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1.2 Gaussian Elimination
In this section we will develop a systematic procedure for solving systems of linear
equations. The procedure is based on the idea of performing certain operations on the rows
of the augmented matrix that simplify it to a form from which the solution of the system
can be ascertained by inspection.

Considerations in Solving
Linear Systems

When considering methods for solving systems of linear equations, it is important to
distinguish between large systems that must be solved by computer and small systems
that can be solved by hand. For example, there are many applications that lead to
linear systems in thousands or even millions of unknowns. Large systems require special
techniques to deal with issues of memory size, roundoff errors, solution time, and so
forth. Such techniques are studied in the field of numerical analysis and will only be
touched on in this text. However, almost all of the methods that are used for large
systems are based on the ideas that we will develop in this section.

Echelon Forms In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z

by reducing the augmented matrix to the form



1 0 0 1
0 1 0 2
0 0 1 3





from which the solution x = 1, y = 2, z = 3 became evident. This is an example of a
matrix that is in reduced row echelon form. To be of this form, a matrix must have the
following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties is said to be in row echelon form. (Thus,
a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)

EXAMPLE 1 Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.




1 0 0 4
0 1 0 7
0 0 1 −1



 ,




1 0 0
0 1 0
0 0 1



 ,





0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0




,

[
0 0
0 0

]

The following matrices are in row echelon form but not reduced row echelon form.



1 4 −3 7
0 1 6 2
0 0 1 5



 ,




1 1 0
0 1 0
0 0 0



 ,




0 1 2 6 0
0 0 1 −1 0
0 0 0 0 1





#
Si

8 -

(ii)

-0001808
8008108()
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EXAMPLE 2 More on Row Echelon and Reduced Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1,
whereas a matrix in reduced row echelon form has zeros below and above each leading
1. Thus, with any real numbers substituted for the ∗’s, all matrices of the following types
are in row echelon form:





1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1




,





1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0




,





1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0




,





0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 1 ∗





All matrices of the following types are in reduced row echelon form:





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




,





1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0




,





1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0




,





0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗





If, by a sequence of elementary row operations, the augmented matrix for a system of
linear equations is put in reduced row echelon form, then the solution set can be obtained
either by inspection or by converting certain linear equations to parametric form. Here
are some examples.

EXAMPLE 3 Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns x1, x2, x3, and
x4 has been reduced by elementary row operations to





1 0 0 0 3
0 1 0 0 −1
0 0 1 0 0
0 0 0 1 5





This matrix is in reduced row echelon form and corresponds to the equations

x1 = 3
x2 = −1

x3 = 0
x4 = 5

Thus, the system has a unique solution, namely, x1 = 3, x2 = −1, x3 = 0, x4 = 5.

In Example 3 we could, if
desired, express the solution
more succinctly as the 4-tuple
(3, −1, 0, 5).

EXAMPLE 4 Linear Systems inThree Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns
x, y, and z has been reduced by elementary row operations to the given reduced row
echelon form. Solve the system.

(a)




1 0 0 0
0 1 2 0
0 0 0 1



 (b)




1 0 3 −1
0 1 −4 2
0 0 0 0



 (c)




1 −5 1 4
0 0 0 0
0 0 0 0
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Solution (a) The equation that corresponds to the last row of the augmented matrix is

0x + 0y + 0z = 1

Since this equation is not satisfied by any values of x, y, and z, the system is inconsistent.

Solution (b) The equation that corresponds to the last row of the augmented matrix is

0x + 0y + 0z = 0

This equation can be omitted since it imposes no restrictions on x, y, and z; hence, the
linear system corresponding to the augmented matrix is

x + 3z = −1
y − 4z = 2

Since x and y correspond to the leading 1’s in the augmented matrix, we call these
the leading variables. The remaining variables (in this case z) are called free variables.
Solving for the leading variables in terms of the free variables gives

x = −1 − 3z
y = 2 + 4z

From these equations we see that the free variable z can be treated as a parameter and
assigned an arbitrary value t , which then determines values for x and y. Thus, the
solution set can be represented by the parametric equations

x = −1 − 3t, y = 2 + 4t, z = t

By substituting various values for t in these equations we can obtain various solutions
of the system. For example, setting t = 0 yields the solution

x = −1, y = 2, z = 0

and setting t = 1 yields the solution

x = −4, y = 6, z = 1

Solution (c) As explained in part (b), we can omit the equations corresponding to the
zero rows, in which case the linear system associated with the augmented matrix consists
of the single equation

x − 5y + z = 4 (1)

from which we see that the solution set is a plane in three-dimensional space. Although
(1) is a valid form of the solution set, there are many applications in which it is preferable
to express the solution set in parametric form. We can convert (1) to parametric form

We will usually denote pa-
rameters in a general solution
by the letters r, s, t, . . . , but
any letters that do not con-
flict with the names of the
unknowns can be used. For
systems with more than three
unknowns, subscripted letters
such as t1, t2, t3, . . . are conve-
nient.

by solving for the leading variable x in terms of the free variables y and z to obtain

x = 4 + 5y − z

From this equation we see that the free variables can be assigned arbitrary values, say
y = s and z = t , which then determine the value of x. Thus, the solution set can be
expressed parametrically as

x = 4 + 5s − t, y = s, z = t (2)

Formulas, such as (2), that express the solution set of a linear system parametrically
have some associated terminology.

DEFINITION1 If a linear system has infinitely many solutions, then a set of parametric
equations from which all solutions can be obtained by assigning numerical values to
the parameters is called a general solution of the system.

-

=>

-
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Elimination Methods We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step elimination
procedure that can be used to reduce any matrix to reduced row echelon form. As we
state each step in the procedure, we illustrate the idea by reducing the following matrix
to reduced row echelon form.




0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 −1





Step 1. Locate the leftmost column that does not consist entirely of zeros.




0 0 2 0 7 12
2 4 10 6 12 28
2 4 5 6 5 1





Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.




2 4 −10 6 12 28

0 0 −2 0 7 12

2 4 −5 6 −5 −1



 The first and second rows in the preceding
matrix were interchanged.

Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply
the first row by 1/a in order to introduce a leading 1.




1 2 −5 3 6 14

0 0 −2 0 7 12

2 4 −5 6 −5 −1



 The first row of the preceding matrix was
multiplied by 1

2 .

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.




1 2 −5 3 6 14

0 0 −2 0 7 12

0 0 5 0 −17 −29



 −2 times the first row of the preceding
matrix was added to the third row.

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 5 0 17 29



 The !rst row in the submatrix was
multiplied by 1

2
                              to introduce a
leading 1.




1 2 5 3 6 14
0 0 2 0 7 12
0 0 5 0 17 29





Leftmost nonzero column
in the submatrix
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1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 0 0 1
2 1



 The top row in the submatrix was
covered, and we returned again to
Step 1.

Leftmost nonzero column
in the new submatrix




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 0 0 1
2 1



 –5 times the !rst row of the submatrix
was added to the second row of the
submatrix to introduce a zero below
the leading 1.




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 0 0 1 2



 The !rst (and only) row in the new
submatrix was multiplied by 2 to
introduce a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon form we
need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1’s.




1 2 −5 3 6 14
0 0 1 0 0 1
0 0 0 0 1 2



 7
2 times the third row of the preceding
matrix was added to the second row.




1 2 −5 3 0 2
0 0 1 0 0 1
0 0 0 0 1 2



 −6 times the third row was added to the
first row.




1 2 0 3 0 7
0 0 1 0 0 1
0 0 0 0 1 2



 5 times the second row was added to the
first row.

The last matrix is in reduced row echelon form.
The procedure (or algorithm) we have just described for reducing a matrix to reduced

row echelon form is called Gauss–Jordan elimination. This algorithm consists of two
parts, a forward phase in which zeros are introduced below the leading 1’s and a backward
phase in which zeros are introduced above the leading 1’s. If only theforward phase is

Carl Friedrich Gauss
(1777–1855)

Wilhelm Jordan
(1842–1899)

Historical Note Although versions of Gaussian elimination were known much
earlier, its importance in scientific computation became clear when the great
German mathematician Carl Friedrich Gauss used it to help compute the orbit
of the asteroid Ceres from limited data. What happened was this: On January 1,
1801 the Sicilian astronomer and Catholic priest Giuseppe Piazzi (1746–1826)
noticed a dim celestial object that he believed might be a “missing planet.” He
named the object Ceres and made a limited number of positional observations
but then lost the object as it neared the Sun. Gauss, then only 24 years old,
undertook the problem of computing the orbit of Ceres from the limited data
using a technique called “least squares,” the equations of which he solved by
the method that we now call “Gaussian elimination.” The work of Gauss cre-
ated a sensation when Ceres reappeared a year later in the constellation Virgo
at almost the precise position that he predicted! The basic idea of the method
was further popularized by the German engineer Wilhelm Jordan in his book
on geodesy (the science of measuring Earth shapes) entitled Handbuch derVer-
messungskunde and published in 1888.

[Images: Photo Inc/Photo Researchers/Getty Images (Gauss);
Leemage/Universal Images Group/Getty Images (Jordan)]
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used, then the procedure produces a row echelon form and is called Gaussian elimination.
For example, in the preceding computations a row echelon form was obtained at the end
of Step 5.

EXAMPLE 5 Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination.

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution The augmented matrix for the system is




1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 5
2 6 0 8 4 18 6





Adding −2 times the first row to the second and fourth rows gives




1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 5
0 0 4 8 0 18 6





Multiplying the second row by −1 and then adding −5 times the new second row to the
third row and −4 times the new second row to the fourth row gives





1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 0 0
0 0 0 0 0 6 2





Interchanging the third and fourth rows and then multiplying the third row of the re-
sulting matrix by 1

6 gives the row echelon form




1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3

0 0 0 0 0 0 0




This completes the forward phase since
there are zeros below the leading 1’s.

Adding −3 times the third row to the second row and then adding 2 times the second
row of the resulting matrix to the first row yields the reduced row echelon form





1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 1

3

0 0 0 0 0 0 0




This completes the backward phase since
there are zeros above the leading 1’s.

The corresponding system of equations isNote that in constructing the
linear system in (3) we ignored
the row of zeros in the corre-
sponding augmented matrix.
Why is this justified?

x1 + 3x2 + 4x4 + 2x5 = 0

x3 + 2x4 = 0

x6 = 1
3

(3)
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Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 1
3

Finally, we express the general solution of the system parametrically by assigning the
free variables x2, x4, and x5 arbitrary values r, s, and t , respectively. This yields

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

Homogeneous Linear
Systems

A system of linear equations is said to be homogeneous if the constant terms are all zero;
that is, the system has the form

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = 0

Every homogeneous system of linear equations is consistent because all such systems
have x1 = 0, x2 = 0, . . . , xn = 0 as a solution. This solution is called the trivial solution;
if there are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are only
two possibilities for its solutions:

• The system has only the trivial solution.

• The system has infinitely many solutions in addition to the trivial solution.

In the special case of a homogeneous linear system of two equations in two unknowns,
say

a1x + b1y = 0 (a1, b1 not both zero)

a2x + b2y = 0 (a2, b2 not both zero)

the graphs of the equations are lines through the origin, and the trivial solution corre-
sponds to the point of intersection at the origin (Figure 1.2.1).

Figure 1.2.1

x
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Only the trivial solution

x
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In!nitely many
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a1x + b1y = 0

a1x + b1y = 0
and

a2x + b2y = 0

a2x + b2y = 0

There is one case in which a homogeneous system is assured of having nontrivial
solutions—namely, whenever the system involves more unknowns than equations. To
see why, consider the following example of four equations in six unknowns.
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EXAMPLE 6 A Homogeneous System

Use Gauss–Jordan elimination to solve the homogeneous linear system

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

(4)

Solution Observe first that the coefficients of the unknowns in this system are the same
as those in Example 5; that is, the two systems differ only in the constants on the right
side. The augmented matrix for the given homogeneous system is





1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 0
0 0 5 10 0 15 0
2 6 0 8 4 18 0




(5)

which is the same as the augmented matrix for the system in Example 5, except for zeros
in the last column. Thus, the reduced row echelon form of this matrix will be the same
as that of the augmented matrix in Example 5, except for the last column. However,
a moment’s reflection will make it evident that a column of zeros is not changed by an
elementary row operation, so the reduced row echelon form of (5) is





1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0




(6)

The corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 = 0

Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 0
(7)

If we now assign the free variables x2, x4, and x5 arbitrary values r , s, and t , respectively,
then we can express the solution set parametrically as

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

Note that the trivial solution results when r = s = t = 0.

FreeVariables in
Homogeneous Linear

Systems

Example 6 illustrates two important points about solving homogeneous linear systems:

1. Elementary row operations do not alter columns of zeros in a matrix, so the reduced
row echelon form of the augmented matrix for a homogeneous linear system has
a final column of zeros. This implies that the linear system corresponding to the
reduced row echelon form is homogeneous, just like the original system.
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2. When we constructed the homogeneous linear system corresponding to augmented
matrix (6), we ignored the row of zeros because the corresponding equation

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 = 0

does not impose any conditions on the unknowns. Thus, depending on whether or
not the reduced row echelon form of the augmented matrix for a homogeneous linear
system has any rows of zero, the linear system corresponding to that reduced row
echelon form will either have the same number of equations as the original system
or it will have fewer.

Now consider a general homogeneous linear system with n unknowns, and suppose
that the reduced row echelon form of the augmented matrix has r nonzero rows. Since
each nonzero row has a leading 1, and since each leading 1 corresponds to a leading
variable, the homogeneous system corresponding to the reduced row echelon form of
the augmented matrix must have r leading variables and n − r free variables. Thus, this
system is of the form

xk1 + ∑
( ) = 0

xk2 + ∑
( ) = 0

. . .
...

xkr
+ ∑

( ) = 0

(8)

where in each equation the expression
∑

( ) denotes a sum that involves the free variables,
if any [see (7), for example]. In summary, we have the following result.

THEOREM 1.2.1 FreeVariableTheorem for Homogeneous Systems

If a homogeneous linear system has n unknowns, and if the reduced row echelon form
of its augmented matrix has r nonzero rows, then the system has n − r free variables.

Theorem 1.2.1 has an important implication for homogeneous linear systems with
Note that Theorem 1.2.2 ap-
plies only to homogeneous
systems—a nonhomogeneous
system with more unknowns
than equations need not be
consistent. However, we will
prove later that if a nonho-
mogeneous system with more
unknowns then equations is
consistent, then it has in-
finitely many solutions.

more unknowns than equations. Specifically, if a homogeneous linear system has m

equations in n unknowns, and if m < n, then it must also be true that r < n (why?).
This being the case, the theorem implies that there is at least one free variable, and this
implies that the system has infinitely many solutions. Thus, we have the following result.

THEOREM 1.2.2 A homogeneous linear system with more unknowns than equations has
infinitely many solutions.

In retrospect, we could have anticipated that the homogeneous system in Example 6
would have infinitely many solutions since it has four equations in six unknowns.

Gaussian Elimination and
Back-Substitution

For small linear systems that are solved by hand (such as most of those in this text),
Gauss–Jordan elimination (reduction to reduced row echelon form) is a good procedure
to use. However, for large linear systems that require a computer solution, it is generally
more efficient to use Gaussian elimination (reduction to row echelon form) followed by
a technique known as back-substitution to complete the process of solving the system.
The next example illustrates this technique.

0
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EXAMPLE 7 Example 5 Solved by Back-Substitution

From the computations in Example 5, a row echelon form of the augmented matrix is




1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3

0 0 0 0 0 0 0





To solve the corresponding system of equations

x1 + 3x2 − 2x3 + 2x5 = 0

x3 + 2x4 + 3x6 = 1

x6 = 1
3

we proceed as follows:

Step 1. Solve the equations for the leading variables.

x1 = −3x2 + 2x3 − 2x5

x3 = 1 − 2x4 − 3x6

x6 = 1
3

Step 2. Beginning with the bottom equation and working upward, successively substitute
each equation into all the equations above it.

Substituting x6 = 1
3 into the second equation yields

x1 = −3x2 + 2x3 − 2x5

x3 = −2x4

x6 = 1
3

Substituting x3 = −2x4 into the first equation yields

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 1
3

Step 3. Assign arbitrary values to the free variables, if any.

If we now assign x2, x4, and x5 the arbitrary values r , s, and t , respectively, the
general solution is given by the formulas

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

This agrees with the solution obtained in Example 5.

EXAMPLE 8

Suppose that the matrices below are augmented matrices for linear systems in the un-
knowns x1, x2, x3, and x4. These matrices are all in row echelon form but not reduced row
echelon form. Discuss the existence and uniqueness of solutions to the corresponding
linear systems
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(a)





1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 1




(b)





1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 0




(c)





1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 1 0





Solution (a) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 1

from which it is evident that the system is inconsistent.

Solution (b) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 0

which has no effect on the solution set. In the remaining three equations the variables
x1, x2, and x3 correspond to leading 1’s and hence are leading variables. The variable x4

is a free variable. With a little algebra, the leading variables can be expressed in terms
of the free variable, and the free variable can be assigned an arbitrary value. Thus, the
system must have infinitely many solutions.

Solution (c) The last row corresponds to the equation

x4 = 0

which gives us a numerical value for x4. If we substitute this value into the third equation,
namely,

x3 + 6x4 = 9

we obtain x3 = 9. You should now be able to see that if we continue this process and
substitute the known values of x3 and x4 into the equation corresponding to the second
row, we will obtain a unique numerical value for x2; and if, finally, we substitute the
known values of x4, x3, and x2 into the equation corresponding to the first row, we will
produce a unique numerical value for x1. Thus, the system has a unique solution.

Some Facts About Echelon
Forms

There are three facts about row echelon forms and reduced row echelon forms that are
important to know but we will not prove:

1. Every matrix has a unique reduced row echelon form; that is, regardless of whether
you use Gauss–Jordan elimination or some other sequence of elementary row oper-
ations, the same reduced row echelon form will result in the end.*

2. Row echelon forms are not unique; that is, different sequences of elementary row
operations can result in different row echelon forms.

3. Although row echelon forms are not unique, the reduced row echelon form and all
row echelon forms of a matrix A have the same number of zero rows, and the leading
1’s always occur in the same positions. Those are called the pivot positions of A. A
column that contains a pivot position is called a pivot column of A.

*A proof of this result can be found in the article “The Reduced Row Echelon Form of a Matrix Is Unique: A
Simple Proof,” by Thomas Yuster, Mathematics Magazine, Vol. 57, No. 2, 1984, pp. 93–94.
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EXAMPLE 9 Pivot Positions and Columns

Earlier in this section (immediately after Definition 1) we found a row echelon form of

A =




0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1





to be 


1 2 −5 3 6 14
0 0 1 0 − 7

2 −6
0 0 0 0 1 2





The leading 1’s occur in positions (row 1, column 1), (row 2, column 3), and (row 3,
column 5). These are the pivot positions. The pivot columns are columns 1, 3, and 5.

If A is the augmented ma-
trix for a linear system, then
the pivot columns identify the
leading variables. As an illus-
tration, in Example 5 the pivot
columns are 1, 3, and 6, and
the leading variables arex1, x3,
and x6.

Roundoff Error and
Instability

There is often a gap between mathematical theory and its practical implementation—
Gauss–Jordan elimination and Gaussian elimination being good examples. The problem
is that computers generally approximate numbers, thereby introducing roundoff errors,
so unless precautions are taken, successive calculations may degrade an answer to a
degree that makes it useless. Algorithms (procedures) in which this happens are called
unstable. There are various techniques for minimizing roundoff error and instability.
For example, it can be shown that for large linear systems Gauss–Jordan elimination
involves roughly 50% more operations than Gaussian elimination, so most computer
algorithms are based on the latter method. Some of these matters will be considered in
Chapter 9.

Exercise Set 1.2
In Exercises 1–2, determine whether the matrix is in row ech-

elon form, reduced row echelon form, both, or neither.

1. (a)




1 0 0
0 1 0
0 0 1



 (b)




1 0 0
0 1 0
0 0 0



 (c)




0 1 0
0 0 1
0 0 0





(d)

[
1 0 3 1
0 1 2 4

]

(e)





1 2 0 3 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0





(f )




0 0
0 0
0 0



 (g)

[
1 −7 5 5
0 1 3 2

]

2. (a)




1 2 0
0 1 0
0 0 0



 (b)




1 0 0
0 1 0
0 2 0



 (c)




1 3 4
0 0 1
0 0 0





(d)




1 5 −3
0 1 1
0 0 0



 (e)




1 2 3
0 0 0
0 0 1





(f )





1 2 3 4 5
1 0 7 1 3
0 0 0 0 1
0 0 0 0 0




(g)

[
1 −2 0 1
0 0 1 −2

]

In Exercises 3–4, suppose that the augmented matrix for a lin-
ear system has been reduced by row operations to the given row
echelon form. Solve the system.

3. (a)




1 −3 4 7
0 1 2 2
0 0 1 5





(b)




1 0 8 −5 6
0 1 4 −9 3
0 0 1 1 2





(c)





1 7 −2 0 −8 −3
0 0 1 1 6 5
0 0 0 1 3 9
0 0 0 0 0 0





(d)




1 −3 7 1
0 1 4 0
0 0 0 1





columncolumns columnes
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⑧
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4. (a)




1 0 0 −3
0 1 0 0
0 0 1 7





(b)




1 0 0 −7 8
0 1 0 3 2
0 0 1 1 −5





(c)





1 −6 0 0 3 −2
0 0 1 0 4 7
0 0 0 1 5 8
0 0 0 0 0 0





(d)




1 −3 0 0
0 0 1 0
0 0 0 1





In Exercises 5–8, solve the linear system by Gaussian elimi-
nation.

5. x1 + x2 + 2x3 = 8
−x1 − 2x2 + 3x3 = 1
3x1 − 7x2 + 4x3 = 10

6. 2x1 + 2x2 + 2x3 = 0
−2x1 + 5x2 + 2x3 = 1

8x1 + x2 + 4x3 = −1

7. x − y + 2z − w = −1
2x + y − 2z − 2w = −2
−x + 2y − 4z + w = 1
3x − 3w = −3

8. − 2b + 3c = 1
3a + 6b − 3c = −2
6a + 6b + 3c = 5

In Exercises 9–12, solve the linear system by Gauss–Jordan
elimination.

9. Exercise 5 10. Exercise 6

11. Exercise 7 12. Exercise 8

In Exercises 13–14, determine whether the homogeneous sys-
tem has nontrivial solutions by inspection (without pencil and
paper).

13. 2x1 − 3x2 + 4x3 − x4 = 0
7x1 + x2 − 8x3 + 9x4 = 0
2x1 + 8x2 + x3 − x4 = 0

14. x1 + 3x2 − x3 = 0
x2 − 8x3 = 0

4x3 = 0

In Exercises 15–22, solve the given linear system by any
method.

15. 2x1 + x2 + 3x3 = 0
x1 + 2x2 = 0

x2 + x3 = 0

16. 2x − y − 3z = 0
−x + 2y − 3z = 0

x + y + 4z = 0

17. 3x1 + x2 + x3 + x4 = 0
5x1 − x2 + x3 − x4 = 0

18. v + 3w − 2x = 0
2u + v − 4w + 3x = 0
2u + 3v + 2w − x = 0

−4u − 3v + 5w − 4x = 0

19. 2x + 2y + 4z = 0
w − y − 3z = 0

2w + 3x + y + z = 0
−2w + x + 3y − 2z = 0

20. x1 + 3x2 + x4 = 0
x1 + 4x2 + 2x3 = 0

− 2x2 − 2x3 − x4 = 0
2x1 − 4x2 + x3 + x4 = 0
x1 − 2x2 − x3 + x4 = 0

21. 2I1 − I2 + 3I3 + 4I4 = 9
I1 − 2I3 + 7I4 = 11

3I1 − 3I2 + I3 + 5I4 = 8
2I1 + I2 + 4I3 + 4I4 = 10

22. Z3 + Z4 + Z5 = 0
−Z1 − Z2 + 2Z3 − 3Z4 + Z5 = 0

Z1 + Z2 − 2Z3 − Z5 = 0
2Z1 + 2Z2 − Z3 + Z5 = 0

In each part of Exercises 23–24, the augmented matrix for a
linear system is given in which the asterisk represents an unspec-
ified real number. Determine whether the system is consistent,
and if so whether the solution is unique. Answer “inconclusive” if
there is not enough information to make a decision.

23. (a)




1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗



 (b)




1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0





(c)




1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1



 (d)




1 ∗ ∗ ∗
0 0 ∗ 0
0 0 1 ∗





24. (a)




1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 1



 (b)




1 0 0 ∗
∗ 1 0 ∗
∗ ∗ 1 ∗





(c)




1 0 0 0
1 0 0 1
1 ∗ ∗ ∗



 (d)




1 ∗ ∗ ∗
1 0 0 1
1 0 0 1





In Exercises 25–26, determine the values of a for which the
system has no solutions, exactly one solution, or infinitely many
solutions.

25. x + 2y − 3z = 4
3x − y + 5z = 2
4x + y + (a2 − 14)z = a + 2
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26. x + 2y + z = 2
2x − 2y + 3z = 1
x + 2y − (a2 − 3)z = a

In Exercises 27–28, what condition, if any, must a, b, and c

satisfy for the linear system to be consistent?

27. x + 3y − z = a

x + y + 2z = b

2y − 3z = c

28. x + 3y + z = a

−x − 2y + z = b

3x + 7y − z = c

In Exercises 29–30, solve the following systems, where a, b,
and c are constants.

29. 2x + y = a

3x + 6y = b

30. x1 + x2 + x3 = a

2x1 + 2x3 = b

3x2 + 3x3 = c

31. Find two different row echelon forms of
[

1 3
2 7

]

This exercise shows that a matrix can have multiple row eche-
lon forms.

32. Reduce 


2 1 3
0 −2 −29
3 4 5





to reduced row echelon form without introducing fractions at
any intermediate stage.

33. Show that the following nonlinear system has 18 solutions if
0 ≤ α ≤ 2π , 0 ≤ β ≤ 2π , and 0 ≤ γ ≤ 2π .

sin α + 2 cos β + 3 tan γ = 0

2 sin α + 5 cos β + 3 tan γ = 0

− sin α − 5 cos β + 5 tan γ = 0

[Hint: Begin by making the substitutions x = sin α,
y = cos β, and z = tan γ .]

34. Solve the following system of nonlinear equations for the un-
known angles α, β, and γ , where 0 ≤ α ≤ 2π , 0 ≤ β ≤ 2π ,
and 0 ≤ γ < π .

2 sin α − cos β + 3 tan γ = 3

4 sin α + 2 cos β − 2 tan γ = 2

6 sin α − 3 cos β + tan γ = 9

35. Solve the following system of nonlinear equations for x, y,

and z.

x2 + y2 + z2 = 6

x2 − y2 + 2z2 = 2

2x2 + y2 − z2 = 3

[Hint: Begin by making the substitutions X = x2, Y = y2,

Z = z2.]

36. Solve the following system for x, y, and z.

1
x

+ 2
y

− 4
z

= 1

2
x

+ 3
y

+ 8
z

= 0

− 1
x

+ 9
y

+ 10
z

= 5

37. Find the coefficients a, b, c, and d so that the curve shown
in the accompanying figure is the graph of the equation
y = ax3 + bx2 + cx + d.

y

x

–2 6

–20

20
(0, 10) (1, 7)

(3, –11) (4, –14)

Figure Ex-37

38. Find the coefficients a, b, c, and d so that the circle shown in
the accompanying figure is given by the equation
ax2 + ay2 + bx + cy + d = 0.

y

x

(–2, 7)

(4, –3)

(–4, 5)

Figure Ex-38

39. If the linear system
a1x + b1y + c1z = 0
a2x − b2y + c2z = 0
a3x + b3y − c3z = 0

has only the trivial solution, what can be said about the solu-
tions of the following system?

a1x + b1y + c1z = 3
a2x − b2y + c2z = 7
a3x + b3y − c3z = 11

40. (a) If A is a matrix with three rows and five columns, then
what is the maximum possible number of leading 1’s in its
reduced row echelon form?

(b) If B is a matrix with three rows and six columns, then
what is the maximum possible number of parameters in
the general solution of the linear system with augmented
matrix B?

(c) If C is a matrix with five rows and three columns, then
what is the minimum possible number of rows of zeros in
any row echelon form of C?
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41. Describe all possible reduced row echelon forms of

(a)




a b c

d e f

g h i



 (b)





a b c d

e f g h

i j k l

m n p q





42. Consider the system of equations

ax + by = 0

cx + dy = 0

ex + fy = 0

Discuss the relative positions of the lines ax + by = 0,
cx + dy = 0, and ex + fy = 0 when the system has only the
trivial solution and when it has nontrivial solutions.

Working with Proofs

43. (a) Prove that if ad − bc $= 0, then the reduced row echelon
form of [

a b

c d

]

is

[
1 0
0 1

]

(b) Use the result in part (a) to prove that if ad − bc $= 0, then
the linear system

ax + by = k

cx + dy = l

has exactly one solution.

True-False Exercises

TF. In parts (a)–(i) determine whether the statement is true or
false, and justify your answer.

(a) If a matrix is in reduced row echelon form, then it is also in
row echelon form.

(b) If an elementary row operation is applied to a matrix that is
in row echelon form, the resulting matrix will still be in row
echelon form.

(c) Every matrix has a unique row echelon form.

(d) A homogeneous linear system in n unknowns whose corre-
sponding augmented matrix has a reduced row echelon form
with r leading 1’s has n − r free variables.

(e) All leading 1’s in a matrix in row echelon form must occur in
different columns.

(f ) If every column of a matrix in row echelon form has a leading
1, then all entries that are not leading 1’s are zero.

(g) If a homogeneous linear system of n equations in n unknowns
has a corresponding augmented matrix with a reduced row
echelon form containing n leading 1’s, then the linear system
has only the trivial solution.

(h) If the reduced row echelon form of the augmented matrix for
a linear system has a row of zeros, then the system must have
infinitely many solutions.

(i) If a linear system has more unknowns than equations, then it
must have infinitely many solutions.

Working withTechnology

T1. Find the reduced row echelon form of the augmented matrix
for the linear system:

6x1 + x2 + 4x4 = −3
−9x1 + 2x2 + 3x3 − 8x4 = 1

7x1 − 4x3 + 5x4 = 2

Use your result to determine whether the system is consistent and,
if so, find its solution.

T2. Find values of the constants A, B, C, and D that make the
following equation an identity (i.e., true for all values of x).

3x3 + 4x2 − 6x
(x2 + 2x + 2)(x2 − 1)

= Ax + B

x2 + 2x + 2
+ C

x − 1
+ D

x + 1

[Hint: Obtain a common denominator on the right, and then
equate corresponding coefficients of the various powers of x in
the two numerators. Students of calculus will recognize this as a
problem in partial fractions.]

1.3 Matrices and Matrix Operations
Rectangular arrays of real numbers arise in contexts other than as augmented matrices for
linear systems. In this section we will begin to study matrices as objects in their own right
by defining operations of addition, subtraction, and multiplication on them.

Matrix Notation and
Terminology

In Section 1.2 we used rectangular arrays of numbers, called augmented matrices, to
abbreviate systems of linear equations. However, rectangular arrays of numbers occur
in other contexts as well. For example, the following rectangular array with three rows
and seven columns might describe the number of hours that a student spent studying
three subjects during a certain week:


