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INTRODUCTION In this chapter we will study “determinants” or, more precisely, “determinant
functions.” Unlike real-valued functions, such as f(x) = x2, that assign a real number
to a real variable x, determinant functions assign a real number f(A) to a matrix
variable A. Although determinants first arose in the context of solving systems of
linear equations, they are rarely used for that purpose in real-world applications. While
they can be useful for solving very small linear systems (say two or three unknowns),
our main interest in them stems from the fact that they link together various concepts
in linear algebra and provide a useful formula for the inverse of a matrix.

2.1 Determinants by Cofactor Expansion
In this section we will define the notion of a “determinant.” This will enable us to develop a
specific formula for the inverse of an invertible matrix, whereas up to now we have had only
a computational procedure for finding it. This, in turn, will eventually provide us with a
formula for solutions of certain kinds of linear systems.

Recall from Theorem 1.4.5 that the 2 × 2 matrix

A =
[
a b

c d

]

is invertible if and only if ad − bc #= 0 and that the expression ad − bc is called the
WARNING It is important to
keep in mind that det(A) is a
number, whereas A is amatrix.

determinant of the matrix A. Recall also that this determinant is denoted by writing

det(A) = ad − bc or

∣∣∣∣
a b

c d

∣∣∣∣ = ad − bc (1)

and that the inverse of A can be expressed in terms of the determinant as

A−1 = 1
det(A)

[
d −b

−c a

]
(2)

Minors and Cofactors One of our main goals in this chapter is to obtain an analog of Formula (2) that is
applicable to square matrices of all orders. For this purpose we will find it convenient
to use subscripted entries when writing matrices or determinants. Thus, if we denote a
2 × 2 matrix as

A =
[
a11 a12

a21 a22

]
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then the two equations in (1) take the form

det(A) =
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21 (3)

In situations where it is inconvenient to assign a name to the matrix, we can express this
formula as

det
[
a11 a12

a21 a22

]
= a11a22 − a12a21 (4)

There are various methods for defining determinants of higher-order square matrices.
In this text, we will us an “inductive definition” by which we mean that the determinant
of a square matrix of a given order will be defined in terms of determinants of square
matrices of the next lower order. To start the process, let us define the determinant of a
1 × 1 matrix [a11] as

det [a11] = a11 (5)

from which it follows that Formula (4) can be expressed as

det
[
a11 a12

a21 a22

]
= det[a11] det[a22] − det[a12] det[a21]

Now that we have established a starting point, we can define determinants of 3 × 3
matrices in terms of determinants of 2 × 2 matrices, then determinants of 4 × 4 matrices
in terms of determinants of 3 × 3 matrices, and so forth, ad infinitum. The following
terminology and notation will help to make this inductive process more efficient.

DEFINITION 1 If A is a square matrix, then the minor of entry aij is denoted by Mij

and is defined to be the determinant of the submatrix that remains after the ith row
and j th column are deleted from A. The number (−1)i+jMij is denoted by Cij and
is called the cofactor of entry aij .

EXAMPLE 1 Finding Minors and Cofactors

Let

A =




3 1 −4
2 5 6
1 4 8





The minor of entry a11 is
WARNING We have followed
the standard convention of us-
ing capital letters to denote
minors and cofactors even
though they are numbers, not
matrices.

M11 =
3 1 4
2 5 6
1 4 8

=
5 6
4 8

= 16

The cofactor of a11 is
C11 = (−1)1+1M11 = M11 = 16

Historical Note The term determinant was first introduced by the German mathematician Carl
Friedrich Gauss in 1801 (see p. 15), who used them to “determine” properties of certain kinds of
functions. Interestingly, the term matrix is derived from a Latin word for “womb” because it was
viewed as a container of determinants.
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Similarly, the minor of entry a32 is

M32 =

∣∣∣∣∣∣∣

3 1 4
2 5 6
1 4 8

∣∣∣∣∣∣∣
=
∣∣∣∣
3 4
2 6

∣∣∣∣ = 26

The cofactor of a32 is
C32 = (−1)3+2M32 = −M32 = −26

Remark Note that a minor Mij and its corresponding cofactor Cij are either the same or negatives
of each other and that the relating sign (−1)i+j is either +1 or −1 in accordance with the pattern
in the “checkerboard” array 



+ − + − + · · ·
− + − + − · · ·
+ − + − + · · ·
− + − + − · · ·
...

...
...

...
...





For example,
C11 = M11, C21 = −M21, C22 = M22

and so forth. Thus, it is never really necessary to calculate (−1)i+j to calculate Cij —you can simply
compute the minor Mij and then adjust the sign in accordance with the checkerboard pattern. Try
this in Example 1.

EXAMPLE 2 Cofactor Expansions of a 2 × 2 Matrix

The checkerboard pattern for a 2 × 2 matrix A = [aij ] is
[+ −
− +

]

so that
C11 = M11 = a22 C12 = −M12 = −a21

C21 = −M21 = −a12 C22 = M22 = a11

We leave it for you to use Formula (3) to verify that det(A) can be expressed in terms of
cofactors in the following four ways:

det(A) =
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣

= a11C11 + a12C12

= a21C21 + a22C22

= a11C11 + a21C21

= a12C12 + a22C22

(6)

Each of the last four equations is called a cofactor expansion of det(A). In each cofactor
expansion the entries and cofactors all come from the same row or same column of A.

Historical Note The termminor is apparently due to the Englishmathematician James Sylvester (see
p. 35), whowrote the following in a paper published in 1850: “Now conceive any one line and any one
column be struck out, we get…a square, one term less in breadth and depth than the original square;
and by varying in every possible selection of the line and column excluded, we obtain, supposing
the original square to consist of n lines and n columns, n2 such minor squares, each of which will
represent what I term a “First Minor Determinant” relative to the principal or complete determinant.”
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For example, in the first equation the entries and cofactors all come from the first row of
A, in the second they all come from the second row of A, in the third they all come from
the first column of A, and in the fourth they all come from the second column of A.

Definition of a General
Determinant

Formula (6) is a special case of the following general result, which we will state without
proof.

THEOREM 2.1.1 If A is an n × n matrix, then regardless of which row or column of A
is chosen, the number obtained by multiplying the entries in that row or column by the
corresponding cofactors and adding the resulting products is always the same.

This result allows us to make the following definition.

DEFINITION 2 If A is an n × n matrix, then the number obtained by multiplying the
entries in any row or column of A by the corresponding cofactors and adding the
resulting products is called the determinant of A, and the sums themselves are called
cofactor expansions of A. That is,

det(A) = a1jC1j + a2jC2j + · · · + anjCnj

[cofactor expansion along the jth column]

(7)

and
det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin

[cofactor expansion along the ith row]

(8)

EXAMPLE 3 Cofactor Expansion Along the First Row

Find the determinant of the matrix

A =




3 1 0

−2 −4 3
5 4 −2





by cofactor expansion along the first row.

Charles Lutwidge Dodgson
(Lewis Carroll)
(1832–1898)

Historical Note Cofactor expansion is not
the only method for expressing the determi-
nant of a matrix in terms of determinants
of lower order. For example, although it is
not well known, the English mathematician
Charles Dodgson, who was the author of Al-
ice’s Adventures in Wonderland andThrough
the Looking Glass under the pen name of
Lewis Carroll, invented such a method, called
condensation. That method has recently been
resurrected from obscurity because of its suit-
ability for parallel processing on computers.

[Image: Oscar G. Rejlander/
Time & Life Pictures/Getty Images]
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Solution

det(A) =

∣∣∣∣∣∣

3 1 0
−2 −4 3

5 4 −2

∣∣∣∣∣∣
= 3

∣∣∣∣
−4 3

4 −2

∣∣∣∣ − 1

∣∣∣∣
−2 3

5 −2

∣∣∣∣ + 0

∣∣∣∣
−2 −4

5 4

∣∣∣∣

= 3(−4) − (1)(−11) + 0 = −1

EXAMPLE 4 Cofactor Expansion Along the First Column

Let A be the matrix in Example 3, and evaluate det(A) by cofactor expansion along the
first column of A.

Solution

det(A) =

∣∣∣∣∣∣

3 1 0
−2 −4 3

5 4 −2

∣∣∣∣∣∣
= 3

∣∣∣∣
−4 3

4 −2

∣∣∣∣ − (−2)

∣∣∣∣
1 0
4 −2

∣∣∣∣ + 5

∣∣∣∣
1 0

−4 3

∣∣∣∣

= 3(−4) − (−2)(−2) + 5(3) = −1

This agrees with the result obtained in Example 3.

Note that in Example 4 we had
to compute three cofactors,
whereas in Example 3 only two
were needed because the third
was multiplied by zero. As a
rule, the best strategy for co-
factor expansion is to expand
along a row or column with the
most zeros.

EXAMPLE 5 Smart Choice of Row or Column

If A is the 4 × 4 matrix

A =





1 0 0 −1
3 1 2 2
1 0 −2 1
2 0 0 1





then to find det(A) it will be easiest to use cofactor expansion along the second column,
since it has the most zeros:

det(A) = 1 ·

∣∣∣∣∣∣∣

1 0 −1
1 −2 1
2 0 1

∣∣∣∣∣∣∣

For the 3 × 3 determinant, it will be easiest to use cofactor expansion along its second
column, since it has the most zeros:

det(A) = 1 · −2 ·
∣∣∣∣
1 −1
2 1

∣∣∣∣

= −2(1 + 2)

= −6

EXAMPLE 6 Determinant of a LowerTriangular Matrix

The following computation shows that the determinant of a 4 × 4 lower triangular matrix
is the product of its diagonal entries. Each part of the computation uses a cofactor
expansion along the first row.

∣∣∣∣∣∣∣∣∣

a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣

= a11

∣∣∣∣∣∣∣

a22 0 0
a32 a33 0
a42 a43 a44

∣∣∣∣∣∣∣

= a11a22

∣∣∣∣
a33 0

a43 a44

∣∣∣∣

= a11a22a33|a44| = a11a22a33a44

-e)2)+5):
=3(-x +2(- 2) +

5(3)

=- 12.4 + IS

->

0
-

⑧

-
·

-

·
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The method illustrated in Example 6 can be easily adapted to prove the following
general result.

THEOREM 2.1.2 If A is an n × n triangular matrix (upper triangular, lower trian-
gular, or diagonal ), then det(A) is the product of the entries on the main diagonal of
the matrix; that is, det(A) = a11a22 · · · ann.

A UsefulTechnique for
Evaluating 2 × 2 and 3 × 3

Determinants

Determinants of 2 × 2 and 3 × 3 matrices can be evaluated very efficiently using the
pattern suggested in Figure 2.1.1.

Figure 2.1.1

a11
a21
a31

a12
a22
a32

a11
a21
a31

a12
a22
a32

a13
a23
a33

a11
a21

a12
a22

In the 2 × 2 case, the determinant can be computed by forming the product of the entries
on the rightward arrow and subtracting the product of the entries on the leftward arrow.
In the 3 × 3 case we first recopy the first and second columns as shown in the figure,
after which we can compute the determinant by summing the products of the entries
on the rightward arrows and subtracting the products on the leftward arrows. TheseWARNING The arrow tech-

nique works only for deter-
minants of 2 × 2 and 3 × 3
matrices. It does not work
for matrices of size 4 × 4 or
higher.

procedures execute the computations
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣
a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣
a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣
a21 a22

a31 a32

∣∣∣∣

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32

which agrees with the cofactor expansions along the first row.

EXAMPLE 7 ATechnique for Evaluating 2 × 2 and 3 × 3 Determinants

1 2 3
4 5 6
7 8 9

1 2
4 5
7 8

1 2 3
4 5 6
7 8 9

= [45 + 84 + 96] ! [105 ! 48 ! 72] = 240 

=

=
3 1
4 2

= (3)(!2) ! (1)(4) = !10
3 1
4 2



ex

(3)(-2) - (e)(1)X -6 - u =fN

⑲
=(1) (s) (a) + (2)(617) + (z)(-)8)

-((21( - 1)(a) +(1)(6)(-8) +(31(5)(1)
⑳ ⑳

I
=Y5 +84 +96+ 72 48:10S =240
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Exercise Set 2.1
In Exercises 1–2, find all the minors and cofactors of the ma-

trix A.

1. A =




1 −2 3
6 7 −1

−3 1 4



 2. A =




1 1 2
3 3 6
0 1 4





3. Let

A =





4 −1 1 6
0 0 −3 3
4 1 0 14
4 1 3 2





Find

(a) M13 and C13. (b) M23 and C23.

(c) M22 and C22. (d) M21 and C21.

4. Let

A =





2 3 −1 1
−3 2 0 3

3 −2 1 0
3 −2 1 4





Find

(a) M32 and C32. (b) M44 and C44.

(c) M41 and C41. (d) M24 and C24.

In Exercises 5–8, evaluate the determinant of the given matrix.
If the matrix is invertible, use Equation (2) to find its inverse.

5.
[

3 5
−2 4

]
6.

[
4 1
8 2

]
7.

[−5 7
−7 −2

]
8.

[√
2

√
6

4
√

3

]

In Exercises 9–14, use the arrow technique to evaluate the de-
terminant.

9.
∣∣∣∣
a − 3 5
−3 a − 2

∣∣∣∣ 10.

∣∣∣∣∣∣∣

−2 7 6
5 1 −2
3 8 4

∣∣∣∣∣∣∣

11.

∣∣∣∣∣∣∣

−2 1 4
3 5 −7
1 6 2

∣∣∣∣∣∣∣
12.

∣∣∣∣∣∣∣

−1 1 2
3 0 −5
1 7 2

∣∣∣∣∣∣∣

13.

∣∣∣∣∣∣∣

3 0 0
2 −1 5
1 9 −4

∣∣∣∣∣∣∣
14.

∣∣∣∣∣∣∣

c −4 3
2 1 c2

4 c − 1 2

∣∣∣∣∣∣∣

In Exercises 15–18, find all values of λ for which det(A) = 0.

15. A =
[
λ − 2 1
−5 λ + 4

]
16. A =




λ − 4 0 0

0 λ 2
0 3 λ − 1





17. A =
[
λ − 1 0

2 λ + 1

]
18. A =




λ − 4 4 0
−1 λ 0

0 0 λ − 5





19. Evaluate the determinant in Exercise 13 by a cofactor expan-
sion along

(a) the first row. (b) the first column.

(c) the second row. (d) the second column.

(e) the third row. (f ) the third column.

20. Evaluate the determinant in Exercise 12 by a cofactor expan-
sion along

(a) the first row. (b) the first column.

(c) the second row. (d) the second column.

(e) the third row. (f ) the third column.

In Exercises 21–26, evaluate det(A) by a cofactor expansion
along a row or column of your choice.

21. A =




−3 0 7

2 5 1
−1 0 5



 22. A =




3 3 1
1 0 −4
1 −3 5





23. A =




1 k k2

1 k k2

1 k k2



 24. A =




k + 1 k − 1 7

2 k − 3 4
5 k + 1 k





25. A =





3 3 0 5
2 2 0 −2
4 1 −3 0
2 10 3 2





26. A =





4 0 0 1 0
3 3 3 −1 0
1 2 4 2 3
9 4 6 2 3
2 2 4 2 3





In Exercises 27–32, evaluate the determinant of the given ma-
trix by inspection.

27.




1 0 0
0 −1 0
0 0 1



 28.




2 0 0
0 2 0
0 0 2





29.





0 0 0 0
1 2 0 0
0 4 3 0
1 2 3 8




30.





1 1 1 1
0 2 2 2
0 0 3 3
0 0 0 4




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31.





1 2 7 −3
0 1 −4 1
0 0 2 7
0 0 0 3




32.





−3 0 0 0
1 2 0 0

40 10 −1 0
100 200 −23 3





33. In each part, show that the value of the determinant is inde-
pendent of θ .

(a)

∣∣∣∣∣
sin θ cos θ

− cos θ sin θ

∣∣∣∣∣

(b)

∣∣∣∣∣∣∣

sin θ cos θ 0
− cos θ sin θ 0

sin θ − cos θ sin θ + cos θ 1

∣∣∣∣∣∣∣

34. Show that the matrices

A =
[
a b

0 c

]

and B =
[
d e

0 f

]

commute if and only if

∣∣∣∣∣
b a − c

e d − f

∣∣∣∣∣ = 0

35. By inspection, what is the relationship between the following
determinants?

d1 =

∣∣∣∣∣∣∣

a b c

d 1 f

g 0 1

∣∣∣∣∣∣∣
and d2 =

∣∣∣∣∣∣∣

a + λ b c

d 1 f

g 0 1

∣∣∣∣∣∣∣

36. Show that

det(A) = 1
2

∣∣∣∣
tr(A) 1
tr(A2) tr(A)

∣∣∣∣

for every 2 × 2 matrix A.

37. What can you say about an nth-order determinant all of whose
entries are 1? Explain.

38. What is the maximum number of zeros that a 3 × 3 matrix can
have without having a zero determinant? Explain.

39. Explain why the determinant of a matrix with integer entries
must be an integer.

Working with Proofs

40. Prove that (x1, y1), (x2, y2), and (x3, y3) are collinear points
if and only if

∣∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣
= 0

41. Prove that the equation of the line through the distinct points
(a1, b1) and (a2, b2) can be written as

∣∣∣∣∣∣∣

x y 1
a1 b1 1
a2 b2 1

∣∣∣∣∣∣∣
= 0

42. Prove that if A is upper triangular and Bij is the matrix that
results when the ith row and j th column of A are deleted, then
Bij is upper triangular if i < j .

True-False Exercises

TF. In parts (a)–( j) determine whether the statement is true or
false, and justify your answer.

(a) The determinant of the 2 × 2 matrix
[
a b

c d

]
is ad + bc.

(b) Two square matrices that have the same determinant must have
the same size.

(c) The minor Mij is the same as the cofactor Cij if i + j is even.

(d) If A is a 3 × 3 symmetric matrix, then Cij = Cji for all i and j .

(e) The number obtained by a cofactor expansion of a matrix A is
independent of the row or column chosen for the expansion.

(f ) If A is a square matrix whose minors are all zero, then
det(A) = 0.

(g) The determinant of a lower triangular matrix is the sum of the
entries along the main diagonal.

(h) For every square matrix A and every scalar c, it is true that
det(cA) = c det(A).

(i) For all square matrices A and B, it is true that

det(A + B) = det(A) + det(B)

( j) For every 2 × 2 matrix A it is true that det(A2) = (det(A))2.

Working withTechnology

T1. (a) Use the determinant capability of your technology utility
to find the determinant of the matrix

A =





4.2 −1.3 1.1 6.0

0.0 0.0 −3.2 3.4

4.5 1.3 0.0 14.8

4.7 1.0 3.4 2.3





(b) Compare the result obtained in part (a) to that obtained by a
cofactor expansion along the second row of A.

T2. Let An be the n × n matrix with 2’s along the main diagonal,
1’s along the diagonal lines immediately above and below the main
diagonal, and zeros everywhere else. Make a conjecture about the
relationship between n and det(An).


