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(e) For every matrix A, it is true that (AT )T = A.

(f ) If A and B are square matrices of the same order, then

tr(AB) = tr(A)tr(B)

(g) If A and B are square matrices of the same order, then

(AB)T = ATBT

(h) For every square matrix A, it is true that tr(AT ) = tr(A).

(i) If A is a 6 × 4 matrix and B is an m × n matrix such that BTAT

is a 2 × 6 matrix, then m = 4 and n = 2.

( j) If A is an n × n matrix and c is a scalar, then tr(cA) = c tr(A).

(k) If A, B, and C are matrices of the same size such that
A − C = B − C, then A = B.

(l) If A, B, and C are square matrices of the same order such that
AC = BC, then A = B.

(m) If AB + BA is defined, then A and B are square matrices of
the same size.

(n) If B has a column of zeros, then so does AB if this product is
defined.

(o) If B has a column of zeros, then so does BA if this product is
defined.

Working withTechnology

T1. (a) Compute the product AB of the matrices in Example 5,
and compare your answer to that in the text.

(b) Use your technology utility to extract the columns of A

and the rows of B, and then calculate the product AB by
a column-row expansion.

T2. Suppose that a manufacturer uses Type I items at $1.35 each,
Type II items at $2.15 each, and Type III items at $3.95 each. Sup-
pose also that the accompanying table describes the purchases of
those items (in thousands of units) for the first quarter of the year.
Write down a matrix product, the computation of which produces
a matrix that lists the manufacturer’s expenditure in each month
of the first quarter. Compute that product.

Type I Type II Type III

Jan. 3.1 4.2 3.5

Feb. 5.1 6.8 0

Mar. 2.2 9.5 4.0

Apr. 1.0 1.0 7.4

1.4 Inverses; Algebraic Properties of Matrices
In this section we will discuss some of the algebraic properties of matrix operations. We will
see that many of the basic rules of arithmetic for real numbers hold for matrices, but we will
also see that some do not.

Properties of Matrix
Addition and Scalar

Multiplication

The following theorem lists the basic algebraic properties of the matrix operations.

THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be
performed, the following rules of matrix arithmetic are valid.
(a) A + B = B + A [Commutative law for matrix addition]

(b) A + (B + C) = (A + B) + C [Associative law for matrix addition]

(c) A(BC) = (AB)C [Associative law for matrix multiplication]

(d ) A(B + C) = AB + AC [Left distributive law]

(e) (B + C)A = BA + CA [Right distributive law]

( f ) A(B − C) = AB − AC

(g) (B − C)A = BA − CA

(h) a(B + C) = aB + aC

(i ) a(B − C) = aB − aC

( j ) (a + b)C = aC + bC

(k) (a − b)C = aC − bC

(l ) a(bC) = (ab)C

(m) a(BC) = (aB)C = B(aC)

a +b =b+a

a+(b +c)=(a +b)+c
ab +c =ab +ac

ab =ba

ab
=
0 =a=

0
orb=0

ab=ac, at

oO
ABEBA

-> b =c

a - b =b - a

i

oL

0
(a)(ac)#
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To prove any of the equalities in this theorem we must show that the matrix on the left
side has the same size as that on the right and that the corresponding entries on the two
sides are the same. Most of the proofs follow the same pattern, so we will prove part
(d ) as a sample. The proof of the associative law for multiplication is more complicated
than the rest and is outlined in the exercises.

Proof (d) We must show that A(B + C) and AB + AC have the same size and that
corresponding entries are equal. To form A(B + C), the matrices B and C must have
the same size, say m × n, and the matrix A must then have m columns, so its size must
be of the form r × m. This makes A(B + C) an r × n matrix. It follows that AB + AC

is also an r × n matrix and, consequently, A(B + C) and AB + AC have the same size.
Suppose that A = [aij ], B = [bij ], and C = [cij ]. We want to show that correspond-

ing entries of A(B + C) and AB + AC are equal; that is,
(
A(B + C)

)
ij

= (AB + AC)ij

for all values of i and j . But from the definitions of matrix addition and matrix multi-

There are three basic ways
to prove that two matrices
of the same size are equal—
prove that corresponding en-
tries are the same, prove that
corresponding row vectors are
the same, or prove that corre-
sponding column vectors are
the same.

plication, we have
(
A(B + C)

)
ij

= ai1(b1j + c1j ) + ai2(b2j + c2j ) + · · · + aim(bmj + cmj )

= (ai1b1j + ai2b2j + · · · + aimbmj ) + (ai1c1j + ai2c2j + · · · + aimcmj )

= (AB)ij + (AC)ij = (AB + AC)ij

Remark Although the operations of matrix addition and matrix multiplication were defined for
pairs of matrices, associative laws (b) and (c) enable us to denote sums and products of three
matrices as A + B + C and ABC without inserting any parentheses. This is justified by the fact
that no matter how parentheses are inserted, the associative laws guarantee that the same end
result will be obtained. In general, given any sum or any product of matrices, pairs of parentheses
can be inserted or deleted anywhere within the expression without affecting the end result.

EXAMPLE 1 Associativity of Matrix Multiplication

As an illustration of the associative law for matrix multiplication, consider

A =




1 2
3 4
0 1



, B =
[

4 3
2 1

]
, C =

[
1 0
2 3

]

Then

AB =




1 2
3 4
0 1




[

4 3
2 1

]
=




8 5

20 13
2 1



 and BC =
[

4 3
2 1

] [
1 0
2 3

]
=

[
10 9
4 3

]

Thus

(AB)C =




8 5

20 13
2 1




[

1 0
2 3

]
=




18 15
46 39
4 3





and

A(BC) =




1 2
3 4
0 1




[

10 9
4 3

]
=




18 15
46 39
4 3





so (AB)C = A(BC), as guaranteed by Theorem 1.4.1(c).
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Properties of Matrix
Multiplication

Do not let Theorem 1.4.1 lull you into believing that all laws of real arithmetic carry over
to matrix arithmetic. For example, you know that in real arithmetic it is always true that
ab = ba, which is called the commutative law for multiplication. In matrix arithmetic,
however, the equality of AB and BA can fail for three possible reasons:

1. AB may be defined and BA may not (for example, if A is 2 × 3 and B is 3 × 4).

2. AB and BA may both be defined, but they may have different sizes (for example, if
A is 2 × 3 and B is 3 × 2).

3. AB and BA may both be defined and have the same size, but the two products may
be different (as illustrated in the next example).

EXAMPLE 2 Order Matters in Matrix Multiplication

Consider the matrices
Do not read too much into Ex-
ample 2—it does not rule out
the possibility that AB and BA

may be equal in certain cases,
just that they are not equal in
all cases. If it so happens that
AB = BA, then we say that
AB and BA commute.

A =
[−1 0

2 3

]
and B =

[
1 2
3 0

]

Multiplying gives

AB =
[−1 −2

11 4

]
and BA =

[
3 6

−3 0

]

Thus, AB #= BA.

Zero Matrices A matrix whose entries are all zero is called a zero matrix. Some examples are

[
0 0
0 0

]
,




0 0 0
0 0 0
0 0 0



 ,

[
0 0 0 0
0 0 0 0

]
,





0
0
0
0




, [0]

We will denote a zero matrix by 0 unless it is important to specify its size, in which case
we will denote the m × n zero matrix by 0m×n.

It should be evident that if A and 0 are matrices with the same size, then

A + 0 = 0+ A = A

Thus, 0 plays the same role in this matrix equation that the number 0 plays in the
numerical equation a + 0 = 0 + a = a.

The following theorem lists the basic properties of zero matrices. Since the results
should be self-evident, we will omit the formal proofs.

THEOREM 1.4.2 Properties of Zero Matrices

If c is a scalar, and if the sizes of the matrices are such that the operations can be
perfomed, then:

(a) A + 0 = 0+ A = A

(b) A − 0 = A

(c) A − A = A + (−A) = 0

(d ) 0A = 0

(e) If cA = 0, then c = 0 or A = 0.

ABE BA
A -[?] B =f= 22]
-Bdefined

-

!Fal - -

0
- -

+B(2x2) BA(3xS)

⑬
2x2 2x2
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⑧
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Since we know that the commutative law of real arithmetic is not valid in matrix
arithmetic, it should not be surprising that there are other rules that fail as well. For
example, consider the following two laws of real arithmetic:

• If ab = ac and a #= 0, then b = c. [The cancellation law]

• If ab = 0, then at least one of the factors on the left is 0.

The next two examples show that these laws are not true in matrix arithmetic.

EXAMPLE 3 Failure of the Cancellation Law

Consider the matrices

A =
[

0 1
0 2

]

, B =
[

1 1
3 4

]

, C =
[

2 5
3 4

]

We leave it for you to confirm that

AB = AC =
[

3 4
6 8

]

Although A #= 0, canceling A from both sides of the equation AB = AC would lead
to the incorrect conclusion that B = C. Thus, the cancellation law does not hold, in
general, for matrix multiplication (though there may be particular cases where it is true).

EXAMPLE 4 A Zero Product with Nonzero Factors

Here are two matrices for which AB = 0, but A #= 0 and B #= 0:

A =
[

0 1
0 2

]

, B =
[

3 7
0 0

]

Identity Matrices A square matrix with 1’s on the main diagonal and zeros elsewhere is called an identity
matrix. Some examples are

[1],
[

1 0
0 1

]

,




1 0 0
0 1 0
0 0 1



 ,





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





An identity matrix is denoted by the letter I . If it is important to emphasize the size, we
will write In for the n × n identity matrix.

To explain the role of identity matrices in matrix arithmetic, let us consider the effect
of multiplying a general 2 × 3 matrix A on each side by an identity matrix. Multiplying
on the right by the 3 × 3 identity matrix yields

AI3 =
[
a11 a12 a13

a21 a22 a23

]



1 0 0
0 1 0
0 0 1



 =
[
a11 a12 a13

a21 a22 a23

]
= A

and multiplying on the left by the 2 × 2 identity matrix yields

I2A =
[

1 0
0 1

] [
a11 a12 a13

a21 a22 a23

]
=

[
a11 a12 a13

a21 a22 a23

]
= A

AB =[-]- ...
Ac =[38]
AFO B =C

AB:[88)
to to

8& exe
3 +3

⑧

AexFaxaxs

0

⑪.Agxs=Aaxs
2x2
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The same result holds in general; that is, if A is any m × n matrix, then

AIn = A and ImA = A

Thus, the identity matrices play the same role in matrix arithmetic that the number 1
plays in the numerical equation a · 1 = 1 · a = a.

As the next theorem shows, identity matrices arise naturally in studying reduced row
echelon forms of square matrices.

THEOREM 1.4.3 IfR is the reduced row echelon form of an n × nmatrixA, then either
R has a row of zeros or R is the identity matrix In.

Proof Suppose that the reduced row echelon form of A is

R =





r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
...

rn1 rn2 · · · rnn





Either the last row in this matrix consists entirely of zeros or it does not. If not, the
matrix contains no zero rows, and consequently each of the n rows has a leading entry
of 1. Since these leading 1’s occur progressively farther to the right as we move down
the matrix, each of these 1’s must occur on the main diagonal. Since the other entries in
the same column as one of these 1’s are zero, R must be In. Thus, either R has a row of
zeros or R = In.

Inverse of a Matrix In real arithmetic every nonzero number a has a reciprocal a−1(= 1/a) with the property

a · a−1 = a−1 · a = 1

The number a−1 is sometimes called the multiplicative inverse of a. Our next objective is
to develop an analog of this result for matrix arithmetic. For this purpose we make the
following definition.

DEFINITION 1 If A is a square matrix, and if a matrix B of the same size can be
found such that AB = BA = I , then A is said to be invertible (or nonsingular) and
B is called an inverse of A. If no such matrix B can be found, then A is said to be
singular.

Remark The relationship AB = BA = I is not changed by interchanging A and B, so if A is
invertible and B is an inverse of A, then it is also true that B is invertible, and A is an inverse of
B. Thus, when

AB = BA = I

we say that A and B are inverses of one another.

EXAMPLE 5 An Invertible Matrix

Let

A =
[

2 −5
−1 3

]
and B =

[
3 5
1 2

]

A(nxn)

i rente
Natu

AA=A=

O -
AB =[di)=1,rA =[09]=I
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Then

AB =
[

2 −5
−1 3

] [
3 5
1 2

]
=

[
1 0
0 1

]
= I

BA =
[

3 5
1 2

] [
2 −5

−1 3

]
=

[
1 0
0 1

]
= I

Thus, A and B are invertible and each is an inverse of the other.

EXAMPLE 6 A Class of Singular Matrices

A square matrix with a row or column of zeros is singular. To help understand why this
is so, consider the matrix

A =




1 4 0
2 5 0
3 6 0





To prove that A is singular we must show that there is no 3 × 3 matrix B such that
As in Example 6, we will fre-
quently denote a zero matrix
with one row or one column
by a boldface zero.

AB = BA = I. For this purpose let c1, c2, 0 be the column vectors of A. Thus, for any
3 × 3 matrix B we can express the product BA as

BA = B[c1 c2 0] = [Bc1 Bc2 0] [Formula (6) of Section 1.3]

The column of zeros shows that BA #= I and hence that A is singular.

Properties of Inverses It is reasonable to ask whether an invertible matrix can have more than one inverse. The
next theorem shows that the answer is no—an invertible matrix has exactly one inverse.

THEOREM 1.4.4 If B and C are both inverses of the matrix A, then B = C.

Proof Since B is an inverse of A, we have BA = I. Multiplying both sides on the right
by C gives (BA)C = IC = C. But it is also true that (BA)C = B(AC) = BI = B, so
C = B.

As a consequence of this important result, we can now speak of “the” inverse of an
WARNING The symbol A−1

should not be interpreted as
1/A. Division by matrices will
not be a defined operation in
this text.

invertible matrix. If A is invertible, then its inverse will be denoted by the symbol A−1.

Thus,

AA−1 = I and A−1A = I (1)

The inverse of A plays much the same role in matrix arithmetic that the reciprocal a−1

plays in the numerical relationships aa−1 = 1 and a−1a = 1.
In the next section we will develop a method for computing the inverse of an invertible

matrix of any size. For now we give the following theorem that specifies conditions under
which a 2 × 2 matrix is invertible and provides a simple formula for its inverse.

Historical Note The formula for A−1 given inTheorem 1.4.5 first appeared (in a more general form)
in Arthur Cayley’s 1858 Memoir on the Theory of Matrices. The more general result that Cayley
discovered will be studied later.
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THEOREM 1.4.5 The matrix

A =
[
a b

c d

]

is invertible if and only if ad − bc #= 0, in which case the inverse is given by the formula

A−1 = 1
ad − bc

[
d −b

−c a

]
(2)

We will omit the proof, because we will study a more general version of this theorem

The quantity ad − bc in The-
orem 1.4.5 is called the deter-
minant of the 2 × 2 matrix A

and is denoted by

det(A) = ad − bc

or alternatively by
∣∣∣∣
a b

c d

∣∣∣∣ = ad − bc

later. For now, you should at least confirm the validity of Formula (2) by showing that
AA−1 = A−1A = I .

Remark Figure 1.4.1 illustrates that the determinant of a 2 × 2 matrix A is the product of the
det(A) =               = ad – bca    b

c    d

Figure 1.4.1

entries on its main diagonal minus the product of the entries off its main diagonal.

EXAMPLE 7 Calculating the Inverse of a 2 × 2 Matrix

In each part, determine whether the matrix is invertible. If so, find its inverse.

(a) A =
[

6 1
5 2

]
(b) A =

[−1 2
3 −6

]

Solution (a) The determinant of A is det(A) = (6)(2) − (1)(5) = 7, which is nonzero.
Thus, A is invertible, and its inverse is

A−1 = 1
7

[
2 −1

−5 6

]
=

[
2
7 − 1

7

− 5
7

6
7

]

We leave it for you to confirm that AA−1 = A−1A = I.

Solution (b) The matrix is not invertible since det(A) = (−1)(−6) − (2)(3) = 0.

EXAMPLE 8 Solution of a Linear System by Matrix Inversion

A problem that arises in many applications is to solve a pair of equations of the form

u = ax + by

v = cx + dy

for x and y in terms of u and v. One approach is to treat this as a linear system of
two equations in the unknowns x and y and use Gauss–Jordan elimination to solve
for x and y. However, because the coefficients of the unknowns are literal rather than
numerical, this procedure is a little clumsy. As an alternative approach, let us replace the
two equations by the single matrix equation

[
u

v

]
=

[
ax + by

cx + dy

]

which we can rewrite as [
u

v

]
=

[
a b

c d

] [
x

y

]

If we assume that the 2 × 2 matrix is invertible (i.e., ad − bc #= 0), then we can multiply
through on the left by the inverse and rewrite the equation as

[
a b

c d

]−1 [
u

v

]
=

[
a b

c d

]−1 [
a b

c d

] [
x

y

]

*

W

O

x
=s(2sj] :

O

-Singular
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which simplifies to [
a b

c d

]−1 [
u

v

]
=

[
x

y

]

Using Theorem 1.4.5, we can rewrite this equation as

1
ad − bc

[
d −b

−c a

] [
u

v

]
=

[
x

y

]

from which we obtain

x = du − bv

ad − bc
, y = av − cu

ad − bc

The next theorem is concerned with inverses of matrix products.

THEOREM 1.4.6 If A and B are invertible matrices with the same size, then AB is
invertible and

(AB)−1 = B−1A−1

Proof We can establish the invertibility and obtain the stated formula at the same time
by showing that

(AB)(B−1A−1) = (B−1A−1)(AB) = I

But
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and similarly, (B−1A−1)(AB) = I.

Although we will not prove it, this result can be extended to three or more factors:

Aproduct of any number of invertiblematrices is invertible, and the inverse of the product
is the product of the inverses in the reverse order.

EXAMPLE 9 The Inverse of a Product

Consider the matrices

A =
[

1 2
1 3

]
, B =

[
3 2
2 2

]

We leave it for you to show that

AB =
[

7 6
9 8

]
, (AB)−1 =

[
4 −3

− 9
2

7
2

]

and also that

A−1 =
[

3 −2
−1 1

]
, B−1 =

[
1 −1

−1 3
2

]

, B−1A−1 =
[

1 −1

−1 3
2

] [
3 −2

−1 1

]
=

[
4 −3

− 9
2

7
2

]

Thus, (AB)−1 = B−1A−1 as guaranteed by Theorem 1.4.6.

If a product of matrices is
singular, then at least one of
the factors must be singular.
Why?

Powers of a Matrix If A is a square matrix, then we define the nonnegative integer powers of A to be

A0 = I and An = AA · · · A [n factors]

and if A is invertible, then we define the negative integer powers of A to be

A−n = (A−1)n = A−1A−1 · · · A−1 [n factors]

2x +4y=3 [2][*]
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Because these definitions parallel those for real numbers, the usual laws of nonnegative
exponents hold; for example,

ArAs = Ar+s and (Ar)s = Ars

In addition, we have the following properties of negative exponents.

THEOREM 1.4.7 If A is invertible and n is a nonnegative integer, then:

(a) A−1 is invertible and (A−1)−1 = A.

(b) An is invertible and (An)−1 = A−n = (A−1)n.

(c) kA is invertible for any nonzero scalar k, and (kA)−1 = k−1A−1.

We will prove part (c) and leave the proofs of parts (a) and (b) as exercises.

Proof (c) Properties (m) and (l) of Theorem 1.4.1 imply that

(kA)(k−1A−1) = k−1(kA)A−1 = (k−1k)AA−1 = (1)I = I

and similarly, (k−1A−1)(kA) = I. Thus, kA is invertible and (kA)−1 = k−1A−1.

EXAMPLE 10 Properties of Exponents

Let A and A−1 be the matrices in Example 9; that is,

A =
[

1 2
1 3

]
and A−1 =

[
3 −2

−1 1

]

Then

A−3 = (A−1)3 =
[

3 −2
−1 1

] [
3 −2

−1 1

] [
3 −2

−1 1

]
=

[
41 −30

−15 11

]

Also,

A3 =
[

1 2
1 3

] [
1 2
1 3

] [
1 2
1 3

]
=

[
11 30
15 41

]

so, as expected from Theorem 1.4.7(b),

(A3)−1 = 1
(11)(41) − (30)(15)

[
41 −30

−15 11

]
=

[
41 −30

−15 11

]
= (A−1)3

EXAMPLE 11 The Square of a Matrix Sum

In real arithmetic, where we have a commutative law for multiplication, we can write

(a + b)2 = a2 + ab + ba + b2 = a2 + ab + ab + b2 = a2 + 2ab + b2

However, in matrix arithmetic, where we have no commutative law for multiplication,
the best we can do is to write

(A + B)2 = A2 + AB + BA + B2

It is only in the special case where A and B commute (i.e., AB = BA) that we can go a
step further and write

(A + B)2 = A2 + 2AB + B2

Matrix Polynomials If A is a square matrix, say n × n, and if

p(x) = a0 + a1x + a2x
2 + · · · + amxm

S
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is any polynomial, then we define the n × n matrix p(A) to be

p(A) = a0I + a1A + a2A
2 + · · · + amAm (3)

where I is the n × n identity matrix; that is, p(A) is obtained by substituting A for x

and replacing the constant term a0 by the matrix a0I. An expression of form (3) is called
a matrix polynomial in A.

EXAMPLE 12 A Matrix Polynomial

Find p(A) for

p(x) = x2 − 2x − 3 and A =
[−1 2

0 3

]

Solution
p(A) = A2 − 2A − 3I

=
[−1 2

0 3

]2

− 2
[−1 2

0 3

]
− 3

[
1 0
0 1

]

=
[

1 4
0 9

]
−

[−2 4
0 6

]
−

[
3 0
0 3

]
=

[
0 0
0 0

]

or more briefly, p(A) = 0.

Remark It follows from the fact that ArAs = Ar+s = As+r = AsAr that powers of a square
matrix commute, and since a matrix polynomial in A is built up from powers of A, any two matrix
polynomials in A also commute; that is, for any polynomials p1 and p2 we have

p1(A)p2(A) = p2(A)p1(A) (4)

Properties of theTranspose The following theorem lists the main properties of the transpose.

THEOREM 1.4.8 If the sizes of the matrices are such that the stated operations can be
performed, then:

(a) (AT )T = A

(b) (A + B)T = AT + BT

(c) (A − B)T = AT − BT

(d ) (kA)T = kAT

(e) (AB)T = BTAT

If you keep in mind that transposing a matrix interchanges its rows and columns, then
you should have little trouble visualizing the results in parts (a)–(d ). For example, part
(a) states the obvious fact that interchanging rows and columns twice leaves a matrix
unchanged; and part (b) states that adding two matrices and then interchanging the
rows and columns produces the same result as interchanging the rows and columns
before adding. We will omit the formal proofs. Part (e) is less obvious, but for brevity
we will omit its proof as well. The result in that part can be extended to three or more
factors and restated as:

The transpose of a product of any number of matrices is the product of the transposes
in the reverse order.

S

- --
-

-

- -

(A
YA

I



1.4 Inverses; Algebraic Properties of Matrices 49

The following theorem establishes a relationship between the inverse of a matrix and
the inverse of its transpose.

THEOREM 1.4.9 If A is an invertible matrix, then AT is also invertible and

(AT )−1 = (A−1)T

Proof We can establish the invertibility and obtain the formula at the same time by
showing that

AT(A−1)T = (A−1)TAT = I

But from part (e) of Theorem 1.4.8 and the fact that I T = I, we have

AT(A−1)T = (A−1A)T = I T = I

(A−1)TAT = (AA−1)T = I T = I

which completes the proof.

EXAMPLE 13 Inverse of aTranspose

Consider a general 2 × 2 invertible matrix and its transpose:

A =
[
a b

c d

]
and AT =

[
a c

b d

]

Since A is invertible, its determinant ad − bc is nonzero. But the determinant of AT is
also ad − bc (verify), so AT is also invertible. It follows from Theorem 1.4.5 that

(AT )−1 =





d

ad − bc
− c

ad − bc

− b

ad − bc

a

ad − bc





which is the same matrix that results if A−1 is transposed (verify). Thus,

(AT )−1 = (A−1)T

as guaranteed by Theorem 1.4.9.

Exercise Set 1.4
In Exercises 1–2, verify that the following matrices and scalars

satisfy the stated properties of Theorem 1.4.1.

A =
[

3 −1
2 4

]

, B =
[

0 2
1 −4

]

,

C =
[

4 1
−3 −2

]

, a = 4, b = −7

1. (a) The associative law for matrix addition.

(b) The associative law for matrix multiplication.

(c) The left distributive law.

(d) (a + b)C = aC + bC

2. (a) a(BC) = (aB)C = B(aC)

(b) A(B − C) = AB − AC (c) (B + C)A = BA + CA

(d) a(bC) = (ab)C

In Exercises 3–4, verify that the matrices and scalars in Exer-
cise 1 satisfy the stated properties.

3. (a) (AT )T = A (b) (AB)T = BTAT

4. (a) (A + B)T = AT + BT (b) (aC)T = aCT

In Exercises 5–8, use Theorem 1.4.5 to compute the inverse of
the matrix.

5. A =
[

2 −3
4 4

]
6. B =

[
3 1
5 2

]

-

=[]

I -> 80

⑳-ore J

O -> 00

I
-
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7. C =
[

2 0
0 3

]
8. D =

[
6 4

−2 −1

]

9. Find the inverse of



1
2 (e

x + e−x) 1
2 (e

x − e−x)

1
2 (e

x − e−x) 1
2 (e

x + e−x)





10. Find the inverse of
[

cos θ sin θ

− sin θ cos θ

]

In Exercises 11–14, verify that the equations are valid for the
matrices in Exercises 5–8.

11. (AT )−1 = (A−1)T 12. (A−1)−1 = A

13. (ABC)−1 = C−1B−1A−1 14. (ABC)T = CTBTAT

In Exercises 15–18, use the given information to find A.

15. (7A)−1 =
[−3 7

1 −2

]
16. (5AT )−1 =

[−3 −1
5 2

]

17. (I + 2A)−1 =
[−1 2

4 5

]
18. A−1 =

[
2 −1
3 5

]

In Exercises 19–20, compute the following using the given ma-
trix A.

(a) A3 (b) A−3 (c) A2 − 2A + I

19. A =
[

3 1
2 1

]
20. A =

[
2 0
4 1

]

In Exercises 21–22, compute p(A) for the given matrix A and
the following polynomials.

(a) p(x) = x − 2

(b) p(x) = 2x2 − x + 1

(c) p(x) = x3 − 2x + 1

21. A =
[

3 1
2 1

]
22. A =

[
2 0
4 1

]

In Exercises 23–24, let

A =
[
a b

c d

]

, B =
[

0 1

0 0

]

, C =
[

0 0

1 0

]

23. Find all values of a, b, c, and d (if any) for which the matrices
A and B commute.

24. Find all values of a, b, c, and d (if any) for which the matrices
A and C commute.

In Exercises 25–28, use the method of Example 8 to find the
unique solution of the given linear system.

25. 3x1 − 2x2 = −1
4x1 + 5x2 = 3

26. −x1 + 5x2 = 4
−x1 − 3x2 = 1

27. 6x1 + x2 = 0
4x1 − 3x2 = −2

28. 2x1 − 2x2 = 4
x1 + 4x2 = 4

If a polynomial p(x) can be factored as a product of lower
degree polynomials, say

p(x) = p1(x)p2(x)

and if A is a square matrix, then it can be proved that

p(A) = p1(A)p2(A)

In Exercises 29–30, verify this statement for the stated matrix A

and polynomials

p(x) = x2 − 9, p1(x) = x + 3, p2(x) = x − 3

29. The matrix A in Exercise 21.

30. An arbitrary square matrix A.

31. (a) Give an example of two 2 × 2 matrices such that

(A + B)(A − B) #= A2 − B2

(b) State a valid formula for multiplying out

(A + B)(A − B)

(c) What condition can you impose on A and B that will allow
you to write (A + B)(A − B) = A2 − B2?

32. The numerical equation a2 = 1 has exactly two solutions.
Find at least eight solutions of the matrix equation A2 = I3.
[Hint: Look for solutions in which all entries off the main
diagonal are zero.]

33. (a) Show that if a square matrix A satisfies the equation
A2 + 2A + I = 0, then A must be invertible. What is the
inverse?

(b) Show that if p(x) is a polynomial with a nonzero constant
term, and if A is a square matrix for which p(A) = 0, then
A is invertible.

34. Is it possible for A3 to be an identity matrix without A being
invertible? Explain.

35. Can a matrix with a row of zeros or a column of zeros have an
inverse? Explain.

36. Can a matrix with two identical rows or two identical columns
have an inverse? Explain.
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In Exercises 37–38, determine whether A is invertible, and if
so, find the inverse. [Hint: Solve AX = I for X by equating cor-
responding entries on the two sides.]

37. A =




1 0 1
1 1 0
0 1 1



 38. A =




1 1 1
1 0 0
0 1 1





In Exercises 39–40, simplify the expression assuming that A,
B, C, and D are invertible.

39. (AB)−1(AC−1)(D−1C−1)−1D−1

40. (AC−1)−1(AC−1)(AC−1)−1AD−1

41. Show that if R is a 1 × n matrix and C is an n × 1 matrix,
then RC = tr(CR).

42. If A is a square matrix and n is a positive integer, is it true that
(An)T = (AT )n? Justify your answer.

43. (a) Show that if A is invertible and AB = AC, then B = C.

(b) Explain why part (a) and Example 3 do not contradict one
another.

44. Show that if A is invertible and k is any nonzero scalar, then
(kA)n = knAn for all integer values of n.

45. (a) Show that if A, B, and A + B are invertible matrices with
the same size, then

A(A−1 + B−1)B(A + B)−1 = I

(b) What does the result in part (a) tell you about the matrix
A−1 + B−1?

46. A square matrix A is said to be idempotent if A2 = A.

(a) Show that if A is idempotent, then so is I − A.

(b) Show that if A is idempotent, then 2A − I is invertible
and is its own inverse.

47. Show that if A is a square matrix such that Ak = 0 for some
positive integer k, then the matrix I − A is invertible and

(I − A)−1 = I + A + A2 + · · · + Ak−1

48. Show that the matrix

A =
[
a b

c d

]

satisfies the equation

A2 − (a + d)A + (ad − bc)I = 0

49. Assuming that all matrices are n × n and invertible, solve
for D.

CT B−1A2BAC−1DA−2BT C−2 = CT

50. Assuming that all matrices are n × n and invertible, solve
for D.

ABCTDBAT C = ABT

Working with Proofs

In Exercises 51–58, prove the stated result.

51. Theorem 1.4.1(a) 52. Theorem 1.4.1(b)

53. Theorem 1.4.1( f ) 54. Theorem 1.4.1(c)

55. Theorem 1.4.2(c) 56. Theorem 1.4.2(b)

57. Theorem 1.4.8(d) 58. Theorem 1.4.8(e)

True-False Exercises

TF. In parts (a)–(k) determine whether the statement is true or
false, and justify your answer.

(a) Two n × n matrices, A and B, are inverses of one another if
and only if AB = BA = 0.

(b) For all square matrices A and B of the same size, it is true that
(A + B)2 = A2 + 2AB + B2.

(c) For all square matrices A and B of the same size, it is true that
A2 − B2 = (A − B)(A + B).

(d) If A and B are invertible matrices of the same size, then AB is
invertible and (AB)−1 = A−1B−1.

(e) If A and B are matrices such that AB is defined, then it is true
that (AB)T = ATBT .

(f ) The matrix

A =
[
a b

c d

]

is invertible if and only if ad − bc #= 0.

(g) If A and B are matrices of the same size and k is a constant,
then (kA + B)T = kAT + BT .

(h) If A is an invertible matrix, then so is AT .

(i) If p(x) = a0 + a1x + a2x
2 + · · · + amxm and I is an identity

matrix, then p(I) = a0 + a1 + a2 + · · · + am.

( j) A square matrix containing a row or column of zeros cannot
be invertible.

(k) The sum of two invertible matrices of the same size must be
invertible.


