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1.6 More on Linear Systems and Invertible Matrices
In this section we will show how the inverse of a matrix can be used to solve a linear system
and we will develop some more results about invertible matrices.

Number of Solutions of a
Linear System

In Section 1.1 we made the statement (based on Figures 1.1.1 and 1.1.2) that every linear
system either has no solutions, has exactly one solution, or has infinitely many solutions.
We are now in a position to prove this fundamental result.

THEOREM1.6.1 A system of linear equations has zero, one, or infinitelymany solutions.
There are no other possibilities.

Proof If Ax = b is a system of linear equations, exactly one of the following is true:
(a) the system has no solutions, (b) the system has exactly one solution, or (c) the system
has more than one solution. The proof will be complete if we can show that the system
has infinitely many solutions in case (c).

Assume that Ax = b has more than one solution, and let x0 = x1 − x2, where x1

and x2 are any two distinct solutions. Because x1 and x2 are distinct, the matrix x0 is
nonzero; moreover,

Ax0 = A(x1 − x2) = Ax1 − Ax2 = b − b = 0

If we now let k be any scalar, then

A(x1 + kx0) = Ax1 + A(kx0) = Ax1 + k(Ax0)

= b + k0 = b + 0 = b

But this says that x1 + kx0 is a solution of Ax = b. Since x0 is nonzero and there are
infinitely many choices for k, the system Ax = b has infinitely many solutions.

Solving Linear Systems by
Matrix Inversion

Thus far we have studied two procedures for solving linear systems—Gauss–Jordan
elimination and Gaussian elimination. The following theorem provides an actual formula
for the solution of a linear system of n equations in n unknowns in the case where the
coefficient matrix is invertible.

THEOREM 1.6.2 If A is an invertible n × n matrix, then for each n × 1 matrix b, the
system of equations Ax = b has exactly one solution, namely, x = A−1b.

Proof Since A(A−1b) = b, it follows that x = A−1b is a solution of Ax = b. To show
that this is the only solution, we will assume that x0 is an arbitrary solution and then
show that x0 must be the solution A−1b.

If x0 is any solution of Ax = b, then Ax0 = b. Multiplying both sides of this equa-
tion by A−1, we obtain x0 = A−1b.

EXAMPLE 1 Solution of a Linear System UsingA−1

Consider the system of linear equations

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 17
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In matrix form this system can be written as Ax = b, where

A =




1 2 3
2 5 3
1 0 8



, x =




x1

x2

x3



, b =




5
3

17





In Example 4 of the preceding section, we showed that A is invertible and

A−1 =




−40 16 9

13 −5 −3
5 −2 −1





By Theorem 1.6.2, the solution of the system isKeep in mind that the method
of Example 1 only applies
when the system has as many
equations as unknowns and
the coefficient matrix is invert-
ible.

x = A−1b =




−40 16 9

13 −5 −3
5 −2 −1








5
3

17



 =




1

−1
2





or x1 = 1, x2 = −1, x3 = 2.

Linear Systems with a
Common Coefficient Matrix

Frequently, one is concerned with solving a sequence of systems

Ax = b1, Ax = b2, Ax = b3, . . . , Ax = bk

each of which has the same square coefficient matrix A. If A is invertible, then the
solutions

x1 = A−1b1, x2 = A−1b2, x3 = A−1b3, . . . , xk = A−1bk

can be obtained with one matrix inversion and k matrix multiplications. An efficient
way to do this is to form the partitioned matrix

[A | b1 | b2 | · · · | bk] (1)

in which the coefficient matrix A is “augmented” by all k of the matrices b1, b2, . . . , bk ,
and then reduce (1) to reduced row echelon form by Gauss–Jordan elimination. In this
way we can solve all k systems at once. This method has the added advantage that it
applies even when A is not invertible.

EXAMPLE 2 SolvingTwo Linear Systems at Once

Solve the systems

(a) x1 + 2x2 + 3x3 = 4

2x1 + 5x2 + 3x3 = 5

x1 + 8x3 = 9

(b) x1 + 2x2 + 3x3 = 1

2x1 + 5x2 + 3x3 = 6

x1 + 8x3 = −6

Solution The two systems have the same coefficient matrix. If we augment this co-
efficient matrix with the columns of constants on the right sides of these systems, we
obtain 


1 2 3 4 1
2 5 3 5 6
1 0 8 9 −6





Reducing this matrix to reduced row echelon form yields (verify)



1 0 0 1 2
0 1 0 0 1
0 0 1 1 −1




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It follows from the last two columns that the solution of system (a) is x1 = 1, x2 = 0,
x3 = 1 and the solution of system (b) is x1 = 2, x2 = 1, x3 = −1.

Properties of Invertible
Matrices

Up to now, to show that an n × n matrix A is invertible, it has been necessary to find an
n × n matrix B such that

AB = I and BA = I

The next theorem shows that if we produce an n × n matrix B satisfying either condition,
then the other condition will hold automatically.

THEOREM 1.6.3 Let A be a square matrix.

(a) If B is a square matrix satisfying BA = I, then B = A−1.

(b) If B is a square matrix satisfying AB = I, then B = A−1.

We will prove part (a) and leave part (b) as an exercise.

Proof (a) Assume that BA = I . If we can show that A is invertible, the proof can be
completed by multiplying BA = I on both sides by A−1 to obtain

BAA−1 = IA−1 or BI = IA−1 or B = A−1

To show that A is invertible, it suffices to show that the system Ax = 0 has only the trivial
solution (see Theorem 1.5.3). Let x0 be any solution of this system. If we multiply both
sides of Ax0 = 0 on the left by B, we obtain BAx0 = B0 or Ix0 = 0 or x0 = 0. Thus,
the system of equations Ax = 0 has only the trivial solution.

EquivalenceTheorem We are now in a position to add two more statements to the four given in Theorem 1.5.3.

THEOREM 1.6.4 Equivalent Statements

If A is an n × n matrix, then the following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

Proof Since we proved in Theorem 1.5.3 that (a), (b), (c), and (d ) are equivalent, it will
be sufficient to prove that (a) ⇒ ( f ) ⇒ (e) ⇒ (a).

(a) ⇒ (f ) This was already proved in Theorem 1.6.2.

(f ) ⇒ (e) This is almost self-evident, for if Ax = b has exactly one solution for every
n × 1 matrix b, then Ax = b is consistent for every n × 1 matrix b.
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(e) ⇒ (a) If the system Ax = b is consistent for every n × 1 matrix b, then, in particular,
this is so for the systems

Ax =





1
0
0
...

0




, Ax =





0
1
0
...

0




, . . . , Ax =





0
0
0
...

1





Let x1, x2, . . . , xn be solutions of the respective systems, and let us form an n × n ma-
trix C having these solutions as columns. Thus C has the form

C = [x1 | x2 | · · · | xn]
As discussed in Section 1.3, the successive columns of the product AC will be

Ax1, Ax2, . . . , Axn

[see Formula (8) of Section 1.3]. Thus,

AC = [Ax1 | Ax2 | · · · | Axn] =





1 0 · · · 0
0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1




= I

By part (b) of Theorem 1.6.3, it follows that C = A−1. Thus, A is invertible.

It follows from the equiva-
lency of parts (e) and ( f ) that
if you can show that Ax = b
has at least one solution for ev-
ery n × 1 matrix b, then you
can conclude that it has ex-
actly one solution for every
n × 1 matrix b.

We know from earlier work that invertible matrix factors produce an invertible prod-
uct. Conversely, the following theorem shows that if the product of square matrices is
invertible, then the factors themselves must be invertible.

THEOREM 1.6.5 Let A and B be square matrices of the same size. If AB is invertible,
then A and B must also be invertible.

Proof We will show first that B is invertible by showing that the homogeneous system
Bx = 0 has only the trivial solution. If we assume that x0 is any solution of this system,
then

(AB)x0 = A(Bx0) = A0 = 0

so x0 = 0 by parts (a) and (b) of Theorem 1.6.4 applied to the invertible matrix AB.
But the invertibility of B implies the invertibility of B−1 (Theorem 1.4.7), which in turn
implies that

(AB)B−1 = A(BB−1) = AI = A

is invertible since the left side is a product of invertible matrices. This completes the
proof.

In our later work the following fundamental problem will occur frequently in various
contexts.

A Fundamental Problem Let A be a fixed m × n matrix. Find all m × 1 matrices b
such that the system of equations Ax = b is consistent.
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If A is an invertible matrix, Theorem 1.6.2 completely solves this problem by assert-
ing that for every m × 1 matrix b, the linear system Ax = b has the unique solution
x = A−1b. If A is not square, or if A is square but not invertible, then Theorem 1.6.2
does not apply. In these cases b must usually satisfy certain conditions in
order for Ax = b to be consistent. The following example illustrates how the methods
of Section 1.2 can be used to determine such conditions.

EXAMPLE 3 Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

x1 + x2 + 2x3 = b1

x1 + x3 = b2

2x1 + x2 + 3x3 = b3

to be consistent?

Solution The augmented matrix is



1 1 2 b1

1 0 1 b2

2 1 3 b3





which can be reduced to row echelon form as follows:


1 1 2 b1

0 −1 −1 b1 − b2

0 −1 −1 b3 − 2b1



 −1 times the first row was added
to the second and −2 times the
first row was added to the third.




1 1 2 b1

0 1 1 b1 − b2

0 −1 −1 b3 − 2b1



 The second row was
multiplied by −1.




1 1 2 b1

0 1 1 b1 − b2

0 0 0 b3 − b2 − b1



 The second row was added
to the third.

It is now evident from the third row in the matrix that the system has a solution if and
only if b1, b2, and b3 satisfy the condition

b3 − b2 − b1 = 0 or b3 = b1 + b2

To express this condition another way, Ax = b is consistent if and only if b is a matrix
of the form

b =




b1

b2

b1 + b2





where b1 and b2 are arbitrary.

EXAMPLE 4 Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

x1 + 2x2 + 3x3 = b1

2x1 + 5x2 + 3x3 = b2

x1 + 8x3 = b3

to be consistent?
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Solution The augmented matrix is



1 2 3 b1

2 5 3 b2

1 0 8 b3





Reducing this to reduced row echelon form yields (verify)



1 0 0 −40b1 + 16b2 + 9b3

0 1 0 13b1 − 5b2 − 3b3

0 0 1 5b1 − 2b2 − b3



 (2)

In this case there are no restrictions on b1, b2, and b3, so the system has the unique
What does the result in Exam-
ple 4 tell you about the coeffi-
cient matrix of the system?

solution

x1 = −40b1 + 16b2 + 9b3, x2 = 13b1 − 5b2 − 3b3, x3 = 5b1 − 2b2 − b3 (3)

for all values of b1, b2, and b3.

Exercise Set 1.6
In Exercises 1–8, solve the system by inverting the coefficient

matrix and using Theorem 1.6.2.

1. x1 + x2 = 2
5x1 + 6x2 = 9

2. 4x1 − 3x2 = −3
2x1 − 5x2 = 9

3. x1 + 3x2 + x3 = 4
2x1 + 2x2 + x3 = −1
2x1 + 3x2 + x3 = 3

4. 5x1 + 3x2 + 2x3 = 4
3x1 + 3x2 + 2x3 = 2

x2 + x3 = 5

5. x + y + z = 5
x + y − 4z = 10

−4x + y + z = 0

6. − x − 2y − 3z = 0
w + x + 4y + 4z = 7
w + 3x + 7y + 9z = 4

−w − 2x − 4y − 6z = 6

7. 3x1 + 5x2 = b1

x1 + 2x2 = b2

8. x1 + 2x2 + 3x3 = b1

2x1 + 5x2 + 5x3 = b2

3x1 + 5x2 + 8x3 = b3

In Exercises 9–12, solve the linear systems together by reducing
the appropriate augmented matrix.

9. x1 − 5x2 = b1

3x1 + 2x2 = b2

(i) b1 = 1, b2 = 4 (ii) b1 = −2, b2 = 5

10. −x1 + 4x2 + x3 = b1

x1 + 9x2 − 2x3 = b2

6x1 + 4x2 − 8x3 = b3

(i) b1 = 0, b2 = 1, b3 = 0
(ii) b1 = −3, b2 = 4, b3 = −5

11. 4x1 − 7x2 = b1

x1 + 2x2 = b2

(i) b1 = 0, b2 = 1 (ii) b1 = −4, b2 = 6
(iii) b1 = −1, b2 = 3 (iv) b1 = −5, b2 = 1

12. x1 + 3x2 + 5x3 = b1

−x1 − 2x2 = b2

2x1 + 5x2 + 4x3 = b3

(i) b1 = 1, b2 = 0, b3 = −1
(ii) b1 = 0, b2 = 1, b3 = 1

(iii) b1 = −1, b2 = −1, b3 = 0

In Exercises 13–17, determine conditions on the bi ’s, if any, in
order to guarantee that the linear system is consistent.

13. x1 + 3x2 = b1

−2x1 + x2 = b2

14. 6x1 − 4x2 = b1

3x1 − 2x2 = b2

15. x1 − 2x2 + 5x3 = b1

4x1 − 5x2 + 8x3 = b2

−3x1 + 3x2 − 3x3 = b3

16. x1 − 2x2 − x3 = b1

−4x1 + 5x2 + 2x3 = b2

−4x1 + 7x2 + 4x3 = b3

17. x1 − x2 + 3x3 + 2x4 = b1

−2x1 + x2 + 5x3 + x4 = b2

−3x1 + 2x2 + 2x3 − x4 = b3

4x1 − 3x2 + x3 + 3x4 = b4

18. Consider the matrices

A =




2 1 2
2 2 −2
3 1 1



 and x =




x1

x2

x3





(a) Show that the equation Ax = x can be rewritten as
(A − I )x = 0 and use this result to solve Ax = x for x.

(b) Solve Ax = 4x.

In Exercises 19–20, solve the matrix equation for X.

19.




1 −1 1
2 3 0
0 2 −1



 X =




2 −1 5 7 8
4 0 −3 0 1
3 5 −7 2 1




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20.




−2 0 1

0 −1 −1
1 1 −4



 X =




4 3 2 1
6 7 8 9
1 3 7 9





Working with Proofs

21. Let Ax = 0 be a homogeneous system of n linear equations in
n unknowns that has only the trivial solution. Prove that if k

is any positive integer, then the system Akx = 0 also has only
the trivial solution.

22. Let Ax = 0 be a homogeneous system of n linear equations
in n unknowns, and let Q be an invertible n × n matrix.
Prove that Ax = 0 has only the trivial solution if and only
if (QA)x = 0 has only the trivial solution.

23. Let Ax = b be any consistent system of linear equations, and
let x1 be a fixed solution. Prove that every solution to the
system can be written in the form x = x1 + x0, where x0 is a
solution to Ax = 0. Prove also that every matrix of this form
is a solution.

24. Use part (a) of Theorem 1.6.3 to prove part (b).

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) It is impossible for a system of linear equations to have exactly
two solutions.

(b) If A is a square matrix, and if the linear system Ax = b has a
unique solution, then the linear system Ax = c also must have
a unique solution.

(c) If A and B are n × n matrices such that AB = In, then
BA = In.

(d) If A and B are row equivalent matrices, then the linear systems
Ax = 0 and Bx = 0 have the same solution set.

(e) Let A be an n × n matrix and S is an n × n invertible matrix.
If x is a solution to the linear system (S−1AS)x = b, then Sx
is a solution to the linear system Ay = Sb.

(f ) Let A be an n × n matrix. The linear system Ax = 4x has a
unique solution if and only if A − 4I is an invertible matrix.

(g) Let A and B be n × n matrices. If A or B (or both) are not
invertible, then neither is AB.

Working withTechnology

T1. Colors in print media, on computer monitors, and on televi-
sion screens are implemented using what are called “color mod-
els”. For example, in the RGB model, colors are created by mixing
percentages of red (R), green (G), and blue (B), and in the YIQ
model (used in TV broadcasting), colors are created by mixing
percentages of luminescence (Y) with percentages of a chromi-
nance factor (I) and a chrominance factor (Q). The conversion
from the RGB model to the YIQ model is accomplished by the
matrix equation




Y

I

Q



 =




.299 .587 .114

.596 −.275 −.321

.212 −.523 .311








R

G

B





What matrix would you use to convert the YIQ model to the RGB
model?

T2. Let

A =




1 −2 2

4 5 1

0 3 −1



 , B1 =




0

1

7



 , B2 =




11

5

3



 , B3 =




1

−4

2





Solve the linear systems Ax = B1, Ax = B2, Ax = B3 using the
method of Example 2.

1.7 Diagonal,Triangular, and Symmetric Matrices
In this section we will discuss matrices that have various special forms. These matrices arise
in a wide variety of applications and will play an important role in our subsequent work.

Diagonal Matrices A square matrix in which all the entries off the main diagonal are zero is called a diagonal
matrix. Here are some examples:

[
2 0
0 −5

]
,




1 0 0
0 1 0
0 0 1



,





6 0 0 0
0 −4 0 0
0 0 0 0
0 0 0 8




,

[
0 0
0 0

]


