 4 + 24 = 64

Suppose, however, we multiply the entries in the first row by the corresponding cofactors
from the second row and add the resulting products. The result is

3C21 + 2C22 + (−1)C23 = 12 + 4 − 16 = 0

Or suppose we multiply the entries in the first column by the corresponding cofactors
from the second column and add the resulting products. The result is again zero since

Leonard Eugene
Dickson
(1874–1954)

Historical Note The use of the
term adjoint for the transpose
of the matrix of cofactors ap-
pears to have been introduced by
the American mathematician L. E.
Dickson in a research paper that he
published in 1902.
[Image: Courtesy of the American

Mathematical Society
www.ams.org]

3C12 + 1C22 + 2C32 = 18 + 2 − 20 = 0

DEFINITION 1 If A is any n × n matrix and Cij is the cofactor of aij , then the matrix




C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
...

Cn1 Cn2 · · · Cnn





is called the matrix of cofactors from A. The transpose of this matrix is called the
adjoint of A and is denoted by adj(A).

2ij=zi
2,

=(-*⑧ =+ (=8)#

=0 -(-12)⑧ =T1]
~

--

---. i
---

......

.0.0.0 ⑳

-=S
U /
(12-10
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EXAMPLE 6 Adjoint of a 3 × 3 Matrix

Let

A =




3 2 −1
1 6 3
2 −4 0





As noted in Example 5, the cofactors of A are

C11 = 12 C12 = 6 C13 = −16
C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = −10 C33 = 16

so the matrix of cofactors is 


12 6 −16
4 2 16

12 −10 16





and the adjoint of A is

adj(A) =




12 4 12

6 2 −10
−16 16 16





In Theorem 1.4.5 we gave a formula for the inverse of a 2 × 2 invertible matrix. Our

It follows from Theorems 2.3.5
and 2.1.2 that if A is an invert-
ible triangular matrix, then

det(A−1) = 1
a11

1
a22

· · · 1
ann

Moreover, by using the adjoint
formula it is possible to show
that

1
a11

,
1

a22
, . . . ,

1
ann

are actually the successive di-
agonal entries of A−1 (com-
pare A and A−1 in Example 3
of Section 1.7).

next theorem extends that result to n × n invertible matrices.

THEOREM 2.3.6 Inverse of a Matrix Using Its Adjoint

If A is an invertible matrix, then

A−1 = 1
det(A)

adj(A) (6)

Proof We show first that
A adj(A) = det(A)I

Consider the product

Aadj(A) =





a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

ai1 ai2 . . . ain

...
...

...

an1 an2 . . . ann









C11 C21 . . . Cj1 . . . Cn1

C12 C22 . . . Cj2 . . . Cn2
...

...
...

...

C1n C2n . . . Cjn . . . Cnn





The entry in the ith row and j th column of the product A adj(A) is

ai1Cj1 + ai2Cj2 + · · · + ainCjn (7)

(see the shaded lines above).
If i = j , then (7) is the cofactor expansion of det(A) along the ith row of A (Theo-

rem 2.1.1), and if i #= j , then the a’s and the cofactors come from different rows of A,
so the value of (7) is zero (as illustrated in Example 5). Therefore,

[A1I] adj2E)
↓
SIIA]

-

X
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A adj(A) =





det(A) 0 · · · 0
0 det(A) · · · 0
...

...
...

0 0 · · · det(A)




= det(A)I (8)

Since A is invertible, det(A) #= 0. Therefore, Equation (8) can be rewritten as

1
det(A)

[A adj(A)] = I or A

[
1

det(A)
adj(A)

]
= I

Multiplying both sides on the left by A−1 yields

A−1 = 1
det(A)

adj(A)

EXAMPLE 7 Using the Adjoint to Find an Inverse Matrix

Use Formula (6) to find the inverse of the matrix A in Example 6.

Solution We showed in Example 5 that det(A) = 64. Thus,

A−1 = 1
det(A)

adj(A) = 1
64




12 4 12

6 2 −10
−16 16 16



 =





12
64

4
64

12
64

6
64

2
64 − 10

64

− 16
64

16
64

16
64





Cramer’s Rule Our next theorem uses the formula for the inverse of an invertible matrix to produce a
formula, called Cramer’s rule, for the solution of a linear system Ax = b of n equations
in n unknowns in the case where the coefficient matrix A is invertible (or, equivalently,
when det(A) #= 0).

Gabriel Cramer
(1704–1752)

Historical Note Variations of
Cramer’s rule were fairly well
known before the Swiss mathe-
matician discussed it in work he
published in 1750. It was Cramer’s
superior notation that popularized
the method and led mathemati-
cians to attach his name to it.

[Image: Science Source/Photo
Researchers]

THEOREM 2.3.7 Cramer’s Rule

If Ax = b is a system of n linear equations in n unknowns such that det(A) #= 0, then
the system has a unique solution. This solution is

x1 = det(A1)

det(A)
, x2 = det(A2)

det(A)
, . . . , xn = det(An)

det(A)

where Aj is the matrix obtained by replacing the entries in the j th column of A by the
entries in the matrix

b =





b1

b2
...

bn





Proof If det(A) #= 0, then A is invertible, and by Theorem 1.6.2, x = A−1b is the unique
solution of Ax = b. Therefore, by Theorem 2.3.6 we have

x = A−1b = 1
det(A)

adj(A)b = 1
det(A)





C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn









b1

b2
...

bn





j
Ainvertable

00
-

-
I
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Multiplying the matrices out gives

x = 1
det(A)





b1C11 + b2C21 + · · · + bnCn1

b1C12 + b2C22 + · · · + bnCn2
...

...
...

b1C1n + b2C2n + · · · + bnCnn





The entry in the j th row of x is therefore

xj = b1C1j + b2C2j + · · · + bnCnj

det(A)
(9)

Now let

Aj =





a11 a12 · · · a1j−1 b1 a1j+1 · · · a1n

a21 a22 · · · a2j−1 b2 a2j+1 · · · a2n
...

...
...

...
...

...

an1 an2 · · · anj−1 bn anj+1 · · · ann





Since Aj differs from A only in the j th column, it follows that the cofactors of entries
b1, b2, . . . , bn in Aj are the same as the cofactors of the corresponding entries in the j th
column of A. The cofactor expansion of det(Aj ) along the j th column is therefore

det(Aj ) = b1C1j + b2C2j + · · · + bnCnj

Substituting this result in (9) gives

xj = det(Aj )

det(A)

EXAMPLE 8 Using Cramer’s Rule to Solve a Linear System

Use Cramer’s rule to solve

x1 + + 2x3 = 6

−3x1 + 4x2 + 6x3 = 30

−x1 − 2x2 + 3x3 = 8

Solution

A =




1 0 2

−3 4 6
−1 −2 3



, A1 =




6 0 2

30 4 6
8 −2 3



,

A2 =




1 6 2

−3 30 6
−1 8 3



, A3 =




1 0 6

−3 4 30
−1 −2 8





Therefore,

For n > 3, it is usually more
efficient to solve a linear sys-
tem with n equations in n

unknowns by Gauss–Jordan
elimination than by Cramer’s
rule. Its main use is for obtain-
ing properties of solutions of a
linear system without actually
solving the system.

x1 = det(A1)

det(A)
= −40

44
= −10

11
, x2 = det(A2)

det(A)
= 72

44
= 18

11
,

x3 = det(A3)

det(A)
= 152

44
= 38

11

EquivalenceTheorem In Theorem 1.6.4 we listed five results that are equivalent to the invertibility of a matrix
A. We conclude this section by merging Theorem 2.3.3 with that list to produce the
following theorem that relates all of the major topics we have studied thus far.



#8
I

0 2
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2- Ac=(=33]
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x, =
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=
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-
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THEOREM 2.3.8 Equivalent Statements

If A is an n × n matrix, then the following statements are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A can be expressed as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) #= 0.

We now have all of the machinery necessary to prove the following two results, which weO PT I O NA L

stated without proof in Theorem 1.7.1:

• Theorem 1.7.1(c) A triangular matrix is invertible if and only if its diagonal entries
are all nonzero.

• Theorem 1.7.1(d ) The inverse of an invertible lower triangular matrix is lower trian-
gular, and the inverse of an invertible upper triangular matrix is upper triangular.

Proof of Theorem 1.7.1(c) Let A = [aij ] be a triangular matrix, so that its diagonal
entries are

a11, a22, . . . , ann

From Theorem 2.1.2, the matrix A is invertible if and only if

det(A) = a11a22 · · · ann

is nonzero, which is true if and only if the diagonal entries are all nonzero.

Proof of Theorem 1.7.1(d) We will prove the result for upper triangular matrices and
leave the lower triangular case for you. Assume that A is upper triangular and invertible.
Since

A−1 = 1
det(A)

adj(A)

we can prove that A−1 is upper triangular by showing that adj(A) is upper triangular or,
equivalently, that the matrix of cofactors is lower triangular. We can do this by showing
that every cofactor Cij with i < j (i.e., above the main diagonal) is zero. Since

Cij = (−1)i+jMij

it suffices to show that each minor Mij with i < j is zero. For this purpose, let Bij be the
matrix that results when the ith row and j th column of A are deleted, so

Mij = det(Bij ) (10)

From the assumption that i < j , it follows that Bij is upper triangular (see Figure 1.7.1).
Since A is upper triangular, its (i + 1)-st row begins with at least i zeros. But the ith row
of Bij is the (i + 1)-st row of A with the entry in the j th column removed. Since i < j ,
none of the first i zeros is removed by deleting the j th column; thus the ith row of Bij

starts with at least i zeros, which implies that this row has a zero on the main diagonal.
It now follows from Theorem 2.1.2 that det(Bij ) = 0 and from (10) that Mij = 0.
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Exercise Set 2.3
In Exercises 1–4, verify that det(kA) = kn det(A).

1. A =
[
−1 2

3 4

]

; k = 2 2. A =
[

2 2
5 −2

]
; k = −4

3. A =




2 −1 3
3 2 1
1 4 5



; k = −2

4. A =




1 1 1
0 2 3
0 1 −2



; k = 3

In Exercises 5–6, verify that det(AB) = det(BA) and deter-
mine whether the equality det(A + B) = det(A) + det(B) holds.

5. A =




2 1 0
3 4 0
0 0 2



 and B =




1 −1 3
7 1 2
5 0 1





6. A =




−1 8 2

1 0 −1
−2 2 2



 and B =




2 −1 −4
1 1 3
0 3 −1





In Exercises 7–14, use determinants to decide whether the given
matrix is invertible.

7. A =




2 5 5

−1 −1 0
2 4 3



 8. A =




2 0 3
0 3 2

−2 0 −4





9. A =




2 −3 5
0 1 −3
0 0 2



 10. A =




−3 0 1

5 0 6
8 0 3





11. A =




4 2 8

−2 1 −4
3 1 6



 12. A =




1 0 −1
9 −1 4
8 9 −1





13. A =




2 0 0
8 1 0

−5 3 6



 14. A =





√
2 −

√
7 0

3
√

2 −3
√

7 0
5 −9 0





In Exercises 15–18, find the values of k for which the matrix A

is invertible.

15. A =
[
k − 3 −2
−2 k − 2

]
16. A =

[
k 2
2 k

]

17. A =




1 2 4
3 1 6
k 3 2



 18. A =




1 2 0
k 1 k

0 2 1





In Exercises 19–23, decide whether the matrix is invertible, and
if so, use the adjoint method to find its inverse.

19. A =




2 5 5

−1 −1 0
2 4 3



 20. A =




2 0 3
0 3 2

−2 0 −4





21. A =




2 −3 5
0 1 −3
0 0 2



 22. A =




2 0 0
8 1 0

−5 3 6





23. A =





1 3 1 1
2 5 2 2
1 3 8 9
1 3 2 2





In Exercises 24–29, solve by Cramer’s rule, where it applies.

24. 7x1 − 2x2 = 3
3x1 + x2 = 5

25. 4x + 5y = 2
11x + y + 2z = 3

x + 5y + 2z = 1

26. x − 4y + z = 6
4x − y + 2z = −1
2x + 2y − 3z = −20

27. x1 − 3x2 + x3 = 4
2x1 − x2 = −2
4x1 − 3x3 = 0

28. −x1 − 4x2 + 2x3 + x4 = −32
2x1 − x2 + 7x3 + 9x4 = 14
−x1 + x2 + 3x3 + x4 = 11

x1 − 2x2 + x3 − 4x4 = −4

29. 3x1 − x2 + x3 = 4
−x1 + 7x2 − 2x3 = 1
2x1 + 6x2 − x3 = 5

30. Show that the matrix

A =




cos θ sin θ 0

− sin θ cos θ 0
0 0 1





is invertible for all values of θ ; then find A−1 using Theo-
rem 2.3.6.

31. Use Cramer’s rule to solve for y without solving for the un-
knowns x, z, and w.

4x + y + z + w = 6

3x + 7y − z + w = 1

7x + 3y − 5z + 8w = −3

x + y + z + 2w = 3

32. Let Ax = b be the system in Exercise 31.

(a) Solve by Cramer’s rule.

(b) Solve by Gauss–Jordan elimination.

(c) Which method involves fewer computations?
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33. Let

A =




a b c

d e f

g h i





Assuming that det(A) = −7, find

(a) det(3A) (b) det(A−1) (c) det(2A−1)

(d) det((2A)−1) (e) det




a g d

b h e

c i f





34. In each part, find the determinant given that A is a 4 × 4 ma-
trix for which det(A) = −2.

(a) det(−A) (b) det(A−1) (c) det(2AT ) (d) det(A3)

35. In each part, find the determinant given that A is a 3 × 3 ma-
trix for which det(A) = 7.

(a) det(3A) (b) det(A−1)

(c) det(2A−1) (d) det((2A)−1)

Working with Proofs

36. Prove that a square matrix A is invertible if and only if ATA is
invertible.

37. Prove that if A is a square matrix, then det(ATA) = det(AAT ).

38. Let Ax = b be a system of n linear equations in n unknowns
with integer coefficients and integer constants. Prove that if
det(A) = 1, the solution x has integer entries.

39. Prove that if det(A) = 1 and all the entries in A are integers,
then all the entries in A−1 are integers.

True-False Exercises

TF. In parts (a)–(l) determine whether the statement is true or
false, and justify your answer.

(a) If A is a 3 × 3 matrix, then det(2A) = 2 det(A).

(b) If A and B are square matrices of the same size such that
det(A) = det(B), then det(A + B) = 2 det(A).

(c) If A and B are square matrices of the same size and A is in-
vertible, then

det(A−1BA) = det(B)

(d) A square matrix A is invertible if and only if det(A) = 0.

(e) The matrix of cofactors of A is precisely [adj(A)]T .

(f ) For every n × n matrix A, we have

A · adj(A) = (det(A))In

(g) If A is a square matrix and the linear system Ax = 0 has mul-
tiple solutions for x, then det(A) = 0.

(h) If A is an n × n matrix and there exists an n × 1 matrix b
such that the linear system Ax = b has no solutions, then the
reduced row echelon form of A cannot be In.

(i) If E is an elementary matrix, then Ex = 0 has only the trivial
solution.

( j) If A is an invertible matrix, then the linear system Ax = 0
has only the trivial solution if and only if the linear system
A−1x = 0 has only the trivial solution.

(k) If A is invertible, then adj(A) must also be invertible.

(l) If A has a row of zeros, then so does adj(A).

Working withTechnology

T1. Consider the matrix

A =
[

1 1

1 1 + ε

]

in which ε > 0. Since det(A) = ε #= 0, it follows from The-
orem 2.3.8 that A is invertible. Compute det(A) for various
small nonzero values of ε until you find a value that produces
det(A) = 0, thereby leading you to conclude erroneously that A

is not invertible. Discuss the cause of this.

T2. We know from Exercise 39 that if A is a square matrix then
det(ATA) = det(AAT ). By experimenting, make a conjecture as
to whether this is true if A is not square.

T3. The French mathematician Jacques Hadamard (1865–1963)
proved that if A is an n × n matrix each of whose entries satisfies
the condition |aij | ≤ M , then

| det(A)| ≤
√

nnMn

(Hadamard’s inequality). For the following matrix A, use this re-
sult to find an interval of possible values for det(A), and then
use your technology utility to show that the value of det(A) falls
within this interval.

A =





0.3 −2.4 −1.7 2.5

0.2 −0.3 −1.2 1.4

2.5 2.3 0.0 1.8

1.7 1.0 −2.1 2.3






