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Working withTechnology

T1. Starting with the formula stated in Exercise T1 of Section 1.5,
derive a formula for the inverse of the “block diagonal” matrix

[
D1 0

0 D2

]

in which D1 and D2 are invertible, and use your result to compute
the inverse of the matrix

M =





1.24 2.37 0 0

3.08 −1.01 0 0

0 0 2.76 4.92

0 0 3.23 5.54





1.8 MatrixTransformations
In this section we will introduce a special class of functions that arise from matrix
multiplication. Such functions, called “matrix transformations,” are fundamental in the
study of linear algebra and have important applications in physics, engineering, social
sciences, and various branches of mathematics.

Recall that in Section 1.1 we defined an “ordered n-tuple” to be a sequence of n real
numbers, and we observed that a solution of a linear system in n unknowns, say

x1 = s1, x2 = s2, . . . , xn = sn

can be expressed as the ordered n-tuple

(s1, s2, . . . , sn) (1)

Recall also that if n = 2, then the n-tuple is called an “ordered pair,” and if n = 3, it is
called an “ordered triple.” For two ordered n-tuples to be regarded as the same, they
must list the same numbers in the same order. Thus, for example, (1, 2) and (2, 1) are
different ordered pairs.

The set of all ordered n-tuples of real numbers is denoted by the symbol Rn. The
The term “vector” is used in
various ways in mathemat-
ics, physics, engineering, and
other applications. The idea
of viewing n-tuples as vectors
will be discussed in more detail
in Chapter 3, at which point we
will also explain how this idea
relates to more familiar notion
of a vector.

elements of Rn are called vectors and are denoted in boldface type, such as a, b, v, w,
and x. When convenient, ordered n-tuples can be denoted in matrix notation as column
vectors. For example, the matrix 



s1

s2

...

sn




(2)

can be used as an alternative to (1). We call (1) the comma-delimited form of a vector
and (2) the column-vector form. For each i = 1, 2, . . . , n, let ei denote the vector in Rn

with a 1 in the ith position and zeros elsewhere. In column form these vectors are

e1 =





1

0

0
...

0





, e2 =





0

1

0
...

0





, . . . , en =





0

0

0
...

1





We call the vectors e1, e2, . . . , en the standard basis vectors for Rn. For example, the
vectors

e1 =




1

0

0



 , e2 =




0

1

0



 , e3 =




0

0

1





are the standard basis vectors for R3.
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The vectors e1, e2, . . . , en in Rn are termed “basis vectors” because all other vectors
in Rn are expressible in exactly one way as a linear combination of them. For example,
if

x =





x1

x2

...

xn





then we can express x as
x = x1e1 + x2e2 + · · · + xnen

Functions and
Transformations

Recall that a function is a rule that associates with each element of a set A one and only
one element in a set B. If f associates the element b with the element a, then we write

b = f(a)

and we say that b is the image of a under f or that f(a) is the value of f at a. The set
A is called the domain of f and the set B the codomain of f (Figure 1.8.1). The subseta

b = f (a)

f

Domain
A

Codomain
B

Figure 1.8.1

of the codomain that consists of all images of elements in the domain is called the range
of f .

In many applications the domain and codomain of a function are sets of real numbers,
but in this text we will be concerned with functions for which the domain is Rn and the
codomain is Rm for some positive integers m and n.

DEFINITION 1 If f is a function with domain Rn and codomain Rm, then we say that
f is a transformation from Rn to Rm or that f maps from Rn to Rm, which we denote
by writing

f : Rn →Rm

In the special case where m = n, a transformation is sometimes called an operator on
Rn.

MatrixTransformations In this section we will be concerned with the class of transformations from Rn to Rm

that arise from linear systems. Specifically, suppose that we have the system of linear

It is common in linear algebra
to use the letter T to denote
a transformation. In keeping
with this usage, we will usually
denote a transformation from
Rn to Rm by writing

T : Rn →Rm

equations
w1 = a11x1 + a12x2 + · · · + a1nxn

w2 = a21x1 + a22x2 + · · · + a2nxn
...

...
...

...

wm = am1x1 + am2x2 + · · · + amnxn

(3)

which we can write in matrix notation as




w1

w2
...

wm




=





a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn









x1

x2
...

xn




(4)

or more briefly as
w = Ax (5)

Although we could view (5) as a compact way of writing linear system (3), we will view
it instead as a transformation that maps a vector x in Rn into thevector w in Rm by

-
·95

W

f.-R surethe

I



1.8 MatrixTransformations 77

multiplying x on the left by A. We call this a matrix transformation (or matrix operator
in the special case where m = n). We denote it by

TA: Rn → Rm

(see Figure 1.8.2). This notation is useful when it is important to make the domain

x

TA : R
n → Rm

TA(x)

TA

Rn Rm

Figure 1.8.2

and codomain clear. The subscript on TA serves as a reminder that the transformation
results from multiplying vectors in Rn by the matrix A. In situations where specifying
the domain and codomain is not essential, we will express (4) as

w = TA(x) (6)

We call the transformation TA multiplication by A. On occasion we will find it convenient
to express (6) in the schematic form

x
TA−→ w (7)

which is read “TA maps x into w.”

EXAMPLE 1 A MatrixTransformation from R4 to R3

The transformation from R4 to R3 defined by the equations

w1 = 2x1 − 3x2 + x3 − 5x4

w2 = 4x1 + x2 − 2x3 + x4

w3 = 5x1 − x2 + 4x3

(8)

can be expressed in matrix form as



w1

w2

w3



 =




2 −3 1 −5
4 1 −2 1
5 −1 4 0









x1

x2

x3

x4





from which we see that the transformation can be interpreted as multiplication by

A =




2 −3 1 −5
4 1 −2 1
5 −1 4 0



 (9)

Although the image under the transformation TA of any vector

x =





x1

x2

x3

x4





in R4 could be computed directly from the defining equations in (8), we will find it
preferable to use the matrix in (9). For example, if

x =





1
−3

0
2





then it follows from (9) that



w1

w2

w3



 = TA(x) = Ax =




2 −3 1 −5
4 1 −2 1
5 −1 4 0









1
−3

0
2




=




1
3
8





ou

#&
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EXAMPLE 2 ZeroTransformations

If 0 is the m × n zero matrix, then

T0(x) = 0x = 0

so multiplication by zero maps every vector in Rn into the zero vector in Rm. We call T0
the zero transformation from Rn to Rm.

EXAMPLE 3 Identity Operators

If I is the n × n identity matrix, then

TI (x) = Ix = x

so multiplication by I maps every vector in Rn to itself. We call TI the identity operator
on Rn.

Properties of Matrix
Transformations

The following theorem lists four basic properties of matrix transformations that follow
from properties of matrix multiplication.

THEOREM 1.8.1 For every matrix A the matrix transformation TA: Rn →Rm has the
following properties for all vectors u and v and for every scalar k:

(a) TA(0) = 0

(b) TA(ku) = kTA(u) [Homogeneity property]

(c) TA(u + v) = TA(u) + TA(v) [Additivity property]

(d ) TA(u − v) = TA(u) − TA(v)

Proof All four parts are restatements of the following properties of matrix arithmetic
given in Theorem 1.4.1:

A0 = 0, A(ku) = k(Au), A(u + v) = Au + Av, A(u − v) = Au − Av

It follows from parts (b) and (c) of Theorem 1.8.1 that a matrix transformation maps
a linear combination of vectors in Rn into the corresponding linear combination of
vectors in Rm in the sense that

TA(k1u1 + k2u2 + · · · + krur ) = k1TA(u1) + k2TA(u2) + · · · + krTA(ur ) (10)

Matrix transformations are not the only kinds of transformations. For example, if

w1 = x2
1 + x2

2

w2 = x1x2
(11)

then there are no constants a, b, c, and d for which
[
w1

w2

]

=
[
a b

c d

] [
x1

x2

]

=
[
x2

1 + x2
2

x1x2

]

so that the equations in (11) do not define a matrix transformation from R2 to R2.

X
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This leads us to the following two questions.

Question 1. Are there algebraic properties of a transformation T : Rn →Rm that can
be used to determine whether T is a matrix transformation?

Question 2. If we discover that a transformation T : Rn →Rm is a matrix transfor-
mation, how can we find a matrix for it?

The following theorem and its proof will provide the answers.

THEOREM 1.8.2 T : Rn →Rm is a matrix transformation if and only if the following
relationships hold for all vectors u and v in Rn and for every scalar k:

(i) T (u + v) = T (u) + T (v) [Additivity property]

(ii) T (ku) = kT (u) [Homogeneity property]

Proof If T is a matrix transformation, then properties (i) and (ii) follow respectively
from parts (c) and (b) of Theorem 1.8.1.

Conversely, assume that properties (i) and (ii) hold. We must show that there exists
an m × n matrix A such that

T (x) = Ax

for every vector x in Rn. Recall that the derivation of Formula (10) used only the
additivity and homogeneity properties of TA. Since we are assuming that T has those
properties, it must be true that

T (k1u1 + k2u2 + · · · + krur ) = k1T (u1) + k2T (u2) + · · · + krT (ur ) (12)

for all scalars k1, k2, . . . , kr and all vectors u1, u2, . . . , ur in Rn. Let A be the matrix

A = [T (e1) | T (e2) | · · · | T (en)] (13)

where e1, e2, . . . , en are the standard basis vectors for Rn. It follows from Theorem 1.3.1
that Ax is a linear combination of the columns of A in which the successive coefficients
are the entries x1, x2, . . . , xn of x. That is,

Ax = x1T (e1) + x2T (e2) + · · · + xnT (en)

Using Formula (10) we can rewrite this as

Ax = T (x1e1 + x2e2 + · · · + xnen) = T (x)

which completes the proof.

The additivity and homogeneity properties in Theorem 1.8.2 are called linearity
conditions, and a transformation that satisfies these conditions is called a linear transfor-
mation. Using this terminology Theorem 1.8.2 can be restated as follows.

Theorem 1.8.3 tells us that
for transformations from Rn to
Rm, the terms “matrix trans-
formation” and “linear trans-
formation” are synonymous.

THEOREM1.8.3 Every linear transformation fromRn toRm is amatrix transformation,
and conversely, every matrix transformation from Rn to Rm is a linear transformation.

X



80 Chapter 1 Systems of Linear Equations and Matrices

Depending on whether n-tuples and m-tuples are regarded as vectors or points, the
geometric effect of a matrix transformation TA: Rn →Rm is to map each vector (point)
in Rn into a vector (point) in Rm (Figure 1.8.3).

Figure 1.8.3

x TA(x)
Rn Rm

0 0

TA maps points to points.

x TA(x)
Rn Rm

0 0

TA maps vectors to vectors.

The following theorem states that if two matrix transformations from Rn to Rm have
the same image at each point of Rn, then the matrices themselves must be the same.

THEOREM 1.8.4 If TA: Rn →Rm and TB : Rn →Rm are matrix transformations, and if
TA(x) = TB(x) for every vector x in Rn, then A = B.

Proof To say that TA(x) = TB(x) for every vector in Rn is the same as saying that

Ax = Bx

for every vector x in Rn. This will be true, in particular, if x is any of the standard basis
vectors e1, e2, . . . , en for Rn; that is,

Aej = Bej (j = 1, 2, . . . , n) (14)

Since every entry of ej is 0 except for the j th, which is 1, it follows from Theorem 1.3.1
that Aej is the j th column of A and Bej is the j th column of B. Thus, (14) implies that
corresponding columns of A and B are the same, and hence that A = B.

Theorem 1.8.4 is significant because it tells us that there is aone-to-one correspondence
between m × n matrices and matrix transformations from Rn to Rm in the sense that
every m × n matrix A produces exactly one matrix transformation (multiplication by A)
and every matrix transformation from Rn to Rm arises from exactly one m × n matrix;
we call that matrix the standard matrix for the transformation.

A Procedure for Finding
Standard Matrices

In the course of proving Theorem 1.8.2 we showed in Formula (13) that if e1, e2, . . . , en

are the standard basis vectors for Rn (in column form), then the standard matrix for a
linear transformation T : Rn →Rm is given by the formula

A = [T (e1) | T (e2) | · · · | T (en)] (15)

This suggests the following procedure for finding standard matrices.

Finding the Standard Matrix for a Matrix Transformation

Step 1. Find the images of the standard basis vectors e1, e2, . . . , en for Rn.

Step 2. Construct the matrix that has the images obtained in Step 1 as its successive
columns. This matrix is the standard matrix for the transformation.

X

--

E
r

⑭
-

R

↳ ,2
=(0,1,0, . . . .6) en

= (0,0,. .-,1)
eg =(1,0,0,--0,
-

n times

es= (0,0,1,0,
.
.
. .
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EXAMPLE 4 Finding a Standard Matrix

Find the standard matrix A for the linear transformation T : R2 →R2 defined by the
formula

T

([
x1

x2

])

=




2x1 + x2

x1 − 3x2

−x1 + x2



 (16)

Solution We leave it for you to verify that

T (e1) = T

([
1

0

])

=




2

1

−1



 and T (e2) = T

([
0

1

])

=




1

−3

1





Thus, it follows from Formulas (15) and (16) that the standard matrix is

A = [T (e1) | T (e2)] =




2 1

1 −3

−1 1





EXAMPLE 5 Computing with Standard Matrices

For the linear transformation in Example 4, use the standard matrix A obtained in that
example to find

T

([
1

4

])

Solution The transformation is multiplication by A, so
Although we could have ob-
tained the result in Example 5
by substituting values for the
variables in (13), the method
used in Example 5 is preferable
for large-scale problems in that
matrix multiplication is better
suited for computer computa-
tions.

T

([
1

4

])

=




2 1

1 −3

−1 1





[
1

4

]

=




6

−11

3





For transformation problems posed in comma-delimited form, a good procedure is
to rewrite the problem in column-vector form and use the methods previously illustrated.

EXAMPLE 6 Finding a Standard Matrix

Rewrite the transformation T (x1, x2) = (3x1 + x2, 2x1 − 4x2) in column-vector form
and find its standard matrix.

Solution

T

([
x1

x2

])

=
[

3x1 + x2

2x1 − 4x2

]

=
[

3 1

2 −2

] [
x1

x2

]

Thus, the standard matrix is [
3 1

2 −2

]

Remark This section is but a first step in the study of linear transformations, which is one of the
major themes in this text. We will delve deeper into this topic in Chapter 4, at which point we will
have more background and a richer source of examples to work with.

RY =

e,=(1,0,0)

22=(0,1,0)

er
=-[i]Q e=

(000,1)

2
=(0,1) =(, -

S

&i1,xz
=0

*arit
①

=

-

⑤

--E

#
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Exercise Set 1.8
In Exercises 1–2, find the domain and codomain of the trans-

formation TA(x) = Ax.

1. (a) A has size 3 × 2. (b) A has size 2 × 3.

(c) A has size 3 × 3. (d) A has size 1 × 6.

2. (a) A has size 4 × 5. (b) A has size 5 × 4.

(c) A has size 4 × 4. (d) A has size 3 × 1.

In Exercises 3–4, find the domain and codomain of the trans-
formation defined by the equations.

3. (a) w1 = 4x1 + 5x2

w2 = x1 − 8x2

(b) w1 = 5x1 − 7x2

w2 = 6x1 + x2

w3 = 2x1 + 3x2

4. (a) w1 = x1 − 4x2 + 8x3

w2 = −x1 + 4x2 + 2x3

w3 = −3x1 + 2x2 − 5x3

(b) w1 = 2x1 + 7x2 − 4x3

w2 = 4x1 − 3x2 + 2x3

In Exercises 5–6, find the domain and codomain of the trans-
formation defined by the matrix product.

5. (a)

[
3 1 2
6 7 1

] 


x1

x2

x3



 (b)




2 −1
4 3
2 −5





[
x1

x2

]

6. (a)

[
6 3

−1 7

] [
x1

x2

]

(b)




2 1 −6
3 7 −4
1 0 3








x1

x2

x3





In Exercises 7–8, find the domain and codomain of the trans-
formation T defined by the formula.

7. (a) T (x1, x2) = (2x1 − x2, x1 + x2)

(b) T (x1, x2, x3) = (4x1 + x2, x1 + x2)

8. (a) T (x1, x2, x3, x4) = (x1, x2)

(b) T (x1, x2, x3) = (x1, x2 − x3, x2)

In Exercises 9–10, find the domain and codomain of the trans-
formation T defined by the formula.

9. T

([
x1

x2

])

=




4x1

x1 − x2

3x2



 10. T








x1

x2

x3







 =





x1

x2

x1 − x3

0





In Exercises 11–12, find the standard matrix for the transfor-
mation defined by the equations.

11. (a) w1 = 2x1 − 3x2 + x3

w2 = 3x1 + 5x2 − x3

(b) w1 = 7x1 + 2x2 − 8x3

w2 = − x2 + 5x3

w3 = 4x1 + 7x2 − x3

12. (a) w1 = −x1 + x2

w2 = 3x1 − 2x2

w3 = 5x1 − 7x2

(b) w1 = x1

w2 = x1 + x2

w3 = x1 + x2 + x3

w4 = x1 + x2 + x3 + x4

13. Find the standard matrix for the transformation T defined by
the formula.

(a) T (x1, x2) = (x2, −x1, x1 + 3x2, x1 − x2)

(b) T (x1, x2, x3, x4) = (7x1 + 2x2 − x3 + x4, x2 + x3, −x1)

(c) T (x1, x2, x3) = (0, 0, 0, 0, 0)

(d) T (x1, x2, x3, x4) = (x4, x1, x3, x2, x1 − x3)

14. Find the standard matrix for the operator T defined by the
formula.

(a) T (x1, x2) = (2x1 − x2, x1 + x2)

(b) T (x1, x2) = (x1, x2)

(c) T (x1, x2, x3) = (x1 + 2x2 + x3, x1 + 5x2, x3)

(d) T (x1, x2, x3) = (4x1, 7x2, −8x3)

15. Find the standard matrix for the operator T : R3 →R3 defined
by

w1 = 3x1 + 5x2 − x3

w2 = 4x1 − x2 + x3

w3 = 3x1 + 2x2 − x3

and then compute T (−1, 2, 4) by directly substituting in the
equations and then by matrix multiplication.

16. Find the standard matrix for the transformation T : R4 →R2

defined by
w1 = 2x1 + 3x2 − 5x3 − x4

w2 = x1 − 5x2 + 2x3 − 3x4

and then compute T (1, −1, 2, 4) by directly substituting in
the equations and then by matrix multiplication.

In Exercises 17–18, find the standard matrix for the transfor-
mation and use it to compute T (x). Check your result by substi-
tuting directly in the formula for T .

17. (a) T (x1, x2) = (−x1 + x2, x2); x = (−1, 4)

(b) T (x1, x2, x3) = (2x1 − x2 + x3, x2 + x3, 0);
x = (2, 1, −3)

18. (a) T (x1, x2) = (2x1 − x2, x1 + x2); x = (−2, 2)

(b) T (x1, x2, x3) = (x1, x2 − x3, x2); x = (1, 0, 5)

In Exercises 19–20, find TA(x), and express your answer in
matrix form.

19. (a) A =
[

1 2
3 4

]
; x =

[
3

−2

]

(b) A =
[−1 2 0

3 1 5

]
; x =




−1

1
3




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20. (a) A =




−2 1 4

3 5 7
6 0 −1



; x =




x1

x2

x3





(b) A =




−1 1

2 4
7 8



; x =
[
x1

x2

]

In Exercises 21–22, use Theorem 1.8.2 to show that T is a
matrix transformation.
21. (a) T (x, y) = (2x + y, x − y)

(b) T (x1, x2, x3) = (x1, x3, x1 + x2)

22. (a) T (x, y, z) = (x + y, y + z, x)

(b) T (x1, x2) = (x2, x1)

In Exercises 23–24, use Theorem 1.8.2 to show that T is not a
matrix transformation.

23. (a) T (x, y) = (x2, y)

(b) T (x, y, z) = (x, y, xz)

24. (a) T (x, y) = (x, y + 1)

(b) T (x1, x2, x3) =
(
x1, x2,

√
x3

)

25. A function of the form f(x) = mx + b is commonly called a
“linear function” because the graph of y = mx + b is a line.
Is f a matrix transformation on R?

26. Show that T (x, y) = (0, 0) defines a matrix operator on R2

but T (x, y) = (1, 1) does not.

In Exercises 27–28, the images of the standard basis vec-
tors for R3 are given for a linear transformation T : R3 →R3.
Find the standard matrix for the transformation, and find
T (x).

27. T (e1) =




1
3
0



 , T (e2) =




0
0
1



 , T (e3) =




4

−3
−1



 ; x =




2
1
0





28. T (e1) =




2
1
3



 , T (e2) =




−3
−1

0



 , T (e3) =




1
0
2



 ; x =




3
2
1





29. Let T : R2 →R2 be a linear operator for which the images
of the standard basis vectors for R2 are T (e1) = (a, b) and
T (e2) = (c, d). Find T (1, 1).

30. We proved in the text that if T : Rn →Rm is a matrix transfor-
mation, then T (0) = 0. Show that the converse of this result
is false by finding a mapping T : Rn →Rm that is not a matrix
transformation but for which T (0) = 0.

31. Let TA: R3 →R3 be multiplication by

A =




−1 3 0

2 1 2
4 5 −3





and let e1, e2, and e3 be the standard basis vectors for R3. Find
the following vectors by inspection.

(a) TA(e1), TA(e2), and TA(e3)

(b) TA(e1 + e2 + e3) (c) TA(7e3)

Working with Proofs

32. (a) Prove: If T : Rn →Rm is a matrix transformation, then
T (0) = 0; that is, T maps the zero vector in Rn into the
zero vector in Rm.

(b) The converse of this is not true. Find an example of a
function T for which T (0) = 0 but which is not a matrix
transformation.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) If A is a 2 × 3 matrix, then the domain of the transformation
TA is R2.

(b) If A is an m × n matrix, then the codomain of the transfor-
mation TA is Rn.

(c) There is at least one linear transformation T : Rn →Rm for
which T (2x) = 4T (x) for some vector x in Rn.

(d) There are linear transformations from Rn to Rm that are not
matrix transformations.

(e) If TA: Rn →Rn and if TA(x) = 0 for every vector x in Rn, then
A is the n × n zero matrix.

(f ) There is only one matrix transformation T : Rn →Rm such that
T (−x) = −T (x) for every vector x in Rn.

(g) If b is a nonzero vector in Rn, then T (x) = x + b is a matrix
operator on Rn.


