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2.2 Evaluating Determinants by Row Reduction
In this section we will show how to evaluate a determinant by reducing the associated
matrix to row echelon form. In general, this method requires less computation than
cofactor expansion and hence is the method of choice for large matrices.

A BasicTheorem We begin with a fundamental theorem that will lead us to an efficient procedure for
evaluating the determinant of a square matrix of any size.

THEOREM 2.2.1 Let A be a square matrix. If A has a row of zeros or a column of
zeros, then det(A) = 0.

Proof Since the determinant of A can be found by a cofactor expansion along any row
or column, we can use the row or column of zeros. Thus, if we let C1, C2, . . . , Cn denote
the cofactors of A along that row or column, then it follows from Formula (7) or (8) in
Section 2.1 that

det(A) = 0 · C1 + 0 · C2 + · · · + 0 · Cn = 0

The following useful theorem relates the determinant of a matrix and the determinant
of its transpose.

THEOREM 2.2.2 Let A be a square matrix. Then det(A) = det(AT ).

Proof Since transposing a matrix changes its columns to rows and its rows to columns,

Because transposing a matrix
changes its columns to rows
and its rows to columns, al-
most every theorem about the
rows of a determinant has
a companion version about
columns, and vice versa.

the cofactor expansion of A along any row is the same as the cofactor expansion of AT

along the corresponding column. Thus, both have the same determinant.

Elementary Row
Operations

The next theorem shows how an elementary row operation on a square matrix affects the
value of its determinant. In place of a formal proof we have provided a table to illustrate
the ideas in the 3 × 3 case (see Table 1).

The first panel of Table 1
shows that you can bring a
common factor from any row
(column) of a determinant
through the determinant sign.
This is a slightly different way
of thinking about part (a) of
Theorem 2.2.3.

Table 1

Relationship Operation

∣∣∣∣∣∣∣

ka11 ka12 ka13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= k

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣

det(B) = k det(A)

In the matrix B the first
row of A was multiplied
by k.

∣∣∣∣∣∣∣

a21 a22 a23

a11 a12 a13

a31 a32 a33

∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣

det(B) = − det(A)

In the matrix B the first and
second rows of A were
interchanged.

∣∣∣∣∣∣∣

a11 + ka21 a12 + ka22 a13 + ka23

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣

det(B) = det(A)

In the matrix B a multiple of
the second row of A was
added to the first row.
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THEOREM 2.2.3 Let A be an n × n matrix.

(a) If B is the matrix that results when a single row or single column ofA is multiplied
by a scalar k, then det(B) = k det(A).

(b) IfB is the matrix that results when two rows or two columns ofA are interchanged,
then det(B) = − det(A).

(c) If B is the matrix that results when a multiple of one row of A is added to another
or when a multiple of one column is added to another, then det(B) = det(A).

We will verify the first equation in Table 1 and leave the other two for you. To start,
note that the determinants on the two sides of the equation differ only in the first row, so
these determinants have the same cofactors, C11, C12, C13, along that row (since those
cofactors depend only on the entries in the second two rows). Thus, expanding the left
side by cofactors along the first row yields

∣∣∣∣∣∣

ka11 ka12 ka13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= ka11C11 + ka12C12 + ka13C13

= k(a11C11 + a12C12 + a13C13)

= k

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣

Elementary Matrices It will be useful to consider the special case of Theorem 2.2.3 in which A = In is the
n × n identity matrix and E (rather than B) denotes the elementary matrix that results
when the row operation is performed on In. In this special case Theorem 2.2.3 implies
the following result.

THEOREM 2.2.4 Let E be an n × n elementary matrix.

(a) IfE results from multiplying a row of In by a nonzero number k, then det(E) = k.

(b) If E results from interchanging two rows of In, then det(E) = −1.

(c) If E results from adding a multiple of one row of In to another, then det(E) = 1.

EXAMPLE 1 Determinants of Elementary Matrices

The following determinants of elementary matrices, which are evaluated by inspection,
Observe that the determinant
of an elementary matrix can-
not be zero.

illustrate Theorem 2.2.4.
∣∣∣∣∣∣∣∣∣

1 0 0 0

0 3 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣

= 3,

∣∣∣∣∣∣∣∣∣

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

∣∣∣∣∣∣∣∣∣

= −1,

∣∣∣∣∣∣∣∣∣

1 0 0 7

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣

= 1

The second row of I4
was multiplied by 3.

The first and last rows of
I4 were interchanged.

7 times the last row of I4
was added to the first row.

Matrices with Proportional
Rows or Columns

If a square matrix A has two proportional rows, then a row of zeros can be introduced
by adding a suitable multiple of one of the rows to the other. Similarly for columns. But
adding a multiple of one row or column to another does not change the determinant, so
from Theorem 2.2.1, we must have det(A) = 0. This proves the following theorem.

-
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THEOREM 2.2.5 IfA is a square matrix with two proportional rows or two proportional
columns, then det(A) = 0.

EXAMPLE 2 Proportional Rows or Columns

Each of the following matrices has two proportional rows or columns; thus, each has a
determinant of zero.

[−1 4

−2 8

]
,




1 −2 7

−4 8 5

2 −4 3



,





3 −1 4 −5

6 −2 5 2

5 8 1 4

−9 3 −12 15





Evaluating Determinants
by Row Reduction

We will now give a method for evaluating determinants that involves substantially less
computation than cofactor expansion. The idea of the method is to reduce the given
matrix to upper triangular form by elementary row operations, then compute the de-
terminant of the upper triangular matrix (an easy computation), and then relate that
determinant to that of the original matrix. Here is an example.

EXAMPLE 3 Using Row Reduction to Evaluate a Determinant

Evaluate det(A) where

A =




0 1 5
3 −6 9
2 6 1





Solution We will reduce A to row echelon form (which is upper triangular) and then

Even with today’s fastest com-
puters it would take millions of
years to calculate a 25 × 25 de-
terminant by cofactor expan-
sion, so methods based on row
reduction are often used for
large determinants. For deter-
minants of small size (such as
those in this text), cofactor ex-
pansion is often a reasonable
choice.

apply Theorem 2.1.2.

det(A) =

∣∣∣∣∣∣∣

0 1 5
3 −6 9
2 6 1

∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣

3 −6 9
0 1 5
2 6 1

∣∣∣∣∣∣∣
The first and second rows of
A were interchanged.

= −3

∣∣∣∣∣∣∣

1 −2 3
0 1 5
2 6 1

∣∣∣∣∣∣∣
A common factor of 3 from
the first row was taken
through the determinant sign.

= −3

∣∣∣∣∣∣∣

1 −2 3
0 1 5
0 10 −5

∣∣∣∣∣∣∣
−2 times the first row was
added to the third row.

= −3

∣∣∣∣∣∣∣

1 −2 3
0 1 5
0 0 −55

∣∣∣∣∣∣∣
−10 times the second row
was added to the third row.

= (−3)(−55)

∣∣∣∣∣∣∣

1 −2 3
0 1 5
0 0 1

∣∣∣∣∣∣∣
A common factor of −55
from the last row was taken
through the determinant sign.

= (−3)(−55)(1) = 165

- X - 3

=
-

det =0

0
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EXAMPLE 4 Using Column Operations to Evaluate a Determinant

Compute the determinant of

A =





1 0 0 3
2 7 0 6
0 6 3 0
7 3 1 −5





Solution This determinant could be computed as above by using elementary row oper-
ations to reduce A to row echelon form, but we can put A in lower triangular form in
one step by adding −3 times the first column to the fourth to obtain

det(A) = det





1 0 0 0
2 7 0 0
0 6 3 0
7 3 1 −26




= (1)(7)(3)(−26) = −546

Cofactor expansion and row or column operations can sometimes be used in com-

Example 4 points out that it
is always wise to keep an eye
open for column operations
that can shorten computa-
tions.

bination to provide an effective method for evaluating determinants. The following
example illustrates this idea.

EXAMPLE 5 Row Operations and Cofactor Expansion

Evaluate det(A) where

A =





3 5 −2 6
1 2 −1 1
2 4 1 5
3 7 5 3





Solution By adding suitable multiples of the second row to the remaining rows, we
obtain

det(A) =

∣∣∣∣∣∣∣∣∣

0 −1 1 3
1 2 −1 1
0 0 3 3
0 1 8 0

∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣

−1 1 3
0 3 3
1 8 0

∣∣∣∣∣∣∣
Cofactor expansion along
the first column

= −

∣∣∣∣∣∣∣

−1 1 3
0 3 3
0 9 3

∣∣∣∣∣∣∣
We added the first row to the
third row.

= −(−1)

∣∣∣∣
3 3
9 3

∣∣∣∣ Cofactor expansion along
the first column

= −18

-

-

02-1
det A == I2 --

--
I 3
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Exercise Set 2.2
In Exercises 1–4, verify that det(A) = det(AT ).

1. A =
[−2 3

1 4

]
2. A =

[−6 1
2 −2

]

3. A =




2 −1 3
1 2 4
5 −3 6



 4. A =




4 2 −1
0 2 −3

−1 1 5





In Exercises 5–8, find the determinant of the given elementary
matrix by inspection.

5.





1 0 0 0
0 1 0 0
0 0 −5 0
0 0 0 1




6.




1 0 0
0 1 0

−5 0 1





7.





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




8.





1 0 0 0
0 − 1

3 0 0
0 0 1 0
0 0 0 1





In Exercises 9–14, evaluate the determinant of the matrix
by first reducing the matrix to row echelon form and then using
some combination of row operations and cofactor expansion.

9.




3 −6 9

−2 7 −2
0 1 5



 10.




3 6 −9
0 0 −2

−2 1 5





11.





2 1 3 1
1 0 1 1
0 2 1 0
0 1 2 3




12.




1 −3 0

−2 4 1
5 −2 2





13.





1 3 1 5 3
−2 −7 0 −4 2

0 0 1 0 1
0 0 2 1 1
0 0 0 1 1





14.





1 −2 3 1
5 −9 6 3

−1 2 −6 −2
2 8 6 1





In Exercises 15–22, evaluate the determinant, given that

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
= −6

15.

∣∣∣∣∣∣∣

d e f

g h i

a b c

∣∣∣∣∣∣∣
16.

∣∣∣∣∣∣∣

g h i

d e f

a b c

∣∣∣∣∣∣∣

17.

∣∣∣∣∣∣∣

3a 3b 3c
−d −e −f

4g 4h 4i

∣∣∣∣∣∣∣
18.

∣∣∣∣∣∣∣

a + d b + e c + f

−d −e −f

g h i

∣∣∣∣∣∣∣

19.

∣∣∣∣∣∣∣

a + g b + h c + i

d e f

g h i

∣∣∣∣∣∣∣
20.

∣∣∣∣∣∣∣

a b c

2d 2e 2f

g + 3a h + 3b i + 3c

∣∣∣∣∣∣∣

21.

∣∣∣∣∣∣∣

−3a −3b −3c
d e f

g − 4d h − 4e i − 4f

∣∣∣∣∣∣∣
22.

∣∣∣∣∣∣∣

a b c

d e f

2a 2b 2c

∣∣∣∣∣∣∣

23. Use row reduction to show that
∣∣∣∣∣∣∣

1 1 1
a b c

a2 b2 c2

∣∣∣∣∣∣∣
= (b − a)(c − a)(c − b)

24. Verify the formulas in parts (a) and (b) and then make a con-
jecture about a general result of which these results are special
cases.

(a) det




0 0 a13

0 a22 a23

a31 a32 a33



 = −a13a22a31

(b) det





0 0 0 a14

0 0 a23 a24

0 a32 a33 a34

a41 a42 a43 a44




= a14a23a32a41

In Exercises 25–28, confirm the identities without evaluating
the determinants directly.

25.

∣∣∣∣∣∣∣

a1 b1 a1 + b1 + c1

a2 b2 a2 + b2 + c2

a3 b3 a3 + b3 + c3

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣

26.

∣∣∣∣∣∣∣

a1 + b1t a2 + b2t a3 + b3t

a1t + b1 a2t + b2 a3t + b3

c1 c2 c3

∣∣∣∣∣∣∣
= (1 − t2)

∣∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣

27.

∣∣∣∣∣∣∣

a1 + b1 a1 − b1 c1

a2 + b2 a2 − b2 c2

a3 + b3 a3 − b3 c3

∣∣∣∣∣∣∣
= −2

∣∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣

28.

∣∣∣∣∣∣∣

a1 b1 + ta1 c1 + rb1 + sa1

a2 b2 + ta2 c2 + rb2 + sa2

a3 b3 + ta3 c3 + rb3 + sa3

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣
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In Exercises 29–30, show that det(A) = 0 without directly eval-
uating the determinant.

29. A =





−2 8 1 4
3 2 5 1
1 10 6 5
4 −6 4 −3





30. A =





−4 1 1 1 1
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
1 1 1 1 −4





It can be proved that if a square matrix M is partitioned into
block triangular form as

M =
[
A 0

C B

]

or M =
[
A C

0 B

]

in which A and B are square, then det(M) = det(A) det(B). Use
this result to compute the determinants of the matrices in Exer-
cises 31 and 32.

31. M =





1 2 0 8 6 −9
2 5 0 4 7 5

−1 3 2 6 9 −2

0 0 0 3 0 0
0 0 0 2 1 0
0 0 0 −3 8 −4





32. M =





1 2 0 0 0
0 1 2 0 0
0 0 1 0 0

0 0 0 1 2
2 0 0 0 1





33. Let A be an n × n matrix, and let B be the matrix that re-
sults when the rows of A are written in reverse order. State a
theorem that describes how det(A) and det(B) are related.

34. Find the determinant of the following matrix.





a b b b

b a b b

b b a b

b b b a





True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) If A is a 4 × 4 matrix and B is obtained from A by interchang-
ing the first two rows and then interchanging the last two rows,
then det(B) = det(A).

(b) If A is a 3 × 3 matrix and B is obtained from A by multiplying
the first column by 4 and multiplying the third column by 3

4 ,
then det(B) = 3 det(A).

(c) If A is a 3 × 3 matrix and B is obtained from A by adding 5
times the first row to each of the second and third rows, then
det(B) = 25 det(A).

(d) If A is an n × n matrix and B is obtained from A by multiply-
ing each row of A by its row number, then

det(B) = n(n + 1)
2

det(A)

(e) If A is a square matrix with two identical columns, then
det(A) = 0.

(f ) If the sum of the second and fourth row vectors of a 6 × 6
matrix A is equal to the last row vector, then det(A) = 0.

Working withTechnology

T1. Find the determinant of

A =





4.2 −1.3 1.1 6.0

0.0 0.0 −3.2 3.4

4.5 1.3 0.0 14.8

4.7 1.0 3.4 2.3





by reducing the matrix to reduced row echelon form, and compare
the result obtained in this way to that obtained in Exercise T1 of
Section 2.1.

2.3 Properties of Determinants; Cramer’s Rule
In this section we will develop some fundamental properties of matrices, and we will use
these results to derive a formula for the inverse of an invertible matrix and formulas for the
solutions of certain kinds of linear systems.

Basic Properties of
Determinants

Suppose that A and B are n × n matrices and k is any scalar. We begin by considering
possible relationships among det(A), det(B), and

det(kA), det(A + B), and det(AB)

Since a common factor of any row of a matrix can be moved through the determinant
sign, and since each of the n rows in kA has a common factor of k, it follows that


