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Working withTechnology

T1. Let A be the matrix

A =





0 1
2

1
3

1
4 0 1

5

1
6

1
7 0





Discuss the behavior of Ak as k increases indefinitely, that is, as
k →!.

T2. In each part use your technology utility to make a conjecture
about the form of An for positive integer powers of n.

(a) A =
[
a 1

0 a

]

(b) A =
[

cos θ sin θ

− sin θ cos θ

]

T3. The Fibonacci sequence (named for the Italian mathematician
Leonardo Fibonacci 1170–1250) is

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

the terms of which are commonly denoted as

F0, F1, F2, F3, . . . , Fn, . . .

After the initial terms F0 = 0 and F1 = 1, each term is the sum of
the previous two; that is,

Fn = Fn−1 + Fn−2

Confirm that if

Q =
[
F2 F1

F1 F0

]

=
[

1 1

1 0

]

then

Qn =
[
Fn+1 Fn

Fn F0

]

1.5 Elementary Matrices and a Method for FindingA−1

In this section we will develop an algorithm for finding the inverse of a matrix, and we will
discuss some of the basic properties of invertible matrices.

In Section 1.1 we defined three elementary row operations on a matrix A:

1. Multiply a row by a nonzero constant c.

2. Interchange two rows.

3. Add a constant c times one row to another.

It should be evident that if we let B be the matrix that results from A by performing one
of the operations in this list, then the matrix A can be recovered from B by performing
the corresponding operation in the following list:

1. Multiply the same row by 1/c.

2. Interchange the same two rows.

3. If B resulted by adding c times row ri of A to row rj , then add −c times rj to ri .

It follows that if B is obtained from A by performing a sequence of elementary row
operations, then there is a second sequence of elementary row operations, which when
applied to B recovers A (Exercise 33). Accordingly, we make the following definition.

DEFINITION 1 Matrices A and B are said to be row equivalent if either (hence each)
can be obtained from the other by a sequence of elementary row operations.

Our next goal is to show how matrix multiplication can be used to carry out an
elementary row operation.

DEFINITION 2 A matrix E is called an elementary matrix if it can be obtained from
an identity matrix by performing a single elementary row operation.
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EXAMPLE 1 Elementary Matrices and Row Operations

Listed below are four elementary matrices and the operations that produce them.

[
1 0
0 −3

]




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0








1 0 3
0 1 0
0 0 1








1 0 0
0 1 0
0 0 1





!

Multiply the
second row of
I2 by −3.

!

Interchange the
second and fourth
rows of I4.

!

Add 3 times
the third row of
I3 to the first row.

!

Multiply the
first row of
I3 by 1.

The following theorem, whose proof is left as an exercise, shows that when a matrix A

is multiplied on the left by an elementary matrix E, the effect is to perform an elementary
row operation on A.

THEOREM 1.5.1 Row Operations by Matrix Multiplication

If the elementary matrix E results from performing a certain row operation on Im and
if A is an m × n matrix, then the product EA is the matrix that results when this same
row operation is performed on A.

EXAMPLE 2 Using Elementary Matrices

Consider the matrix

A =




1 0 2 3
2 −1 3 6
1 4 4 0





and consider the elementary matrix

E =




1 0 0
0 1 0
3 0 1





which results from adding 3 times the first row of I3 to the third row. The product EA is

Theorem 1.5.1 will be a use-
ful tool for developing new re-
sults about matrices, but as a
practical matter it is usually
preferable to perform row op-
erations directly.

EA =




1 0 2 3
2 −1 3 6
4 4 10 9





which is precisely the matrix that results when we add 3 times the first row of A to the
third row.

We know from the discussion at the beginning of this section that if E is an elementary
matrix that results from performing an elementary row operation on an identity matrix
I , then there is a second elementary row operation, which when applied to E produces
I back again. Table 1 lists these operations. The operations on the right side of the table
are called the inverse operations of the corresponding operations on the left.
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Table 1

Row Operation on I Row Operation on E
That Produces E That Reproduces I

Multiply row i by c $= 0 Multiply row i by 1/c

Interchange rows i and j Interchange rows i and j

Add c time row i to row j Add −c times row i to row j

EXAMPLE 3 Row Operations and Inverse Row Operations

In each of the following, an elementary row operation is applied to the 2 × 2 identity
matrix to obtain an elementary matrix E, then E is restored to the identity matrix by
applying the inverse row operation.

[
1 0
0 1

]
−→

[
1 0
0 7

]
−→

[
1 0
0 1

]

!

Multiply the second
row by 7.

!

Multiply the second
row by 1

7 .

[
1 0
0 1

]
−→

[
0 1
1 0

]
−→

[
1 0
0 1

]

!

Interchange the first
and second rows.

!

Interchange the first
and second rows.

[
1 0
0 1

]
−→

[
1 5
0 1

]
−→

[
1 0
0 1

]

!

Add 5 times the
second row to the
first.

!

Add −5 times the
second row to the
first.

The next theorem is a key result about invertibility of elementary matrices. It will be
a building block for many results that follow.

THEOREM 1.5.2 Every elementary matrix is invertible, and the inverse is also an ele-
mentary matrix.

Proof If E is an elementary matrix, then E results by performing some row operation
on I . Let E0 be the matrix that results when the inverse of this operation is performed
on I . Applying Theorem 1.5.1 and using the fact that inverse row operations cancel the
effect of each other, it follows that

E0E = I and EE0 = I

Thus, the elementary matrix E0 is the inverse of E.

EquivalenceTheorem One of our objectives as we progress through this text is to show how seemingly diverse
ideas in linear algebra are related. The following theorem, which relates results we
have obtained about invertibility of matrices, homogeneous linear systems, reduced row
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echelon forms, and elementary matrices, is our first step in that direction. As we study
new topics, more statements will be added to this theorem.

THEOREM 1.5.3 Equivalent Statements

IfA is an n × nmatrix, then the following statements are equivalent, that is, all true or
all false.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

Proof We will prove the equivalence by establishing the chain of implications:
The following figure illustrates
visually that from the se-
quence of implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a)

we can conclude that

(d) ⇒ (c) ⇒ (b) ⇒ (a)

and hence that

(a) ⇔ (b) ⇔ (c) ⇔ (d)

(see Appendix A).

(a)

(c)

(d) (b)

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).

(a)⇒ (b) Assume A is invertible and let x0 be any solution of Ax = 0. Multiplying both
sides of this equation by the matrix A−1 gives A−1(Ax0) = A−10, or (A−1A)x0 = 0, or
Ix0 = 0, or x0 = 0. Thus, Ax = 0 has only the trivial solution.

(b) ⇒ (c) Let Ax = 0 be the matrix form of the system

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0
...

...
...

...
an1x1 + an2x2 + · · · + annxn = 0

(1)

and assume that the system has only the trivial solution. If we solve by Gauss–Jordan
elimination, then the system of equations corresponding to the reduced row echelon
form of the augmented matrix will be

x1 = 0

x2 = 0
. . .

xn = 0

(2)

Thus the augmented matrix




a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
...

...
...

...
an1 an2 · · · ann 0





for (1) can be reduced to the augmented matrix




1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0





solution of homo-> trivial solution

AX =0 ↳ infinity many solution,
including trivial

A:coefficientmatix solution

X:column matrix

of varables
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for (2) by a sequence of elementary row operations. If we disregard the last column (all
zeros) in each of these matrices, we can conclude that the reduced row echelon form of
A is In.

(c)⇒ (d ) Assume that the reduced row echelon form of A is In, so that A can be reduced
to In by a finite sequence of elementary row operations. By Theorem 1.5.1, each of these
operations can be accomplished by multiplying on the left by an appropriate elementary
matrix. Thus we can find elementary matrices E1, E2, . . . , Ek such that

Ek · · · E2E1A = In (3)

By Theorem 1.5.2, E1, E2, . . . , Ek are invertible. Multiplying both sides of Equation (3)
on the left successively by E−1

k , . . . , E−1
2 , E−1

1 we obtain

A = E−1
1 E−1

2 · · · E−1
k In = E−1

1 E−1
2 · · · E−1

k (4)

By Theorem 1.5.2, this equation expresses A as a product of elementary matrices.

(d ) ⇒ (a) If A is a product of elementary matrices, then from Theorems 1.4.7 and 1.5.2,
the matrix A is a product of invertible matrices and hence is invertible.

A Method for Inverting
Matrices

As a first application of Theorem 1.5.3, we will develop a procedure (or algorithm) that
can be used to tell whether a given matrix is invertible, and if so, produce its inverse. To
derive this algorithm, assume for the moment, that A is an invertible n × n matrix. In
Equation (3), the elementary matrices execute a sequence of row operations that reduce
A to In. If we multiply both sides of this equation on the right by A−1 and simplify, we
obtain

A−1 = Ek · · · E2E1In

But this equation tells us that the same sequence of row operations that reduces A to In

will transform In to A−1. Thus, we have established the following result.

Inversion Algorithm To find the inverse of an invertible matrix A, find a sequence of
elementary row operations that reduces A to the identity and then perform that same
sequence of operations on In to obtain A−1.

A simple method for carrying out this procedure is given in the following example.

EXAMPLE 4 Using Row Operations to FindA−1

Find the inverse of

A =




1 2 3
2 5 3
1 0 8





Solution We want to reduce A to the identity matrix by row operations and simultane-
ously apply these operations to I to produce A−1. To accomplish this we will adjoin the
identity matrix to the right side of A, thereby producing a partitioned matrix of the form

[A | I ]

A,I
O
· I , B
-

B =A

ElE]
(*)
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Then we will apply row operations to this matrix until the left side is reduced to I ; these
operations will convert the right side to A−1, so the final matrix will have the form

[I | A−1]
The computations are as follows:




1 2 3 1 0 0

2 5 3 0 1 0

1 0 8 0 0 1








1 2 3 1 0 0

0 1 −3 −2 1 0

0 −2 5 −1 0 1



 We added −2 times the first
row to the second and −1 times
the first row to the third.




1 2 3 1 0 0

0 1 −3 −2 1 0

0 0 −1 −5 2 1



 We added 2 times the
second row to the third.




1 2 3 1 0 0

0 1 −3 −2 1 0

0 0 1 5 −2 −1



 We multiplied the
third row by −1.




1 2 0 −14 6 3

0 1 0 13 −5 −3

0 0 1 5 −2 −1



 We added 3 times the third
row to the second and −3 times
the third row to the first.




1 0 0 −40 16 9

0 1 0 13 −5 −3

0 0 1 5 −2 −1



 We added −2 times the
second row to the first.

Thus,

A−1 =




−40 16 9

13 −5 −3
5 −2 −1





Often it will not be known in advance if a given n × n matrix A is invertible. However,
if it is not, then by parts (a) and (c) of Theorem 1.5.3 it will be impossible to reduce A

to In by elementary row operations. This will be signaled by a row of zeros appearing
on the left side of the partition at some stage of the inversion algorithm. If this occurs,
then you can stop the computations and conclude that A is not invertible.

EXAMPLE 5 ShowingThat a Matrix Is Not Invertible

Consider the matrix

A =




1 6 4
2 4 −1

−1 2 5





⑳

- 2R1 + R2

R3
2R2+R3
-

->

--

- R3
->
.
-

⑧-
-R2
- 3R3+R1

-
-R2 + R1
->
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Applying the procedure of Example 4 yields



1 6 4 1 0 0
2 4 −1 0 1 0

−1 2 5 0 0 1








1 6 4 1 0 0
0 −8 −9 −2 1 0
0 8 9 1 0 1



 We added −2 times the first
row to the second and added
the first row to the third.




1 6 4 1 0 0
0 −8 −9 −2 1 0
0 0 0 −1 1 1



 We added the second
row to the third.

Since we have obtained a row of zeros on the left side, A is not invertible.

EXAMPLE 6 Analyzing Homogeneous Systems

Use Theorem 1.5.3 to determine whether the given homogeneous system has nontrivial
solutions.

(a) x1 + 2x2 + 3x3 = 0

2x1 + 5x2 + 3x3 = 0

x1 + 8x3 = 0

(b) x1 + 6x2 + 4x3 = 0

2x1 + 4x2 − x3 = 0

−x1 + 2x2 + 5x3 = 0

Solution From parts (a) and (b) of Theorem 1.5.3 a homogeneous linear system has
only the trivial solution if and only if its coefficient matrix is invertible. From Examples 4
and 5 the coefficient matrix of system (a) is invertible and that of system (b) is not. Thus,
system (a) has only the trivial solution while system (b) has nontrivial solutions.

Exercise Set 1.5
In Exercises 1–2, determine whether the given matrix is ele-

mentary.

1. (a)

[
1 0

−5 1

]

(b)

[
−5 1

1 0

]

(c)




1 1 0
0 0 1
0 0 0



 (d)





2 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1





2. (a)

[
1 0

0
√

3

]

(b)




0 0 1
0 1 0
1 0 0





(c)




1 0 0
0 1 9
0 0 1



 (d)




−1 0 0

0 0 1
0 1 0





In Exercises 3–4, find a row operation and the corresponding
elementary matrix that will restore the given elementary matrix to
the identity matrix.

3. (a)

[
1 −3
0 1

]

(b)




−7 0 0

0 1 0
0 0 1





(c)




1 0 0
0 1 0

−5 0 1



 (d)





0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1





4. (a)

[
1 0

−3 1

]

(b)




1 0 0
0 1 0
0 0 3





(c)





0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0




(d)





1 0 − 1
7 0

0 1 0 0
0 0 1 0
0 0 0 1





0

E

- 2R1+R2-
->-
1R1 +R2

R2+R3
-

Y

AX =0
⑳

25]
⑧

ja &8[usesA =I
↑

Example Y
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In Exercises 5–6 an elementary matrix E and a matrix A are
given. Identify the row operation corresponding to E and ver-
ify that the product EA results from applying the row operation
to A.

5. (a) E =
[

0 1
1 0

]

, A =
[
−1 −2 5 −1

3 −6 −6 −6

]

(b) E =




1 0 0
0 1 0
0 −3 1



 , A =




2 −1 0 −4 −4
1 −3 −1 5 3
2 0 1 3 −1





(c) E =




1 0 4
0 1 0
0 0 1



 , A =




1 4
2 5
3 6





6. (a) E =
[
−6 0

0 1

]

, A =
[
−1 −2 5 −1

3 −6 −6 −6

]

(b) E =




1 0 0

−4 1 0
0 0 1



 , A =




2 −1 0 −4 −4
1 −3 −1 5 3
2 0 1 3 −1





(c) E =




1 0 0
0 5 0
0 0 1



 , A =




1 4
2 5
3 6





In Exercises 7–8, use the following matrices and find an ele-
mentary matrix E that satisfies the stated equation.

A =




3 4 1
2 −7 −1
8 1 5



 , B =




8 1 5
2 −7 −1
3 4 1





C =




3 4 1
2 −7 −1
2 −7 3



 , D =




8 1 5

−6 21 3
3 4 1





F =




8 1 5
8 1 1
3 4 1





7. (a) EA = B (b) EB = A

(c) EA = C (d) EC = A

8. (a) EB = D (b) ED = B

(c) EB = F (d) EF = B

In Exercises 9–10, first use Theorem 1.4.5 and then use the
inversion algorithm to find A−1, if it exists.

9. (a) A =
[

1 4
2 7

]

(b) A =
[

2 −4

−4 8

]

10. (a) A =
[

1 −5
3 −16

]

(b) A =
[

6 4

−3 −2

]

In Exercises 11–12, use the inversion algorithm to find the in-
verse of the matrix (if the inverse exists).

11. (a)




1 2 3

2 5 3

1 0 8



 (b)




−1 3 −4

2 4 1

−4 2 −9





12. (a)





1
5

1
5 − 2

5
1
5

1
5

1
10

1
5 − 4

5
1

10



 (b)





1
5

1
5 − 2

5
2
5 − 3

5 − 3
10

1
5 − 4

5
1
10





In Exercises 13–18, use the inversion algorithm to find the in-
verse of the matrix (if the inverse exists).

13.




1 0 1
0 1 1
1 1 0



 14.





√
2 3

√
2 0

−4
√

2
√

2 0
0 0 1





15.




2 6 6
2 7 6
2 7 7



 16.





1 0 0 0
1 3 0 0
1 3 5 0
1 3 5 7





17.





2 −4 0 0
1 2 12 0
0 0 2 0
0 −1 −4 −5




18.





0 0 2 0
1 0 0 1
0 −1 3 0
2 1 5 −3





In Exercises 19–20, find the inverse of each of the following
4 × 4 matrices, where k1, k2, k3, k4, and k are all nonzero.

19. (a)





k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4




(b)





k 1 0 0
0 1 0 0
0 0 k 1
0 0 0 1





20. (a)





0 0 0 k1

0 0 k2 0
0 k3 0 0
k4 0 0 0




(b)





k 0 0 0
1 k 0 0
0 1 k 0
0 0 1 k





In Exercises 21–22, find all values of c, if any, for which the
given matrix is invertible.

21.




c c c

1 c c

1 1 c



 22.




c 1 0
1 c 1
0 1 c
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In Exercises 23–26, express the matrix and its inverse as prod-
ucts of elementary matrices.

23.
[−3 1

2 2

]
24.

[
1 0

−5 2

]

25.




1 0 −2
0 4 3
0 0 1



 26.




1 1 0
1 1 1
0 1 1





In Exercises 27–28, show that the matrices A and B are row
equivalent by finding a sequence of elementary row operations
that produces B from A, and then use that result to find a matrix
C such that CA = B.

27. A =




1 2 3
1 4 1
2 1 9



, B =




1 0 5
0 2 −2
1 1 4





28. A =




2 1 0

−1 1 0
3 0 −1



, B =




6 9 4

−5 −1 0
−1 −2 −1





29. Show that if

A =




1 0 0
0 1 0
a b c





is an elementary matrix, then at least one entry in the third
row must be zero.

30. Show that

A =





0 a 0 0 0
b 0 c 0 0
0 d 0 e 0
0 0 f 0 g

0 0 0 h 0





is not invertible for any values of the entries.

Working with Proofs

31. Prove that if A and B are m × n matrices, then A and B are
row equivalent if and only if A and B have the same reduced
row echelon form.

32. Prove that if A is an invertible matrix and B is row equivalent
to A, then B is also invertible.

33. Prove that if B is obtained from A by performing a sequence
of elementary row operations, then there is a second sequence
of elementary row operations, which when applied to B recov-
ers A.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) The product of two elementary matrices of the same size must
be an elementary matrix.

(b) Every elementary matrix is invertible.

(c) If A and B are row equivalent, and if B and C are row equiv-
alent, then A and C are row equivalent.

(d) If A is an n × n matrix that is not invertible, then the linear
system Ax = 0 has infinitely many solutions.

(e) If A is an n × n matrix that is not invertible, then the matrix
obtained by interchanging two rows of A cannot be invertible.

(f ) If A is invertible and a multiple of the first row of A is added
to the second row, then the resulting matrix is invertible.

(g) An expression of an invertible matrix A as a product of ele-
mentary matrices is unique.

Working withTechnology

T1. It can be proved that if the partitioned matrix
[
A B

C D

]

is invertible, then its inverse is
[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

provided that all of the inverses on the right side exist. Use this
result to find the inverse of the matrix





1 2 1 0

0 −1 0 1

0 0 2 0

0 0 3 3






