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20.




−2 0 1

0 −1 −1
1 1 −4



 X =




4 3 2 1
6 7 8 9
1 3 7 9





Working with Proofs

21. Let Ax = 0 be a homogeneous system of n linear equations in
n unknowns that has only the trivial solution. Prove that if k

is any positive integer, then the system Akx = 0 also has only
the trivial solution.

22. Let Ax = 0 be a homogeneous system of n linear equations
in n unknowns, and let Q be an invertible n × n matrix.
Prove that Ax = 0 has only the trivial solution if and only
if (QA)x = 0 has only the trivial solution.

23. Let Ax = b be any consistent system of linear equations, and
let x1 be a fixed solution. Prove that every solution to the
system can be written in the form x = x1 + x0, where x0 is a
solution to Ax = 0. Prove also that every matrix of this form
is a solution.

24. Use part (a) of Theorem 1.6.3 to prove part (b).

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) It is impossible for a system of linear equations to have exactly
two solutions.

(b) If A is a square matrix, and if the linear system Ax = b has a
unique solution, then the linear system Ax = c also must have
a unique solution.

(c) If A and B are n × n matrices such that AB = In, then
BA = In.

(d) If A and B are row equivalent matrices, then the linear systems
Ax = 0 and Bx = 0 have the same solution set.

(e) Let A be an n × n matrix and S is an n × n invertible matrix.
If x is a solution to the linear system (S−1AS)x = b, then Sx
is a solution to the linear system Ay = Sb.

(f ) Let A be an n × n matrix. The linear system Ax = 4x has a
unique solution if and only if A − 4I is an invertible matrix.

(g) Let A and B be n × n matrices. If A or B (or both) are not
invertible, then neither is AB.

Working withTechnology

T1. Colors in print media, on computer monitors, and on televi-
sion screens are implemented using what are called “color mod-
els”. For example, in the RGB model, colors are created by mixing
percentages of red (R), green (G), and blue (B), and in the YIQ
model (used in TV broadcasting), colors are created by mixing
percentages of luminescence (Y) with percentages of a chromi-
nance factor (I) and a chrominance factor (Q). The conversion
from the RGB model to the YIQ model is accomplished by the
matrix equation




Y

I

Q



 =




.299 .587 .114

.596 −.275 −.321

.212 −.523 .311








R

G

B





What matrix would you use to convert the YIQ model to the RGB
model?

T2. Let

A =




1 −2 2

4 5 1

0 3 −1



 , B1 =




0

1

7



 , B2 =




11

5

3



 , B3 =




1

−4

2





Solve the linear systems Ax = B1, Ax = B2, Ax = B3 using the
method of Example 2.

1.7 Diagonal,Triangular, and Symmetric Matrices
In this section we will discuss matrices that have various special forms. These matrices arise
in a wide variety of applications and will play an important role in our subsequent work.

Diagonal Matrices A square matrix in which all the entries off the main diagonal are zero is called a diagonal
matrix. Here are some examples:

[
2 0
0 −5

]
,




1 0 0
0 1 0
0 0 1



,





6 0 0 0
0 −4 0 0
0 0 0 0
0 0 0 8




,

[
0 0
0 0

]
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A general n × n diagonal matrix D can be written as

D =





d1 0 · · · 0
0 d2 · · · 0
...

...
...

0 0 · · · dn




(1)

A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero; in
Confirm Formula (2) by show-
ing that

DD−1 = D−1D = I

this case the inverse of (1) is

D−1 =





1/d1 0 · · · 0
0 1/d2 · · · 0
...

...
...

0 0 · · · 1/dn




(2)

You can verify that this is so by multiplying (1) and (2).
Powers of diagonal matrices are easy to compute; we leave it for you to verify that if

D is the diagonal matrix (1) and k is a positive integer, then

Dk =





dk
1 0 · · · 0

0 dk
2 · · · 0

...
...

...

0 0 · · · dk
n




(3)

EXAMPLE 1 Inverses and Powers of Diagonal Matrices

If

A =




1 0 0
0 −3 0
0 0 2





then

A−1 =




1 0 0
0 − 1

3 0
0 0 1

2



, A5 =




1 0 0
0 −243 0
0 0 32



, A−5 =




1 0 0

0 − 1
243 0

0 0 1
32





Matrix products that involve diagonal factors are especially easy to compute. For
example,




d1 0 0
0 d2 0
0 0 d3








a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



 =




d1a11 d1a12 d1a13 d1a14

d2a21 d2a22 d2a23 d2a24

d3a31 d3a32 d3a33 d3a34









a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43








d1 0 0
0 d2 0
0 0 d3



 =





d1a11 d2a12 d3a13

d1a21 d2a22 d3a23

d1a31 d2a32 d3a33

d1a41 d2a42 d3a43





In words, to multiply a matrixA on the left by a diagonal matrixD,multiply successive
rows of A by the successive diagonal entries ofD, and to multiply A on the right byD,

multiply successive columns of A by the successive diagonal entries of D.
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Triangular Matrices A square matrix in which all the entries above the main diagonal are zero is called lower
triangular, and a square matrix in which all the entries below the main diagonal are zero
is called upper triangular. A matrix that is either upper triangular or lower triangular is
called triangular.

EXAMPLE 2 Upper and LowerTriangular Matrices





a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44









a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44





A general 4     4 upper
triangular matrix

A general 4    4 lower
triangular matrix

× ×  

Remark Observe that diagonal matrices are both upper triangular and lower triangular since
they have zeros below and above the main diagonal. Observe also that a square matrix in row
echelon form is upper triangular since it has zeros below the main diagonal.

Properties ofTriangular
Matrices

Example 2 illustrates the following four facts about triangular matrices that we will state
without formal proof:

• A square matrix A = [aij ] is upper triangular if and only if all entries to the left of

i > j

i < j

Figure 1.7.1

the main diagonal are zero; that is, aij = 0 if i > j (Figure 1.7.1).

• A square matrix A = [aij ] is lower triangular if and only if all entries to the right of
the main diagonal are zero; that is, aij = 0 if i < j (Figure 1.7.1).

• A square matrix A = [aij ] is upper triangular if and only if the ith row starts with at
least i − 1 zeros for every i.

• A square matrix A = [aij ] is lower triangular if and only if the j th column starts with
at least j − 1 zeros for every j.

The following theorem lists some of the basic properties of triangular matrices.

THEOREM 1.7.1

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose
of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the product of
upper triangular matrices is upper triangular.

(c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.

(d ) The inverse of an invertible lower triangular matrix is lower triangular, and the
inverse of an invertible upper triangular matrix is upper triangular.

Part (a) is evident from the fact that transposing a square matrix can be accomplished by
reflecting the entries about the main diagonal; we omit the formal proof. We will prove
(b), but we will defer the proofs of (c) and (d ) to the next chapter, where we will have the
tools to prove those results more efficiently.

Proof (b) We will prove the result for lower triangular matrices; the proof for upper trian-
gular matrices is similar. Let A = [aij ] and B = [bij ] be lower triangular n × n matrices,

⑧ 0 -

1
W

upper lower

↳ ->

At

A
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and let C = [cij ] be the product C = AB. We can prove that C is lower triangular by
showing that cij = 0 for i < j . But from the definition of matrix multiplication,

cij = ai1b1j + ai2b2j + · · · + ainbnj

If we assume that i < j , then the terms in this expression can be grouped as follows:

cij = ai1b1j + ai2b2j + · · · + ai(j−1)b(j−1)j︸ ︷︷ ︸
Terms in which the row
number of b is less than
the column number of b

+ aij bjj + · · · + ainbnj︸ ︷︷ ︸
Terms in which the row
number of a is less than
the column number of a

In the first grouping all of the b factors are zero since B is lower triangular, and in the
second grouping all of the a factors are zero since A is lower triangular. Thus, cij = 0,
which is what we wanted to prove.

EXAMPLE 3 Computations withTriangular Matrices

Consider the upper triangular matrices

A =




1 3 −1
0 2 4
0 0 5



, B =




3 −2 2
0 0 −1
0 0 1





It follows from part (c) of Theorem 1.7.1 that the matrix A is invertible but the matrix
B is not. Moreover, the theorem also tells us that A−1, AB, and BA must be upper
triangular. We leave it for you to confirm these three statements by showing that

Observe that in Example 3 the
diagonal entries of AB and
BA are the same, and in both
cases they are the products
of the corresponding diagonal
entries of A and B. In the
exercises we will ask you to
prove that this happens when-
ever two upper triangular ma-
trices or two lower triangular
matrices are multiplied. A−1 =





1 − 3
2

7
5

0 1
2 − 2

5

0 0 1
5



 , AB =




3 −2 −2
0 0 2
0 0 5



 , BA =




3 5 −1
0 0 −5
0 0 5





Symmetric Matrices
DEFINITION 1 A square matrix A is said to be symmetric if A = AT .

EXAMPLE 4 Symmetric Matrices

The following matrices are symmetric, since each is equal to its own transpose (verify).

It is easy to recognize a sym-
metric matrix by inspection:
The entries on the main diag-
onal have no restrictions, but
mirror images of entries across
the main diagonal must be
equal. Here is a picture using
the second matrix in Exam-
ple 4:




1 4 5
4 3 0
5 0 7





[
7 −3

−3 5

]

,




1 4 5
4 −3 0
5 0 7



,





d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4





Remark It follows from Formula (14) of Section 1.3 that a square matrix A is symmetric if and
only if

(A)ij = (A)ji (4)

for all values of i and j .

The following theorem lists the main algebraic properties of symmetric matrices. The
proofs are direct consequences of Theorem 1.4.8 and are omitted.
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THEOREM 1.7.2 If A and B are symmetric matrices with the same size, and if k is any
scalar, then:

(a) AT is symmetric.

(b) A + B and A − B are symmetric.

(c) kA is symmetric.

It is not true, in general, that the product of symmetric matrices is symmetric. To
see why this is so, let A and B be symmetric matrices with the same size. Then it follows
from part (e) of Theorem 1.4.8 and the symmetry of A and B that

(AB)T = BTAT = BA

Thus, (AB)T = AB if and only if AB = BA, that is, if and only if A and B commute. In
summary, we have the following result.

THEOREM 1.7.3 The product of two symmetric matrices is symmetric if and only if the
matrices commute.

EXAMPLE 5 Products of Symmetric Matrices

The first of the following equations shows a product of symmetric matrices that is not
symmetric, and the second shows a product of symmetric matrices that is symmetric. We
conclude that the factors in the first equation do not commute, but those in the second
equation do. We leave it for you to verify that this is so.

[
1 2
2 3

] [−4 1
1 0

]
=

[−2 1
−5 2

]

[
1 2
2 3

] [−4 3
3 −1

]
=

[
2 1
1 3

]

Invertibility of Symmetric
Matrices

In general, a symmetric matrix need not be invertible. For example, a diagonal matrix
with a zero on the main diagonal is symmetric but not invertible. However, the following
theorem shows that if a symmetric matrix happens to be invertible, then its inverse must
also be symmetric.

THEOREM 1.7.4 If A is an invertible symmetric matrix, then A−1 is symmetric.

Proof Assume that A is symmetric and invertible. From Theorem 1.4.9 and the fact
that A = AT , we have

(A−1)T = (AT )−1 = A−1

which proves that A−1 is symmetric.

Products AAT and ATA
are Symmetric

Matrix products of the form AAT and ATA arise in a variety of applications. If A is
an m × n matrix, then AT is an n × m matrix, so the products AAT and ATA are both
square matrices—the matrix AAT has size m × m, and the matrix ATA has size n × n.
Such products are always symmetric since

(AAT )T = (AT )TAT = AAT and (ATA)T = AT(AT )T = ATA

A&B are

commute

AB
=BA

x =(!3] ~ E S]
=

ABFBA B =[iii] ABAB =
BA

X =F

symetricI mineux ->

SY
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EXAMPLE 6 The Product of a Matrix and ItsTranspose Is Symmetric

Let A be the 2 × 3 matrix

A =
[

1 −2 4
3 0 −5

]

Then

ATA =




1 3

−2 0
4 −5




[

1 −2 4
3 0 −5

]
=




10 −2 −11
−2 4 −8

−11 −8 41





AAT =
[

1 −2 4
3 0 −5

]



1 3

−2 0
4 −5



 =
[

21 −17
−17 34

]

Observe that ATA and AAT are symmetric as expected.

Later in this text, we will obtain general conditions on A under which AAT and ATA

are invertible. However, in the special case where A is square, we have the following
result.

THEOREM 1.7.5 If A is an invertible matrix, then AAT and ATA are also invertible.

Proof SinceA is invertible, so isAT by Theorem 1.4.9. ThusAAT andATAare invertible,
since they are the products of invertible matrices.

Exercise Set 1.7
In Exercises 1–2, classify the matrix as upper triangular, lower

triangular, or diagonal, and decide by inspection whether the ma-
trix is invertible. [Note: Recall that a diagonal matrix is both up-
per and lower triangular, so there may be more than one answer
in some parts.]

1. (a)

[
2 1

0 3

]

(b)

[
0 0

4 0

]

(c)




−1 0 0

0 2 0

0 0 1
5



 (d)




3 −2 7

0 0 3

0 0 8





2. (a)

[
4 0

1 7

]

(b)

[
0 −3

0 0

]

(c)




4 0 0

0 3
5 0

0 0 −2



 (d)




3 0 0

3 1 0

7 0 0





In Exercises 3–6, find the product by inspection.

3.




3 0 0
0 −1 0
0 0 2








2 1

−4 1
2 5





4.
[

1 2 −5
−3 −1 0

] 


−4 0 0

0 3 0
0 0 2





5.




5 0 0
0 2 0
0 0 −3








−3 2 0 4 −4

1 −5 3 0 3
−6 2 2 2 2





6.




2 0 0
0 −1 0
0 0 4








4 −1 3
1 2 0

−5 1 −2








−3 0 0

0 5 0
0 0 2





In Exercises 7–10, find A2, A−2, and A−k (where k is any inte-
ger) by inspection.

7. A =
[

1 0
0 −2

]

8. A =




−6 0 0

0 3 0
0 0 5





9. A =





1
2 0 0
0 1

3 0
0 0 1

4



 10. A =





−2 0 0 0
0 −4 0 0
0 0 −3 0
0 0 0 2





=(
3+4 x+3

ex3 I
-

⑰° Ex 342

3x3

-
*

242 R+2 2x2
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In Exercises 11–12, compute the product by inspection.

11.




1 0 0

0 0 0

0 0 3








2 0 0

0 5 0

0 0 0








0 0 0

0 2 0

0 0 1





12.




−1 0 0

0 2 0

0 0 4








3 0 0

0 5 0

0 0 7








5 0 0

0 −2 0

0 0 3





In Exercises 13–14, compute the indicated quantity.

13.

[
1 0
0 −1

]39

14.

[
1 0
0 −1

]1000

In Exercises 15–16, use what you have learned in this section
about multiplying by diagonal matrices to compute the product
by inspection.

15. (a)




a 0 0

0 b 0

0 0 c








u v

w x

y z



 (b)




r s t

u v w

x y z








a 0 0

0 b 0

0 0 c





16. (a)




u v

w x

y z





[
a 0

0 b

]

(b)




a 0 0

0 b 0

0 0 c








r s t

u v w

x y z





In Exercises 17–18, create a symmetric matrix by substituting
appropriate numbers for the ×’s.

17. (a)

[
2 −1

× 3

]

(b)





1 × × ×
3 1 × ×
7 −8 0 ×
2 −3 9 0





18. (a)

[
0 ×
3 0

]

(b)





1 7 −3 2

× 4 5 −7

× × 1 −6

× × × 3





In Exercises 19–22, determine by inspection whether the ma-
trix is invertible.

19.




0 6 −1
0 7 −4
0 0 −2



 20.




−1 2 4

0 3 0
0 0 5





21.





1 0 0 0
2 −5 0 0
4 −3 4 0
1 −2 1 3




22.





2 0 0 0
−3 −1 0 0
−4 −6 0 0

0 3 8 −5





In Exercises 23–24, find the diagonal entries of AB by inspec-
tion.

23. A =




3 2 6
0 1 −2
0 0 −1



 , B =




−1 2 7

0 5 3
0 0 6





24. A =




4 0 0

−2 0 0
−3 0 7



 , B =




6 0 0
1 5 0
3 2 6





In Exercises 25–26, find all values of the unknown constant(s)
for which A is symmetric.

25. A =
[

4 −3
a + 5 −1

]

26. A =




2 a − 2b + 2c 2a + b + c

3 5 a + c

0 −2 7





In Exercises 27–28, find all values of x for which A is invertible.

27. A =




x − 1 x2 x4

0 x + 2 x3

0 0 x − 4





28. A =





x − 1
2 0 0

x x − 1
3 0

x2 x3 x + 1
4





29. If A is an invertible upper triangular or lower triangular ma-
trix, what can you say about the diagonal entries of A−1?

30. Show that if A is a symmetric n × n matrix and B is any n × m

matrix, then the following products are symmetric:

BTB, BBT , BTAB

In Exercises 31–32, find a diagonal matrix A that satisfies the
given condition.

31. A5 =




1 0 0
0 −1 0
0 0 −1



 32. A−2 =




9 0 0
0 4 0
0 0 1





33. Verify Theorem 1.7.1(b) for the matrix product AB and The-
orem 1.7.1(d) for the matrix A, where

A =




−1 2 5

0 1 3
0 0 −4



, B =




2 −8 0
0 2 1
0 0 3





34. Let A be an n × n symmetric matrix.

(a) Show that A2 is symmetric.

(b) Show that 2A2 − 3A + I is symmetric.
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35. Verify Theorem 1.7.4 for the given matrix A.

(a) A =
[

2 −1
−1 3

]

(b) A =




1 −2 3

−2 1 −7
3 −7 4





36. Find all 3 × 3 diagonal matrices A that satisfy
A2 − 3A − 4I = 0.

37. Let A = [aij ] be an n × n matrix. Determine whether A is
symmetric.

(a) aij = i2 + j 2 (b) aij = i2 − j 2

(c) aij = 2i + 2j (d) aij = 2i2 + 2j 3

38. On the basis of your experience with Exercise 37, devise a gen-
eral test that can be applied to a formula for aij to determine
whether A = [aij ] is symmetric.

39. Find an upper triangular matrix that satisfies

A3 =
[

1 30
0 −8

]

40. If the n × n matrix A can be expressed as A = LU , where L is
a lower triangular matrix and U is an upper triangular matrix,
then the linear system Ax = b can be expressed as LUx = b
and can be solved in two steps:

Step 1. Let Ux = y, so that LUx = b can be expressed as
Ly = b. Solve this system.

Step 2. Solve the system Ux = y for x.

In each part, use this two-step method to solve the given
system.

(a)




1 0 0

−2 3 0
2 4 1








2 −1 3
0 1 2
0 0 4








x1

x2

x3



 =




1

−2
0





(b)




2 0 0
4 1 0

−3 −2 3








3 −5 2
0 4 1
0 0 2








x1

x2

x3



 =




4

−5
2





In the text we defined a matrix A to be symmetric if AT = A.
Analogously, a matrix A is said to be skew-symmetric if AT = −A.
Exercises 41–45 are concerned with matrices of this type.

41. Fill in the missing entries (marked with ×) so the matrix A is
skew-symmetric.

(a) A =




× × 4
0 × ×
× −1 ×



 (b) A =




× 0 ×
× × −4
8 × ×





42. Find all values of a, b, c, and d for which A is skew-symmetric.

A =




0 2a − 3b + c 3a − 5b + 5c

−2 0 5a − 8b + 6c
−3 −5 d





43. We showed in the text that the product of symmetric matrices
is symmetric if and only if the matrices commute. Is the prod-
uct of commuting skew-symmetric matrices skew-symmetric?
Explain.

Working with Proofs

44. Prove that every square matrix A can be expressed as the sum
of a symmetric matrix and a skew-symmetric matrix. [Hint:
Note the identity A = 1

2 (A + AT ) + 1
2 (A − AT ).]

45. Prove the following facts about skew-symmetric matrices.

(a) If A is an invertible skew-symmetric matrix, then A−1 is
skew-symmetric.

(b) If A and B are skew-symmetric matrices, then so are AT ,
A + B, A − B, and kA for any scalar k.

46. Prove: If the matrices A and B are both upper triangular or
both lower triangular, then the diagonal entries of both AB

and BA are the products of the diagonal entries of A and B.

47. Prove: If ATA = A, then A is symmetric and A = A2.

True-False Exercises

TF. In parts (a)–(m) determine whether the statement is true or
false, and justify your answer.

(a) The transpose of a diagonal matrix is a diagonal matrix.

(b) The transpose of an upper triangular matrix is an upper tri-
angular matrix.

(c) The sum of an upper triangular matrix and a lower triangular
matrix is a diagonal matrix.

(d) All entries of a symmetric matrix are determined by the entries
occurring on and above the main diagonal.

(e) All entries of an upper triangular matrix are determined by
the entries occurring on and above the main diagonal.

(f ) The inverse of an invertible lower triangular matrix is an upper
triangular matrix.

(g) A diagonal matrix is invertible if and only if all of its diagonal
entries are positive.

(h) The sum of a diagonal matrix and a lower triangular matrix is
a lower triangular matrix.

(i) A matrix that is both symmetric and upper triangular must be
a diagonal matrix.

( j) If A and B are n × n matrices such that A + B is symmetric,
then A and B are symmetric.

(k) If A and B are n × n matrices such that A + B is upper trian-
gular, then A and B are upper triangular.

(l) If A2 is a symmetric matrix, then A is a symmetric matrix.

(m) If kA is a symmetric matrix for some k #= 0, then A is a sym-
metric matrix.


