
The Second Law

The purpose of this chapter is to explain the origin of the spontaneity of physical and chem-
ical change. We examine two simple processes and show how to define, measure, and use
a property, the entropy, to discuss spontaneous changes quantitatively. The chapter also
introduces a major subsidiary thermodynamic property, the Gibbs energy, which lets us 
express the spontaneity of a process in terms of the properties of a system. The Gibbs 
energy also enables us to predict the maximum non-expansion work that a process can do.
As we began to see in Chapter 2, one application of thermodynamics is to find relations 
between properties that might not be thought to be related. Several relations of this kind can
be established by making use of the fact that the Gibbs energy is a state function. We also
see how to derive expressions for the variation of the Gibbs energy with temperature and
pressure and how to formulate expressions that are valid for real gases. These expressions
will prove useful later when we discuss the effect of temperature and pressure on equilib-
rium constants.

Some things happen naturally; some things don’t. A gas expands to fill the available
volume, a hot body cools to the temperature of its surroundings, and a chemical 
reaction runs in one direction rather than another. Some aspect of the world deter-
mines the spontaneous direction of change, the direction of change that does not 
require work to bring it about. A gas can be confined to a smaller volume, an object
can be cooled by using a refrigerator, and some reactions can be driven in reverse 
(as in the electrolysis of water). However, none of these processes is spontaneous; each
one must be brought about by doing work. An important point, though, is that
throughout this text ‘spontaneous’ must be interpreted as a natural tendency that may
or may not be realized in practice. Thermodynamics is silent on the rate at which 
a spontaneous change in fact occurs, and some spontaneous processes (such as the
conversion of diamond to graphite) may be so slow that the tendency is never realized
in practice whereas others (such as the expansion of a gas into a vacuum) are almost
instantaneous.

The recognition of two classes of process, spontaneous and non-spontaneous, is
summarized by the Second Law of thermodynamics. This law may be expressed in 
a variety of equivalent ways. One statement was formulated by Kelvin:

No process is possible in which the sole result is the absorption of heat from a reser-
voir and its complete conversion into work.

For example, it has proved impossible to construct an engine like that shown in 
Fig. 3.1, in which heat is drawn from a hot reservoir and completely converted into
work. All real heat engines have both a hot source and a cold sink; some energy is 
always discarded into the cold sink as heat and not converted into work. The Kelvin
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3.1 THE DISPERSAL OF ENERGY 95

statement is a generalization of another everyday observation, that a ball at rest on 
a surface has never been observed to leap spontaneously upwards. An upward leap of
the ball would be equivalent to the conversion of heat from the surface into work.

The direction of spontaneous change

What determines the direction of spontaneous change? It is not the total energy of 
the isolated system. The First Law of thermodynamics states that energy is conserved
in any process, and we cannot disregard that law now and say that everything tends 
towards a state of lower energy: the total energy of an isolated system is constant.

Is it perhaps the energy of the system that tends towards a minimum? Two argu-
ments show that this cannot be so. First, a perfect gas expands spontaneously into a
vacuum, yet its internal energy remains constant as it does so. Secondly, if the energy
of a system does happen to decrease during a spontaneous change, the energy of its
surroundings must increase by the same amount (by the First Law). The increase in
energy of the surroundings is just as spontaneous a process as the decrease in energy
of the system.

When a change occurs, the total energy of an isolated system remains constant but
it is parcelled out in different ways. Can it be, therefore, that the direction of change is
related to the distribution of energy? We shall see that this idea is the key, and that
spontaneous changes are always accompanied by a dispersal of energy.

3.1 The dispersal of energy

Key point During a spontaneous change in an isolated system the total energy is dispersed into

random thermal motion of the particles in the system.

We can begin to understand the role of the distribution of energy by thinking about 
a ball (the system) bouncing on a floor (the surroundings). The ball does not rise as
high after each bounce because there are inelastic losses in the materials of the ball and
floor. The kinetic energy of the ball’s overall motion is spread out into the energy of
thermal motion of its particles and those of the floor that it hits. The direction of
spontaneous change is towards a state in which the ball is at rest with all its energy 
dispersed into disorderly thermal motion of molecules in the air and of the atoms of
the virtually infinite floor (Fig. 3.2).

A ball resting on a warm floor has never been observed to start bouncing. For
bouncing to begin, something rather special would need to happen. In the first place,
some of the thermal motion of the atoms in the floor would have to accumulate in a
single, small object, the ball. This accumulation requires a spontaneous localization of
energy from the myriad vibrations of the atoms of the floor into the much smaller
number of atoms that constitute the ball (Fig. 3.3). Furthermore, whereas the thermal
motion is random, for the ball to move upwards its atoms must all move in the same
direction. The localization of random, disorderly motion as concerted, ordered 
motion is so unlikely that we can dismiss it as virtually impossible.1

We appear to have found the signpost of spontaneous change: we look for the 
direction of change that leads to dispersal of the total energy of the isolated system. This
principle accounts for the direction of change of the bouncing ball, because its energy

Hot source

Work
Heat

Flow
of energy

Engine

Fig. 3.1 The Kelvin statement of the Second
Law denies the possibility of the process
illustrated here, in which heat is changed
completely into work, there being no other
change. The process is not in conflict with
the First Law because energy is conserved.

Fig. 3.2 The direction of spontaneous
change for a ball bouncing on a floor. On
each bounce some of its energy is degraded
into the thermal motion of the atoms of the
floor, and that energy disperses. The
reverse has never been observed to take
place on a macroscopic scale.

1 Concerted motion, but on a much smaller scale, is observed as Brownian motion, the jittering motion of
small particles suspended in a liquid or gas.
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is spread out as thermal motion of the atoms of the floor. The reverse process is not
spontaneous because it is highly improbable that energy will become localized, 
leading to uniform motion of the ball’s atoms. A gas does not contract spontaneously
because to do so the random motion of its molecules, which spreads out the distribu-
tion of kinetic energy throughout the container, would have to take them all into the
same region of the container, thereby localizing the energy. The opposite change,
spontaneous expansion, is a natural consequence of energy becoming more dispersed
as the gas molecules occupy a larger volume. An object does not spontaneously 
become warmer than its surroundings because it is highly improbable that the jostling
of randomly vibrating atoms in the surroundings will lead to the localization of ther-
mal motion in the object. The opposite change, the spreading of the object’s energy
into the surroundings as thermal motion, is natural.

It may seem very puzzling that the spreading out of energy and matter can lead to
the formation of such ordered structures as crystals or proteins. Nevertheless, in due
course, we shall see that dispersal of energy and matter accounts for change in all its
forms.

3.2 Entropy

Key points The entropy acts as a signpost of spontaneous change. (a) Entropy change is defined

in terms of heat transactions (the Clausius definition). (b) Absolute entropies are defined in terms

of the number of ways of achieving a configuration (the Boltzmann formula). (c) The Carnot cycle

is used to prove that entropy is a state function. (d) The efficiency of a heat engine is the basis 

of the definition of the thermodynamic temperature scale and one realization, the Kelvin scale. 

(e) The Clausius inequality is used to show that the entropy increases in a spontaneous change and

therefore that the Clausius definition is consistent with the Second Law.

The First Law of thermodynamics led to the introduction of the internal energy, U.
The internal energy is a state function that lets us assess whether a change is permissible:
only those changes may occur for which the internal energy of an isolated system 
remains constant. The law that is used to identify the signpost of spontaneous change,
the Second Law of thermodynamics, may also be expressed in terms of another state
function, the entropy, S. We shall see that the entropy (which we shall define shortly,
but is a measure of the energy dispersed in a process) lets us assess whether one state
is accessible from another by a spontaneous change. The First Law uses the internal
energy to identify permissible changes; the Second Law uses the entropy to identify the
spontaneous changes among those permissible changes.

The Second Law of thermodynamics can be expressed in terms of the entropy:

The entropy of an isolated system increases in the course of a spontaneous change:
ΔStot > 0

where Stot is the total entropy of the system and its surroundings. Thermodynamically
irreversible processes (like cooling to the temperature of the surroundings and the
free expansion of gases) are spontaneous processes, and hence must be accompanied
by an increase in total entropy.

(a) The thermodynamic definition of entropy

The thermodynamic definition of entropy concentrates on the change in entropy, 
dS, that occurs as a result of a physical or chemical change (in general, as a result of a
‘process’). The definition is motivated by the idea that a change in the extent to which
energy is dispersed depends on how much energy is transferred as heat. As we have 
remarked, heat stimulates random motion in the surroundings. On the other hand,

(a) (b)

Fig. 3.3 The molecular interpretation of the
irreversibility expressed by the Second Law.
(a) A ball resting on a warm surface; the
atoms are undergoing thermal motion
(vibration, in this instance), as indicated by
the arrows. (b) For the ball to fly upwards,
some of the random vibrational motion
would have to change into coordinated,
directed motion. Such a conversion is
highly improbable.



3.2 ENTROPY 97

A note on good practice According
to eqn 3.2, when the energy
transferred as heat is expressed in
joules and the temperature is in
kelvins, the units of entropy are joules
per kelvin (J K−1). Entropy is an
extensive property. Molar entropy,
the entropy divided by the amount of
substance, is expressed in joules per
kelvin per mole (J K−1 mol−1). The
units of entropy are the same as those
of the gas constant, R, and molar heat
capacities. Molar entropy is an
intensive property.

work stimulates uniform motion of atoms in the surroundings and so does not
change their entropy.

The thermodynamic definition of entropy is based on the expression

dS = [3.1]

where qrev is the heat supplied reversibly. For a measurable change between two states 
i and f this expression integrates to

ΔS = �
f

i

(3.2)

That is, to calculate the difference in entropy between any two states of a system, we
find a reversible path between them, and integrate the energy supplied as heat at each
stage of the path divided by the temperature at which heating occurs.

Example 3.1 Calculating the entropy change for the isothermal expansion of a perfect gas

Calculate the entropy change of a sample of perfect gas when it expands isother-
mally from a volume Vi to a volume Vf .

Method The definition of entropy instructs us to find the energy supplied as heat
for a reversible path between the stated initial and final states regardless of the 
actual manner in which the process takes place. A simplification is that the expan-
sion is isothermal, so the temperature is a constant and may be taken outside the
integral in eqn 3.2. The energy absorbed as heat during a reversible isothermal 
expansion of a perfect gas can be calculated from ΔU = q + w and ΔU = 0, which 
implies that q = −w in general and therefore that qrev = −wrev for a reversible change.
The work of reversible isothermal expansion was calculated in Section 2.3.

Answer Because the temperature is constant, eqn 3.2 becomes

ΔS = �
f

i

dqrev =

From eqn 2.10, we know that

qrev = −wrev = nRT ln

It follows that

ΔS = nR ln

• A brief illustration

When the volume occupied by 1.00 mol of any perfect gas molecules is doubled at any

constant temperature, Vf /Vi = 2 and

ΔS = (1.00 mol) × (8.3145 J K−1 mol−1) × ln 2 = +5.76 J K−1 •

Self-test 3.1 Calculate the change in entropy when the pressure of a fixed amount
of perfect gas is changed isothermally from pi to pf . What is this change due to?

[ΔS = nR ln(pi /pf); the change in volume when the gas is compressed]

Vf

Vi

Vf

Vi

qrev

T

1

T

dqrev

T

Definition of
entropy change

dqrev

T
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2 Alternatively, the surroundings can be regarded as being at constant pressure, in which case we could
equate dqsur to dHsur.

We can use the definition in eqn 3.1 to formulate an expression for the change in
entropy of the surroundings, ΔSsur. Consider an infinitesimal transfer of heat dqsur to
the surroundings. The surroundings consist of a reservoir of constant volume, so the
energy supplied to them by heating can be identified with the change in the internal
energy of the surroundings, dUsur.

2 The internal energy is a state function, and dUsur

is an exact differential. As we have seen, these properties imply that dUsur is independ-
ent of how the change is brought about and in particular is independent of whether
the process is reversible or irreversible. The same remarks therefore apply to dqsur,
to which dUsur is equal. Therefore, we can adapt the definition in eqn 3.1, delete the
constraint ‘reversible’, and write

dSsur = = (3.3a)

Furthermore, because the temperature of the surroundings is constant whatever the
change, for a measurable change

ΔSsur = (3.3b)

That is, regardless of how the change is brought about in the system, reversibly or 
irreversibly, we can calculate the change of entropy of the surroundings by dividing
the heat transferred by the temperature at which the transfer takes place.

Equation 3.3 makes it very simple to calculate the changes in entropy of the 
surroundings that accompany any process. For instance, for any adiabatic change, 
qsur = 0, so

For an adiabatic change: ΔSsur = 0 (3.4)

This expression is true however the change takes place, reversibly or irreversibly, pro-
vided no local hot spots are formed in the surroundings. That is, it is true so long as the
surroundings remain in internal equilibrium. If hot spots do form, then the localized
energy may subsequently disperse spontaneously and hence generate more entropy.

• A brief illustration

To calculate the entropy change in the surroundings when 1.00 mol H2O(l) is formed

from its elements under standard conditions at 298 K, we use ΔH 7 = −286 kJ from 

Table 2.8. The energy released as heat is supplied to the surroundings, now regarded as

being at constant pressure, so qsur = +286 kJ. Therefore,

ΔSsur = = +960 J K−1

This strongly exothermic reaction results in an increase in the entropy of the surround-

ings as energy is released as heat into them. •

Self-test 3.2 Calculate the entropy change in the surroundings when 1.00 mol
N2O4(g) is formed from 2.00 mol NO2(g) under standard conditions at 298 K.

[−192 J K−1]

2.86 × 105 J

298 K

qsur

Tsur

Entropy change of
the surroundings

dqsur

Tsur

dqsur,rev

Tsur
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(c) The entropy as a state function

Entropy is a state function. To prove this assertion, we need to show that the integral
of dS is independent of path. To do so, it is sufficient to prove that the integral of 
eqn 3.1 around an arbitrary cycle is zero, for that guarantees that the entropy is the
same at the initial and final states of the system regardless of the path taken between
them (Fig. 3.5). That is, we need to show that

� = 0 (3.6)

where the symbol ı denotes integration around a closed path. There are three steps in
the argument:

1. First, to show that eqn 3.6 is true for a special cycle (a ‘Carnot cycle’) involving a
perfect gas.

2. Then to show that the result is true whatever the working substance.

3. Finally, to show that the result is true for any cycle.

A Carnot cycle, which is named after the French engineer Sadi Carnot, consists of
four reversible stages (Fig. 3.6):

1. Reversible isothermal expansion from A to B at Th; the entropy change is qh/Th,
where qh is the energy supplied to the system as heat from the hot source.

2. Reversible adiabatic expansion from B to C. No energy leaves the system as heat,
so the change in entropy is zero. In the course of this expansion, the temperature falls
from Th to Tc, the temperature of the cold sink.

3. Reversible isothermal compression from C to D at Tc. Energy is released as heat
to the cold sink; the change in entropy of the system is qc /Tc; in this expression qc is
negative.

4. Reversible adiabatic compression from D to A. No energy enters the system as
heat, so the change in entropy is zero. The temperature rises from Tc to Th.

The total change in entropy around the cycle is the sum of the changes in each of these
four steps:

�dS = +

However, we show in the following Justification that for a perfect gas

= − (3.7)

Substitution of this relation into the preceding equation gives zero on the right, which
is what we wanted to prove.

Justification 3.1 Heating accompanying reversible adiabatic expansion

This Justification is based on two features of the cycle. One feature is that the two
temperatures Th and Tc in eqn 3.7 lie on the same adiabat in Fig. 3.6. The second 
feature is that the energies transferred as heat during the two isothermal stages are

qh = nRTh ln qc = nRTc ln
VD
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Fig. 3.5 In a thermodynamic cycle, the
overall change in a state function (from the
initial state to the final state and then back
to the initial state again) is zero.
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Fig. 3.6 The basic structure of a Carnot
cycle. In Step 1, there is an isothermal
reversible expansion at the temperature Th.
Step 2 is a reversible adiabatic expansion in
which the temperature falls from Th to Tc.
In Step 3 there is an isothermal reversible
compression at Tc, and that isothermal step
is followed by an adiabatic reversible
compression, which restores the system to
its initial state.
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We now show that the two volume ratios are related in a very simple way. From 
the relation between temperature and volume for reversible adiabatic processes
(VT c = constant, eqn 2.28):

VAT h
c = VDT c

c VCTc
c = VBT h

c

Multiplication of the first of these expressions by the second gives

VAVCT h
c T c

c = VDVBT h
c T c

c

which, on cancellation of the temperatures, simplifies to

=

With this relation established, we can write

qc = nRTc ln = nRTc ln = −nRTc ln

and therefore

= = −

as in eqn 3.7.

In the second step we need to show that eqn 3.6 applies to any material, not just a
perfect gas (which is why, in anticipation, we have not labelled it with a °). We begin
this step of the argument by introducing the efficiency, η (eta), of a heat engine:

η = = [3.8]

We are using modulus signs to avoid complications with signs: all efficiencies are 
positive numbers. The definition implies that, the greater the work output for a given
supply of heat from the hot reservoir, the greater is the efficiency of the engine. We can
express the definition in terms of the heat transactions alone, because (as shown in
Fig. 3.7), the energy supplied as work by the engine is the difference between the 
energy supplied as heat by the hot reservoir and returned to the cold reservoir:

η = = 1 − (3.9)

It then follows from eqn 3.7 (noting that the modulus signs remove the minus sign) that

η = 1 − (3.10)rev

Now we are ready to generalize this conclusion. The Second Law of thermodynam-
ics implies that all reversible engines have the same efficiency regardless of their construc-
tion. To see the truth of this statement, suppose two reversible engines are coupled
together and run between the same two reservoirs (Fig. 3.8). The working substances
and details of construction of the two engines are entirely arbitrary. Initially, suppose
that engine A is more efficient than engine B, and that we choose a setting of the con-
trols that causes engine B to acquire energy as heat qc from the cold reservoir and to
release a certain quantity of energy as heat into the hot reservoir. However, because
engine A is more efficient than engine B, not all the work that A produces is needed for

Carnot
efficiency

Tc

Th

|qc|
|qh|

|qh| − |qc|
|qh|

Definition of
efficiency

|w |
|qh |

work performed

heat absorbed from hot source

Th

Tc

nRTh ln(VB /VA)

−nRTc ln(VB /VA)

qh

qc

VB

VA

VA

VB

VD

VC

VD

VC

VA

VB

Cold sink

Hot source

qc

qh

Th

Tc

20
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5
w

Fig. 3.7 Suppose an energy qh (for example,
20 kJ) is supplied to the engine and qc is lost
from the engine (for example, qc = −15 kJ)
and discarded into the cold reservoir. The
work done by the engine is equal to qh + qc

(for example, 20 kJ + (−15 kJ) = 5 kJ). The
efficiency is the work done divided by the
energy supplied as heat from the hot
source.
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this process, and the difference can be used to do work. The net result is that the cold
reservoir is unchanged, work has been done, and the hot reservoir has lost a certain
amount of energy. This outcome is contrary to the Kelvin statement of the Second
Law, because some heat has been converted directly into work. In molecular terms,
the random thermal motion of the hot reservoir has been converted into ordered 
motion characteristic of work. Because the conclusion is contrary to experience, the
initial assumption that engines A and B can have different efficiencies must be false. 
It follows that the relation between the heat transfers and the temperatures must also
be independent of the working material, and therefore that eqn 3.10 is always true for
any substance involved in a Carnot cycle.

For the final step in the argument, we note that any reversible cycle can be approx-
imated as a collection of Carnot cycles and the integral around an arbitrary path is the
sum of the integrals around each of the Carnot cycles (Fig. 3.9). This approximation
becomes exact as the individual cycles are allowed to become infinitesimal. The 
entropy change around each individual cycle is zero (as demonstrated above), so the
sum of entropy changes for all the cycles is zero. However, in the sum, the entropy
change along any individual path is cancelled by the entropy change along the path it
shares with the neighbouring cycle. Therefore, all the entropy changes cancel except
for those along the perimeter of the overall cycle. That is,

= = 0

In the limit of infinitesimal cycles, the non-cancelling edges of the Carnot cycles match
the overall cycle exactly, and the sum becomes an integral. Equation 3.6 then follows
immediately. This result implies that dS is an exact differential and therefore that S is
a state function.

(d) The thermodynamic temperature

Suppose we have an engine that is working reversibly between a hot source at a tem-
perature Th and a cold sink at a temperature T, then we know from eqn 3.10 that

T = (1 − η)Th (3.11)

This expression enabled Kelvin to define the thermodynamic temperature scale in
terms of the efficiency of a heat engine: we construct an engine in which the hot source
is at a known temperature and the cold sink is the object of interest. The temperature
of the latter can then be inferred from the measured efficiency of the engine. The
Kelvin scale (which is a special case of the thermodynamic temperature scale) is
defined by using water at its triple point as the notional hot source and defining that
temperature as 273.16 K exactly. For instance, if it is found that the efficiency of such
an engine is 0.20, then the temperature of the cold sink is 0.80 × 273.16 K = 220 K. This
result is independent of the working substance of the engine.

(e) The Clausius inequality

We now show that the definition of entropy is consistent with the Second Law. To
begin, we recall that more work is done when a change is reversible than when it is 
irreversible. That is, |dwrev | ≥ |dw |. Because dw and dwrev are negative when energy
leaves the system as work, this expression is the same as −dwrev ≥ −dw, and hence 
dw − dwrev ≥ 0. Because the internal energy is a state function, its change is the same
for irreversible and reversible paths between the same two states, so we can also write:

dU = dq + dw = dqrev + dwrev

qrev

T
∑

perimeter

qrev

T
∑
all

qcqq qcqq

qh qh’

w
B

Cold sink

qc
qc

qh qh’

Tc

w

Hot source Th

A B

A

qh – qh’

w

Hot source Th

A

(a)

(b)

Fig. 3.8 (a) The demonstration of the
equivalence of the efficiencies of all
reversible engines working between the
same thermal reservoirs is based on the
flow of energy represented in this diagram.
(b) The net effect of the processes is the
conversion of heat into work without there
being a need for a cold sink: this is contrary
to the Kelvin statement of the Second Law.
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Fig. 3.9 A general cycle can be divided into
small Carnot cycles. The match is exact in
the limit of infinitesimally small cycles.
Paths cancel in the interior of the
collection, and only the perimeter, an
increasingly good approximation to the
true cycle as the number of cycles increases,
survives. Because the entropy change
around every individual cycle is zero, the
integral of the entropy around the
perimeter is zero too.
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dq
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S

dS = –|dq|/Th

dS = +|dq|/Tc

Fig. 3.10 When energy leaves a hot reservoir
as heat, the entropy of the reservoir
decreases. When the same quantity of
energy enters a cooler reservoir, the
entropy increases by a larger amount.
Hence, overall there is an increase in
entropy and the process is spontaneous.
Relative changes in entropy are indicated
by the sizes of the arrows.

It follows that dqrev − dq = dw − dwrev ≥ 0, or dqrev ≥ dq, and therefore that 
dqrev /T ≥ dq/T. Now we use the thermodynamic definition of the entropy (eqn 3.1; 
dS = dqrev /T) to write

dS ≥ (3.12)

This expression is the Clausius inequality. It will prove to be of great importance for
the discussion of the spontaneity of chemical reactions, as we shall see in Section 3.5.

• A brief illustration

Consider the transfer of energy as heat from one system—the hot source—at a temper-

ature Th to another system—the cold sink—at a temperature Tc (Fig. 3.10). When |dq |
leaves the hot source (so dqh < 0), the Clausius inequality implies that dS ≥ dqh/Th. When

|dq | enters the cold sink the Clausius inequality implies that dS ≥ dqc /Tc (with dqc > 0).

Overall, therefore,

dS ≥ +

However, dqh = −dqc, so

dS ≥ − + = − dqc

which is positive (because dqc > 0 and Th > Tc). Hence, cooling (the transfer of heat from

hot to cold) is spontaneous, as we know from experience. •

We now suppose that the system is isolated from its surroundings, so that dq = 0.
The Clausius inequality implies that

dS ≥ 0 (3.13)

and we conclude that in an isolated system the entropy cannot decrease when a spon-
taneous change occurs. This statement captures the content of the Second Law.

IMPACT ON ENGINEERING

I3.1 Refrigeration

The same argument that we have used to discuss the efficiency of a heat engine can be
used to discuss the efficiency of a refrigerator, a device for transferring energy as heat
from a cold object (the contents of the refrigerator) to a warm sink (typically, the
room in which the refrigerator stands). The less work we have to do to bring this
transfer about, the more efficient is the refrigerator.

When an energy |qc | migrates from a cool source at a temperature Tc into a warmer
sink at a temperature Th, the change in entropy is

ΔS = − + < 0 (3.14)

The process is not spontaneous because not enough entropy is generated in the warm
sink to overcome the entropy loss from the cold source (Fig. 3.11). To generate more
entropy, energy must be added to the stream that enters the warm sink. Our task is to
find the minimum energy that needs to be supplied. The outcome is expressed as the
coefficient of performance, c:

c = = [3.15]Definition of coefficient
of performance

|qc|
|w |

energy transferred as heat

energy transferred as work

|qc|
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The less the work that is required to achieve a given transfer, the greater the coefficient
of performance and the more efficient is the refrigerator. For some of this develop-
ment it will prove best to work with 1/c.

Because |qc | is removed from the cold source, and the work |w | is added to the en-
ergy stream, the energy deposited as heat in the hot sink is |qh| = |qc| + |w |. Therefore,

= = = − 1

We can now use eqn 3.7 to express this result in terms of the temperatures alone,
which is possible if the transfer is performed reversibly. This substitution leads to

= − 1 =

and therefore

c = (3.16)rev

for the thermodynamically optimum coefficient of performance.

• A brief illustration

For a refrigerator withdrawing heat from ice-cold water (Tc = 273 K) in a typical 

environment (Th = 293 K), c = 14, so, to remove 10 kJ (enough to freeze 30 g of water),

requires transfer of at least 0.71 kJ as work. Practical refrigerators, of course, have a lower

coefficient of performance. •

3.3 Entropy changes accompanying specific processes

Key points (a) The entropy of a perfect gas increases when it expands isothermally. (b) The

change in entropy of a substance accompanying a change of state at its transition temperature is

calculated from its enthalpy of transition. (c) The increase in entropy when a substance is heated

is expressed in terms of its heat capacity. (d) The entropy of a substance at a given temperature is

determined from measurements of its heat capacity from T = 0 up to the temperature of interest,

allowing for phase transitions in that range.

We now see how to calculate the entropy changes that accompany a variety of basic
processes.

(a) Expansion

We established in Example 3.1 that the change in entropy of a perfect gas that expands
isothermally from Vi to Vf is

ΔS = nR ln (3.17)°

Because S is a state function, the value of ΔS of the system is independent of the path
between the initial and final states, so this expression applies whether the change 
of state occurs reversibly or irreversibly. The logarithmic dependence of entropy on
volume is illustrated in Fig. 3.12.

The total change in entropy, however, does depend on how the expansion takes
place. For any process the energy lost as heat from the system is acquired by the 

Entropy change for the isothermal
expansion of a perfect gas

Vf
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Tc

Th − Tc

Th − Tc
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Th
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c

|qh|
|qc|

|qh | − |qc |
|qc |
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|qc |

1

c

Cold source

Hot sink
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Fig. 3.11 (a) The flow of energy as heat 
from a cold source to a hot sink is not
spontaneous. As shown here, the entropy
increase of the hot sink is smaller than the
entropy decrease of the cold source, 
so there is a net decrease in entropy. 
(b) The process becomes feasible if work is
provided to add to the energy stream. Then
the increase in entropy of the hot sink can
be made to cancel the entropy decrease of
the cold source.
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surroundings, so dqsur = −dq. For a reversible change we use the expression in
Example 3.1 (qrev = nRT ln(Vf /Vi)); consequently, from eqn 3.3b

ΔSsur = = − = −nR ln (3.18)°rev

This change is the negative of the change in the system, so we can conclude that 
ΔStot = 0, which is what we should expect for a reversible process. If, on the other hand,
the isothermal expansion occurs freely (w = 0), then q = 0 (because ΔU = 0).
Consequently, ΔSsur = 0, and the total entropy change is given by eqn 3.17 itself:

ΔStot = nR ln (3.19)°

In this case, ΔStot > 0, as we expect for an irreversible process.

(b) Phase transition

The degree of dispersal of matter and energy changes when a substance freezes or boils
as a result of changes in the order with which the molecules pack together and the 
extent to which the energy is localized or dispersed. Therefore, we should expect the
transition to be accompanied by a change in entropy. For example, when a substance
vaporizes, a compact condensed phase changes into a widely dispersed gas and we can
expect the entropy of the substance to increase considerably. The entropy of a solid
also increases when it melts to a liquid and when that liquid turns into a gas.

Consider a system and its surroundings at the normal transition temperature, Ttrs,
the temperature at which two phases are in equilibrium at 1 atm. This temperature is
0°C (273 K) for ice in equilibrium with liquid water at 1 atm, and 100°C (373 K) for
liquid water in equilibrium with its vapour at 1 atm. At the transition temperature,
any transfer of energy as heat between the system and its surroundings is reversible 
because the two phases in the system are in equilibrium. Because at constant pressure
q = Δtrs H, the change in molar entropy of the system is3

ΔtrsS = (3.20)

If the phase transition is exothermic (Δtrs H < 0, as in freezing or condensing), then the
entropy change of the system is negative. This decrease in entropy is consistent with
the increased order of a solid compared with a liquid and with the increased order of
a liquid compared with a gas. The change in entropy of the surroundings, however, is
positive because energy is released as heat into them, and at the transition tempera-
ture the total change in entropy is zero. If the transition is endothermic (Δ trs H > 0, as
in melting and vaporization), then the entropy change of the system is positive, which
is consistent with dispersal of matter in the system. The entropy of the surroundings
decreases by the same amount, and overall the total change in entropy is zero.

Table 3.1 lists some experimental entropies of transition. Table 3.2 lists in more 
detail the standard entropies of vaporization of several liquids at their boiling points.
An interesting feature of the data is that a wide range of liquids give approximately the
same standard entropy of vaporization (about 85 J K−1 mol−1): this empirical observa-
tion is called Trouton’s rule. The explanation of Trouton’s rule is that a comparable
change in volume occurs when any liquid evaporates and becomes a gas. Hence, all

Entropy of
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Fig. 3.12 The logarithmic increase in
entropy of a perfect gas as it expands
isothermally.

interActivity Evaluate the change in
expansion of 1.00 mol CO2 (g) from

0.001 m3 to 0.010 m3 at 298 K, treated as a
van der Waals gas.

3 Recall from Section 2.6 that Δtrs H is an enthalpy change per mole of substance; so Δ trsS is also a molar
quantity.
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liquids can be expected to have similar standard entropies of vaporization. Liquids
that show significant deviations from Trouton’s rule do so on account of strong
molecular interactions that result in a partial ordering of their molecules. As a result,
there is a greater change in disorder when the liquid turns into a vapour than for a
fully disordered liquid. An example is water, where the large entropy of vaporization
reflects the presence of structure arising from hydrogen-bonding in the liquid.
Hydrogen bonds tend to organize the molecules in the liquid so that they are less ran-
dom than, for example, the molecules in liquid hydrogen sulfide (in which there is no
hydrogen bonding). Methane has an unusually low entropy of vaporization. A part of
the reason is that the entropy of the gas itself is slightly low (186 J K−1 mol−1 at 298 K);
the entropy of N2 under the same conditions is 192 J K−1 mol−1. As we shall see in
Chapter 12, fewer rotational states are accessible at room temperature for light
molecules than for heavy molecules.

• A brief illustration

There is no hydrogen bonding in liquid bromine and Br2 is a heavy molecule that is 

unlikely to display unusual behaviour in the gas phase, so it is safe to use Trouton’s rule.

To predict the standard molar enthalpy of vaporization of bromine given that it boils at

59.2°C, we use the rule in the form

Δvap H 7 = Tb × (85 J K−1 mol−1)

Substitution of the data then gives

Δvap H 7 = (332.4 K) × (85 J K−1 mol−1) = +2.8 × 103 J mol−1 = +28 kJ mol−1

The experimental value is +29.45 kJ mol−1. •

Table 3.1* Standard entropies (and temperatures) of phase transitions, ΔtrsS
7/(J K−1 mol−1)

Fusion (at Tf) Vaporization (at Tb)

Argon, Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)

Benzene, C6H6 38.00 (at 279 K) 87.19 (at 353 K)

Water, H2O 22.00 (at 273.15 K) 109.0 (at 373.15 K)

Helium, He 4.8 (at 1.8 K and 30 bar) 19.9 (at 4.22 K)

* More values are given in the Data section.

Table 3.2* The standard entropies of vaporization of liquids

Δvap H 7/(kJ mol−1) θb/°C ΔvapS 7/(J K−1 mol−1)

Benzene 30.8 80.1 87.2

Carbon tetrachloride 30 76.7 85.8

Cyclohexane 30.1 80.7 85.1

Hydrogen sulfide 18.7 −60.4 87.9

Methane 8.18 −161.5 73.2

Water 40.7 100.0 109.1

* More values are given in the Data section.
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Fig. 3.13 The logarithmic increase in
entropy of a substance as it is heated at
constant volume. Different curves
correspond to different values of the
constant-volume heat capacity (which is
assumed constant over the temperature
range) expressed as CV,m/R.

interActivity Plot the change in
entropy of a perfect gas of (a) atoms,

(b) linear rotors, (c) nonlinear rotors as 
the sample is heated over the same range
under conditions of (i) constant volume,
(ii) constant pressure.

Self-test 3.3 Predict the enthalpy of vaporization of ethane from its boiling point,
−88.6°C. [16 kJ mol−1]

(c) Heating

We can use eqn 3.2 to calculate the entropy of a system at a temperature Tf from a
knowledge of its entropy at another temperature Ti and the heat supplied to change its
temperature from one value to the other:

S(Tf) = S(Ti) + �
Tf

Ti

(3.21)

We shall be particularly interested in the entropy change when the system is subjected
to constant pressure (such as from the atmosphere) during the heating. Then, from
the definition of constant-pressure heat capacity (eqn 2.22, written as dqrev = CpdT).
Consequently, at constant pressure:

S(Tf) = S(Ti) + �
Tf

Ti

(3.22)

The same expression applies at constant volume, but with Cp replaced by CV. When Cp

is independent of temperature in the temperature range of interest, it can be taken
outside the integral and we obtain

S(Tf) = S(Ti) + Cp�
Tf

Ti

= S(Ti) + Cp ln (3.23)

with a similar expression for heating at constant volume. The logarithmic dependence
of entropy on temperature is illustrated in Fig. 3.13.

Example 3.2 Calculating the entropy change

Calculate the entropy change when argon at 25°C and 1.00 bar in a container of
volume 0.500 dm3 is allowed to expand to 1.000 dm3 and is simultaneously heated
to 100°C.

Method Because S is a state function, we are free to choose the most convenient
path from the initial state. One such path is reversible isothermal expansion to the
final volume, followed by reversible heating at constant volume to the final tem-
perature. The entropy change in the first step is given by eqn 3.17 and that of the
second step, provided CV is independent of temperature, by eqn 3.23 (with CV

in place of Cp). In each case we need to know n, the amount of gas molecules, and
can calculate it from the perfect gas equation and the data for the initial state from
n = piVi /RTi. The molar heat capacity at constant volume is given by the equiparti-
tion theorem as R. (The equipartition theorem is reliable for monatomic gases:
for others and, in general, use experimental data like those in Table 2.8, converting
to the value at constant volume by using the relation Cp,m − CV,m = R.)

Answer From eqn 3.17 the entropy change of the isothermal expansion from Vi to
Vf is

ΔS(Step 1) = nR ln
Vf

Vi

3
2

Tf

Ti

dT

T

Entropy variation
with temperature

CpdT

T

dqrev

T
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Fig. 3.14 The variation of Cp /T with the
temperature for a sample is used to
evaluate the entropy, which is equal to the
area beneath the upper curve up to the
corresponding temperature, plus the
entropy of each phase transition passed.

interActivity Allow for the
temperature dependence of the heat

capacity by writing C = a + bT + c/T 2, and
plot the change in entropy for different
values of the three coefficients (including
negative values of c).

A note on good practice It is
sensible to proceed as generally as
possible before inserting numerical
data so that, if required, the formula
can be used for other data and to
avoid rounding errors.

From eqn 3.23, the entropy change in the second step, from Ti to Tf at constant 
volume, is

ΔS(Step 2) = nCV,m ln = nR ln = nR ln
3/2

The overall entropy change of the system, the sum of these two changes, is

ΔS = nR ln + nR ln
3/2

= nR ln
3/2

(We have used ln x + ln y = ln xy.) Now we substitute n = piVi /RTi and obtain

ΔS = ln
3/2

At this point we substitute the data:

ΔS = × ln
3/2

= +0.173 J K−1

Self-test 3.4 Calculate the entropy change when the same initial sample is com-
pressed to 0.0500 dm3 and cooled to −25°C. [−0.43 J K−1]

(d) The measurement of entropy

The entropy of a system at a temperature T is related to its entropy at T = 0 by 
measuring its heat capacity Cp at different temperatures and evaluating the integral in
eqn 3.22, taking care to add the entropy of transition (Δtrs H/Ttrs) for each phase trans-
ition between T = 0 and the temperature of interest. For example, if a substance melts
at Tf and boils at Tb, then its molar entropy above its boiling temperature is given by

Sm(T) = Sm(0) + �
Tf

0

dT + + �
Tb

Tf

dT

+ + �
T

Tb

dT (3.24)

All the properties required, except Sm(0), can be measured calorimetrically, and the
integrals can be evaluated either graphically or, as is now more usual, by fitting a poly-
nomial to the data and integrating the polynomial analytically. The former procedure
is illustrated in Fig. 3.14: the area under the curve of Cp,m/T against T is the integral re-
quired. Because dT/T = d ln T, an alternative procedure is to evaluate the area under a
plot of Cp,m against ln T.

One problem with the determination of entropy is the difficulty of measuring heat
capacities near T = 0. There are good theoretical grounds for assuming that the heat
capacity is proportional to T 3 when T is low (see Section 7.1), and this dependence is
the basis of the Debye extrapolation. In this method, Cp is measured down to as low a
temperature as possible, and a curve of the form aT 3 is fitted to the data. That fit deter-
mines the value of a, and the expression Cp,m = aT3 is assumed valid down to T = 0.
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• A brief illustration

The standard molar entropy of nitrogen gas at 25°C has been calculated from the fol-

lowing data:

S 7
m/(J K−1 mol−1)

Debye extrapolation 1.92

Integration, from 10 K to 35.61 K 25.25

Phase transition at 35.61 K 6.43

Integration, from 35.61 K to 63.14 K 23.38

Fusion at 63.14 K 11.42

Integration, from 63.14 K to 77.32 K 11.41

Vaporization at 77.32 K 72.13

Integration, from 77.32 K to 298.15 K 39.20

Correction for gas imperfection 0.92

Total 192.06

Therefore

S 7
m(298.15 K) = Sm(0) + 192.1 J K−1 mol−1 •

Example 3.3 Calculating the entropy at low temperatures

The molar constant-pressure heat capacity of a certain solid at 4.2 K is 0.43 J K−1

mol−1. What is its molar entropy at that temperature?

Method Because the temperature is so low, we can assume that the heat capacity
varies with temperature as aT 3, in which case we can use eqn 3.22 to calculate the
entropy at a temperature T in terms of the entropy at T = 0 and the constant a.
When the integration is carried out, it turns out that the result can be expressed in
terms of the heat capacity at the temperature T, so the data can be used directly to
calculate the entropy.

Answer The integration required is

Sm(T) = Sm(0) + �
T

0

dT = Sm(0) + a�
T

0

T 2dT

= Sm(0) + aT 3 = Sm(0) + Cp,m(T)

from which it follows that

Sm(4.2 K) = Sm(0) + 0.14 J K−1 mol−1

Self-test 3.5 For metals, there is also a contribution to the heat capacity from the
electrons that is linearly proportional to T when the temperature is low. Find its
contribution to the entropy at low temperatures. [S(T) = S(0) + Cp(T)]

3.4 The Third Law of thermodynamics

Key points (a) The Nernst heat theorem implies the Third Law of thermodynamics. (b) The Third

Law allows us to define absolute entropies of substances and to define the standard entropy of 

a reaction.

1
3

1
3

aT 3

T
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At T = 0, all energy of thermal motion has been quenched, and in a perfect crystal all
the atoms or ions are in a regular, uniform array. The localization of matter and the
absence of thermal motion suggest that such materials also have zero entropy. This
conclusion is consistent with the molecular interpretation of entropy, because S = 0 if
there is only one way of arranging the molecules and only one microstate is accessible
(all molecules occupy the ground state).

(a) The Nernst heat theorem

The experimental observation that turns out to be consistent with the view that the
entropy of a regular array of molecules is zero at T = 0 is summarized by the Nernst
heat theorem:

The entropy change accompanying any physical or chemical 
transformation approaches zero as the temperature approaches zero: 
ΔS → 0 as T → 0 provided all the substances involved are perfectly 
ordered.

• A brief illustration

Consider the entropy of the transition between orthorhombic sulfur, S(α), and mono-

clinic sulfur, S(β), which can be calculated from the transition enthalpy (−402 J mol−1)

at the transition temperature (369 K):

Δ trsS = Sm(β) − Sm(α) = = −1.09 J K−1 mol−1

The two individual entropies can also be determined by measuring the heat capacities

from T = 0 up to T = 369 K. It is found that Sm(α) = Sm(α, 0) + 37 J K−1 mol−1 and Sm(β)

= Sm(β, 0) + 38 J K−1 mol−1. These two values imply that at the transition temperature

Δ trsS = Sm(α, 0) − Sm(β, 0) = −1 J K−1 mol−1

On comparing this value with the one above, we conclude that Sm(α, 0) − Sm(β, 0) ≈ 0,

in accord with the theorem. •

It follows from the Nernst theorem that, if we arbitrarily ascribe the value zero to
the entropies of elements in their perfect crystalline form at T = 0, then all perfect crys-
talline compounds also have zero entropy at T = 0 (because the change in entropy that
accompanies the formation of the compounds, like the entropy of all transformations
at that temperature, is zero). This conclusion is summarized by the Third Law of 
thermodynamics:

The entropy of all perfect crystalline substances is zero at T = 0.

As far as thermodynamics is concerned, choosing this common value as zero is a
matter of convenience. The molecular interpretation of entropy, however, justifies
the value S = 0 at T = 0. We saw in Section 3.2b that, according to the Boltzmann 
formula, the entropy is zero if there is only one accessible microstate (W = 1). In most
cases, W = 1 at T = 0 because there is only one way of achieving the lowest total energy:
put all the molecules into the same, lowest state. Therefore, S = 0 at T = 0, in accord
with the Third Law of thermodynamics. In certain cases, though, W may differ from
1 at T = 0. This is the case if there is no energy advantage in adopting a particular 
orientation even at absolute zero. For instance, for a diatomic molecule AB there may

Third Law of
thermodynamics

(−402 J mol−1)

369 K

Nernst
heat
theorem
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Table 3.3* Standard Third-Law
entropies at 298 K

S 7
m/(J K−1 mol−1)

Solids

Graphite, C(s) 5.7

Diamond, C(s) 2.4

Sucrose, C12H22O11(s) 360.2

Iodine, I2(s) 116.1

Liquids

Benzene, C6H6(l) 173.3

Water, H2O(l) 69.9

Mercury, Hg(l) 76.0

Gases

Methane, CH4(g) 186.3

Carbon dioxide, CO2(g) 213.7

Hydrogen, H2(g) 130.7

Helium, He 126.2

Ammonia, NH3(g) 192.4

* More values are given in the Data section.

A note on good practice Do not
make the mistake of setting the
standard molar entropies of elements
equal to zero: they have non-zero
values (provided T > 0), as we have
already discussed.

be almost no energy difference between the arrangements . . . AB AB AB . . . and . . .
BA AB BA . . . , so W > 1 even at T = 0. If S > 0 at T = 0 we say that the substance has 
a residual entropy. Ice has a residual entropy of 3.4 J K−1 mol−1. It stems from the 
arrangement of the hydrogen bonds between neighbouring water molecules: a given
O atom has two short O–H bonds and two long O···H bonds to its neighbours, but
there is a degree of randomness in which two bonds are short and which two are long.

(b) Third-Law entropies

Entropies reported on the basis that S(0) = 0 are called Third-Law entropies (and
often just ‘entropies’). When the substance is in its standard state at the temperature
T, the standard (Third-Law) entropy is denoted S 7(T). A list of values at 298 K is
given in Table 3.3.

The standard reaction entropy, S 7(T), is defined, like the standard reaction en-
thalpy, as the difference between the molar entropies of the pure, separated products
and the pure, separated reactants, all substances being in their standard states at the
specified temperature:

Δr S 7 = νS 7
m − νS 7

m (3.25a)

In this expression, each term is weighted by the appropriate stoichiometric
coefficient. A more sophisticated approach is to adopt the notation introduced in
Section 2.8 and to write

Δr S 7 = νJ S 7
m(J) (3.25b)

Standard reaction entropies are likely to be positive if there is a net formation of gas in
a reaction, and are likely to be negative if there is a net consumption of gas.

• A brief illustration

To calculate the standard reaction entropy of H2(g) + O2(g) → H2O(l) at 25°C, we use

the data in Table 2.8 of the Data section to write

Δr S 7 = S 7
m(H2O,1) − {S 7

m(H2,g) + S 7
m(O2,g)}

= 69.9 J K−1 mol−1 − {130.7 + (205.0)}J K−1 mol−1

= −163.4 J K−1 mol−1

The negative value is consistent with the conversion of two gases to a compact liquid. •

Self-test 3.6 Calculate the standard reaction entropy for the combustion of
methane to carbon dioxide and liquid water at 25°C. [−243 J K−1 mol−1]

Just as in the discussion of enthalpies in Section 2.8, where we acknowledged that
solutions of cations cannot be prepared in the absence of anions, the standard molar
entropies of ions in solution are reported on a scale in which the standard entropy of
the H+ ions in water is taken as zero at all temperatures:

S 7 (H+, aq) = 0 [3.26]Convention for
ions in solution

1
2

1
2

1
2

∑
J

Definition of standard
reaction entropy∑

Reactants
∑

Products
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Concentrating on the system

Entropy is the basic concept for discussing the direction of natural change, but to use
it we have to analyse changes in both the system and its surroundings. We have seen
that it is always very simple to calculate the entropy change in the surroundings, and
we shall now see that it is possible to devise a simple method for taking that contribu-
tion into account automatically. This approach focuses our attention on the system
and simplifies discussions. Moreover, it is the foundation of all the applications of
chemical thermodynamics that follow.

3.5 The Helmholtz and Gibbs energies

Key points (a) The Clausius inequality implies a number of criteria for spontaneous change

under a variety of conditions that may be expressed in terms of the properties of the system alone;

they are summarized by introducing the Helmholtz and Gibbs energies. (b) A spontaneous pro-

cess at constant temperature and volume is accompanied by a decrease in the Helmholtz energy.

(c) The change in the Helmholtz energy is equal to the maximum work accompanying a process 

at constant temperature. (d) A spontaneous process at constant temperature and pressure is 

accompanied by a decrease in the Gibbs energy. (e) The change in the Gibbs energy is equal to the

maximum non-expansion work accompanying a process at constant temperature and pressure.

Consider a system in thermal equilibrium with its surroundings at a temperature T.
When a change in the system occurs and there is a transfer of energy as heat between
the system and the surroundings, the Clausius inequality (dS ≥ dq/T, eqn 3.12) reads

dS − ≥ 0 (3.27)

We can develop this inequality in two ways according to the conditions (of constant
volume or constant pressure) under which the process occurs.

(a) Criteria for spontaneity

First, consider heating at constant volume. Then, in the absence of non-expansion
work, we can write dqV = dU; consequently

dS − ≥ 0 (3.28)

The importance of the inequality in this form is that it expresses the criterion for
spontaneous change solely in terms of the state functions of the system. The inequal-
ity is easily rearranged into

TdS ≥ dU (constant V, no additional work)5 (3.29)

At either constant internal energy (dU = 0) or constant entropy (dS = 0), this expres-
sion becomes, respectively,

dSU,V ≥ 0 dUS,V ≤ 0 (3.30)

where the subscripts indicate the constant conditions.
Equation 3.30 expresses the criteria for spontaneous change in terms of properties

relating to the system. The first inequality states that, in a system at constant volume

dU

T

dq

T

5 Recall that ‘additional work’ is work other than expansion work.
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and constant internal energy (such as an isolated system), the entropy increases in a
spontaneous change. That statement is essentially the content of the Second Law. The
second inequality is less obvious, for it says that, if the entropy and volume of the 
system are constant, then the internal energy must decrease in a spontaneous change.
Do not interpret this criterion as a tendency of the system to sink to lower energy. It is
a disguised statement about entropy and should be interpreted as implying that, if 
the entropy of the system is unchanged, then there must be an increase in entropy of
the surroundings, which can be achieved only if the energy of the system decreases 
as energy flows out as heat.

When energy is transferred as heat at constant pressure, and there is no work other
than expansion work, we can write dqp = dH and obtain

TdS ≥ dH (constant p, no additional work) (3.31)

At either constant enthalpy or constant entropy this inequality becomes, respectively,

dSH,p ≥ 0 dHS,p ≤ 0 (3.32)

The interpretations of these inequalities are similar to those of eqn 3.30. The entropy
of the system at constant pressure must increase if its enthalpy remains constant 
(for there can then be no change in entropy of the surroundings). Alternatively, the
enthalpy must decrease if the entropy of the system is constant, for then it is essential
to have an increase in entropy of the surroundings.

Because eqns 3.29 and 3.31 have the forms dU − TdS ≤ 0 and dH − TdS ≤ 0, respec-
tively, they can be expressed more simply by introducing two more thermodynamic
quantities. One is the Helmholtz energy, A, which is defined as

A = U − TS [3.33]

The other is the Gibbs energy, G:

G = H − TS [3.34]

All the symbols in these two definitions refer to the system.
When the state of the system changes at constant temperature, the two properties

change as follows:

(a) dA = dU − TdS (b) dG = dH − TdS (3.35)

When we introduce eqns 3.29 and 3.31, respectively, we obtain the criteria of spon-
taneous change as

(a) dAT,V ≤ 0 (b) dGT, p ≤ 0 (3.36)

These inequalities are the most important conclusions from thermodynamics for
chemistry. They are developed in subsequent sections and chapters.

(b) Some remarks on the Helmholtz energy

A change in a system at constant temperature and volume is spontaneous if dAT,V ≤ 0.
That is, a change under these conditions is spontaneous if it corresponds to a decrease
in the Helmholtz energy. Such systems move spontaneously towards states of lower A
if a path is available. The criterion of equilibrium, when neither the forward nor 
reverse process has a tendency to occur, is

Definition of
Gibbs energy

Definition of
Helmholtz energy
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dAT,V = 0 (3.37)

The expressions dA = dU − TdS and dA < 0 are sometimes interpreted as follows. A
negative value of dA is favoured by a negative value of dU and a positive value of TdS.
This observation suggests that the tendency of a system to move to lower A is due to
its tendency to move towards states of lower internal energy and higher entropy.
However, this interpretation is false (even though it is a good rule of thumb for 
remembering the expression for dA) because the tendency to lower A is solely a tend-
ency towards states of greater overall entropy. Systems change spontaneously if in
doing so the total entropy of the system and its surroundings increases, not because
they tend to lower internal energy. The form of dA may give the impression that 
systems favour lower energy, but that is misleading: dS is the entropy change of 
the system, −dU/T is the entropy change of the surroundings (when the volume of the
system is constant), and their total tends to a maximum.

(c) Maximum work

It turns out, as we show in the following Justification, that A carries a greater signific-
ance than being simply a signpost of spontaneous change: the change in the Helmholtz
function is equal to the maximum work accompanying a process at constant temperature:

dwmax = dA (3.38)

As a result, A is sometimes called the ‘maximum work function’, or the ‘work 
function’.6

Justification 3.2 Maximum work

To demonstrate that maximum work can be expressed in terms of the changes 
in Helmholtz energy, we combine the Clausius inequality dS ≥ dq/T in the form 
TdS ≥ dq with the First Law, dU = dq + dw, and obtain

dU ≤ TdS + dw

(dU is smaller than the term of the right because we are replacing dq by TdS, which
in general is larger.) This expression rearranges to

dw ≥ dU − TdS

It follows that the most negative value of dw, and therefore the maximum energy
that can be obtained from the system as work, is given by

dwmax = dU − TdS

and that this work is done only when the path is traversed reversibly (because then
the equality applies). Because at constant temperature dA = dU − TdS, we conclude
that dwmax = dA.

When a macroscopic isothermal change takes place in the system, eqn 3.38 becomes

wmax = ΔA (3.39)

with

ΔA = ΔU − TΔS (3.40)

Relation between A
and maximum work

6 Arbeit is the German word for work; hence the symbol A.
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ΔU  < 0

ΔS  < 0

q

w < ΔU

ΔSsur > 0

Fig. 3.16 In a system not isolated from its
surroundings, the work done may be
different from the change in internal
energy. Moreover, the process is
spontaneous if overall the entropy of 
the system and its surroundings increases. 
In the process depicted here, the entropy 
of the system decreases, so that of the
surroundings must increase in order for the
process to be spontaneous, which means
that energy must pass from the system to
the surroundings as heat. Therefore, less
work than ΔU can be obtained.

ΔU  < 0

ΔS  > 0

q

w > ΔU

ΔSsur < 0

Fig. 3.17 In this process, the entropy of the
system increases; hence we can afford to
lose some entropy of the surroundings.
That is, some of their energy may be lost as
heat to the system. This energy can be
returned to them as work. Hence the work
done can exceed ΔU.

This expression shows that in some cases, depending on the sign of TΔS, not all the
change in internal energy may be available for doing work. If the change occurs with
a decrease in entropy (of the system), in which case TΔS < 0, then the right-hand side
of this equation is not as negative as ΔU itself, and consequently the maximum work
is less than ΔU. For the change to be spontaneous, some of the energy must escape 
as heat in order to generate enough entropy in the surroundings to overcome the 
reduction in entropy in the system (Fig. 3.16). In this case, Nature is demanding a tax
on the internal energy as it is converted into work. This is the origin of the alternative
name ‘Helmholtz free energy’ for A, because ΔA is that part of the change in internal
energy that we are free to use to do work.

Further insight into the relation between the work that a system can do and the
Helmholtz energy is to recall that work is energy transferred to the surroundings as
the uniform motion of atoms. We can interpret the expression A = U − TS as showing
that A is the total internal energy of the system, U, less a contribution that is stored 
as energy of thermal motion (the quantity TS). Because energy stored in random 
thermal motion cannot be used to achieve uniform motion in the surroundings, only
the part of U that is not stored in that way, the quantity U − TS, is available for con-
version into work.

If the change occurs with an increase of entropy of the system (in which case 
TΔS > 0), the right-hand side of the equation is more negative than ΔU. In this case,
the maximum work that can be obtained from the system is greater than ΔU. The 
explanation of this apparent paradox is that the system is not isolated and energy may
flow in as heat as work is done. Because the entropy of the system increases, we can 
afford a reduction of the entropy of the surroundings yet still have, overall, a spon-
taneous process. Therefore, some energy (no more than the value of TΔS) may leave the
surroundings as heat and contribute to the work the change is generating (Fig. 3.17).
Nature is now providing a tax refund.

Example 3.4 Calculating the maximum available work

When 1.000 mol C6H12O6 (glucose) is oxidized to carbon dioxide and water at
25°C according to the equation C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(l),
calorimetric measurements give ΔrU

7 = −2808 kJ mol−1 and ΔrS
7 = +259.1 J K−1

mol−1 at 25°C. How much of this energy change can be extracted as (a) heat at 
constant pressure, (b) work?

Method We know that the heat released at constant pressure is equal to the value
of ΔH, so we need to relate ΔrH 7 to ΔrU

7, which is given. To do so, we suppose that
all the gases involved are perfect, and use eqn 2.21 in the form Δr H = ΔrU + Δνg RT.
For the maximum work available from the process we use eqn 3.39.

Answer (a) Because Δνg = 0, we know that Δr H 7 = ΔrU
7 = −2808 kJ mol−1.

Therefore, at constant pressure, the energy available as heat is 2808 kJ mol−1.
(b) Because T = 298 K, the value of Δr A7 is

Δr A7 = ΔrU
7 − TΔrS 7 = −2885 kJ mol−1

Therefore, the combustion of 1.000 mol C6H12O6 can be used to produce up to
2885 kJ of work. The maximum work available is greater than the change in inter-
nal energy on account of the positive entropy of reaction (which is partly due to the
generation of a large number of small molecules from one big one). The system can
therefore draw in energy from the surroundings (so reducing their entropy) and
make it available for doing work.
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Self-test 3.7 Repeat the calculation for the combustion of 1.000 mol CH4(g) under
the same conditions, using data from Tables 2.6 and 2.8.

[|qp | = 890 kJ, |wmax | = 818 kJ]

(d) Some remarks on the Gibbs energy

The Gibbs energy (the ‘free energy’) is more common in chemistry than the Helmholtz
energy because, at least in laboratory chemistry, we are usually more interested in
changes occurring at constant pressure than at constant volume. The criterion 
dGT, p ≤ 0 carries over into chemistry as the observation that, at constant temperature
and pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy.
Therefore, if we want to know whether a reaction is spontaneous, the pressure and
temperature being constant, we assess the change in the Gibbs energy. If G decreases
as the reaction proceeds, then the reaction has a spontaneous tendency to convert the
reactants into products. If G increases, then the reverse reaction is spontaneous.

The existence of spontaneous endothermic reactions provides an illustration of 
the role of G. In such reactions, H increases, the system rises spontaneously to states
of higher enthalpy, and dH > 0. Because the reaction is spontaneous we know that 
dG < 0 despite dH > 0; it follows that the entropy of the system increases so much that
TdS outweighs dH in dG = dH − TdS. Endothermic reactions are therefore driven 
by the increase of entropy of the system, and this entropy change overcomes the 
reduction of entropy brought about in the surroundings by the inflow of heat into the
system (dSsur = −dH/T at constant pressure).

(e) Maximum non-expansion work

The analogue of the maximum work interpretation of ΔA, and the origin of the name
‘free energy’, can be found for ΔG. In the following Justification, we show that at con-
stant temperature and pressure, the maximum additional (non-expansion) work,
wadd,max, is given by the change in Gibbs energy:

dwadd,max = dG (3.41a)

The corresponding expression for a measurable change is

wadd,max = ΔG (3.41b)

This expression is particularly useful for assessing the electrical work that may be pro-
duced by fuel cells and electrochemical cells, and we shall see many applications of it.

Justification 3.3 Maximum non-expansion work

Because H = U + pV, for a general change in conditions, the change in enthalpy is

dH = dq + dw + d(pV)

The corresponding change in Gibbs energy (G = H − TS) is

dG = dH − TdS − SdT = dq + dw + d(pV) − TdS − SdT

When the change is isothermal we can set dT = 0; then

dG = dq + dw + d(pV) − TdS

When the change is reversible, dw = dwrev and dq = dqrev = TdS, so for a reversible,
isothermal process

dG = TdS + dwrev + d(pV) − TdS = dwrev + d(pV)

Relation between G and
maximum non-expansion work
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The work consists of expansion work, which for a reversible change is given by 
−pdV, and possibly some other kind of work (for instance, the electrical work of
pushing electrons through a circuit or of raising a column of liquid); this additional
work we denote dwadd. Therefore, with d(pV) = pdV + Vdp,

dG = (−pdV + dwadd,rev) + pdV + Vdp = dwadd,rev + Vdp

If the change occurs at constant pressure (as well as constant temperature), we can
set dp = 0 and obtain dG = dwadd,rev. Therefore, at constant temperature and pres-
sure, dwadd,rev = dG. However, because the process is reversible, the work done must
now have its maximum value, so eqn 3.41 follows.

Example 3.5 Calculating the maximum non-expansion work of a reaction

How much energy is available for sustaining muscular and nervous activity from
the combustion of 1.00 mol of glucose molecules under standard conditions at
37°C (blood temperature)? The standard entropy of reaction is +259.1 J K−1 mol−1.

Method The non-expansion work available from the reaction is equal to the
change in standard Gibbs energy for the reaction (ΔrG

7, a quantity defined more
fully below). To calculate this quantity, it is legitimate to ignore the temperature-
dependence of the reaction enthalpy, to obtain Δr H 7 from Tables 2.6 and 2.8, and
to substitute the data into ΔrG

7 = Δr H 7 − TΔrS
7.

Answer Because the standard reaction enthalpy is −2808 kJ mol−1, it follows that
the standard reaction Gibbs energy is

ΔrG
7 = −2808 kJ mol−1 − (310 K) × (259.1 J K−1 mol−1) = −2888 kJ mol−1

Therefore, wadd,max = −2888 kJ for the combustion of 1 mol glucose molecules, and
the reaction can be used to do up to 2888 kJ of non-expansion work. To place this
result in perspective, consider that a person of mass 70 kg needs to do 2.1 kJ of work
to climb vertically through 3.0 m; therefore, at least 0.13 g of glucose is needed to
complete the task (and in practice significantly more).

Self-test 3.8 How much non-expansion work can be obtained from the 
combustion of 1.00 mol CH4(g) under standard conditions at 298 K? Use 
ΔrS

7 = −243 J K−1 mol−1. [818 kJ]

3.6 Standard molar Gibbs energies

Key points Standard Gibbs energies of formation are used to calculate the standard Gibbs ener-

gies of reactions. The Gibbs energies of formation of ions may be estimated from a thermo-

dynamic cycle and the Born equation.

Standard entropies and enthalpies of reaction can be combined to obtain the standard
Gibbs energy of reaction (or ‘standard reaction Gibbs energy’), ΔrG

7:

ΔrG
7 = Δr H 7 − TΔrS

7 [3.42]

The standard Gibbs energy of reaction is the difference in standard molar Gibbs 
energies of the products and reactants in their standard states at the temperature
specified for the reaction as written. As in the case of standard reaction enthalpies, it is
convenient to define the standard Gibbs energies of formation, Δf G

7, the standard

Definition of standard
Gibbs energy of reaction
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7 The reference state of an element was defined in Section 2.8.

Table 3.4* Standard Gibbs energies of
formation (at 298 K)

Δf G 7/(kJ mol−1)

Diamond, C(s) +2.9

Benzene, C6H6(l) +124.3

Methane, CH4(g) −50.7

Carbon dioxide, CO2(g) −394.4

Water, H2O(l) −237.1

Ammonia, NH3(g) −16.5

Sodium chloride, NaCl(s) −384.1

* More values are given in the Data section.

reaction Gibbs energy for the formation of a compound from its elements in their refer-
ence states.7 Standard Gibbs energies of formation of the elements in their reference
states are zero, because their formation is a ‘null’ reaction. A selection of values for
compounds is given in Table 3.4. From the values there, it is a simple matter to obtain
the standard Gibbs energy of reaction by taking the appropriate combination:

ΔrG
7 = νΔf G

7 − νΔf G
7 (3.43a)

In the notation introduced in Section 2.8,

ΔrG
7 = νJΔf G

7(J) (3.43b)

• A brief illustration

To calculate the standard Gibbs energy of the reaction CO(g) + O2(g) → CO2(g) at

25°C, we write

ΔrG
7 = Δf G

7(CO2,g) − {Δf G
7(CO,g) + Δf G

7(O2,g)}

= −394.4 kJ mol−1 − {(−137.2) + (0)}kJ mol−1

= −257.2 kJ mol−1 •

Self-test 3.9 Calculate the standard reaction Gibbs energy for the combustion of
CH4(g) at 298 K. [−818 kJ mol−1]

Just as we did in Section 2.8, where we acknowledged that solutions of cations can-
not be prepared without their accompanying anions, we define one ion, convention-
ally the hydrogen ion, to have zero standard Gibbs energy of formation at all
temperatures:

Δf G
7(H+,aq) = 0 [3.44]

In essence, this definition adjusts the actual values of the Gibbs energies of formation
of ions by a fixed amount that is chosen so that the standard value for one of them,
H+(aq), has the value zero.

• A brief illustration

For the reaction

H2(g) + Cl2(g) → H+(aq) + Cl−(aq) ΔrG
7 = −131.23 kJ mol−1

we can write

ΔrG
7 = Δf G

7(H+,aq) + Δf G
7(Cl−,aq) = Δf G

7(Cl−,aq)

and hence identify Δf G
7(Cl−,aq) as −131.23 kJ mol−1. With the value of Δf G

7(Cl−,aq) 

established, we can find the value of Δf G
7(Ag+,aq) from

Ag(s) + Cl2(g) → Ag+(aq) + Cl−(aq) ΔrG
7 = −54.12 kJ mol−1

which leads to Δf G
7(Ag+,aq) = +77.11 kJ mol−1. All the Gibbs energies of formation of

ions tabulated in the Data section were calculated in the same way. •

1
2

1
2

1
2

Convention for
ions in solution

1
2

1
2

1
2

∑
J

Procedure for calculating
the standard Gibbs
energy of reaction

∑
Reactants

∑
Products
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Combining the First and Second Laws

The First and Second Laws of thermodynamics are both relevant to the behaviour of
matter, and we can bring the whole force of thermodynamics to bear on a problem by
setting up a formulation that combines them.

3.7 The fundamental equation

Key point The fundamental equation, a combination of the First and Second Laws, is an expression

for the change in internal energy that accompanies changes in the volume and entropy of a system.

We have seen that the First Law of thermodynamics may be written dU = dq + dw. For
a reversible change in a closed system of constant composition, and in the absence of
any additional (non-expansion) work, we may set dwrev = −pdV and (from the defini-
tion of entropy) dqrev = TdS, where p is the pressure of the system and T its temperature.
Therefore, for a reversible change in a closed system,

dU = TdS − pdV (3.46)

However, because dU is an exact differential, its value is independent of path.
Therefore, the same value of dU is obtained whether the change is brought about 
irreversibly or reversibly. Consequently, eqn 3.46 applies to any change—reversible or
irreversible—of a closed system that does no additional (non-expansion) work. We shall
call this combination of the First and Second Laws the fundamental equation.

The fact that the fundamental equation applies to both reversible and irreversible
changes may be puzzling at first sight. The reason is that only in the case of a reversible
change may TdS be identified with dq and −pdV with dw. When the change is 
irreversible, TdS > dq (the Clausius inequality) and −pdV > dw. The sum of dw and dq
remains equal to the sum of TdS and −pdV, provided the composition is constant.

3.8 Properties of the internal energy

Key points Relations between thermodynamic properties are generated by combining thermo-

dynamic and mathematical expressions for changes in their values. (a) The Maxwell relations are

a series of relations between derivatives of thermodynamic properties based on criteria for

changes in the properties being exact differentials. (b) The Maxwell relations are used to derive the 

thermodynamic equation of state and to determine how the internal energy of a substance varies

with volume.

Equation 3.46 shows that the internal energy of a closed system changes in a simple
way when either S or V is changed (dU ∝ dS and dU ∝ dV). These simple propor-
tionalities suggest that U is best regarded as a function of S and V. We could regard U
as a function of other variables, such as S and p or T and V, because they are all inter-
related; but the simplicity of the fundamental equation suggests that U(S,V) is the
best choice.

The mathematical consequence of U being a function of S and V is that we can 
express an infinitesimal change dU in terms of changes dS and dV by

dU =
V

dS +
S

dV (3.47)
DEF

∂U

∂V

ABC
DEF

∂U

∂S

ABC

The fundamental equation

A brief comment
Partial derivatives were introduced in
Mathematical background 2. The type of
result in eqn 3.47 was first obtained in
Section 2.11, where we treated U as a
function of T and V.
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The two partial derivatives are the slopes of the plots of U against S and V, respectively.
When this expression is compared to the thermodynamic relation, eqn 3.46, we see
that, for systems of constant composition,

V

= T
S

= −p (3.48)

The first of these two equations is a purely thermodynamic definition of temperature
(a Zeroth-Law concept) as the ratio of the changes in the internal energy (a First-Law
concept) and entropy (a Second-Law concept) of a constant-volume, closed, constant-
composition system. We are beginning to generate relations between the properties of
a system and to discover the power of thermodynamics for establishing unexpected
relations.

(a) The Maxwell relations

An infinitesimal change in a function f(x,y) can be written df = gdx + hdy where g and
h are functions of x and y. The mathematical criterion for df being an exact differen-
tial (in the sense that its integral is independent of path) is that

x

=
y

(3.49)

This criterion is discussed in Mathematical background 2. Because the fundamental
equation, eqn 3.46, is an expression for an exact differential, the functions multiply-
ing dS and dV (namely T and −p) must pass this test. Therefore, it must be the case
that

S

= −
V

(3.50)

We have generated a relation between quantities that, at first sight, would not seem to
be related.

Equation 3.50 is an example of a Maxwell relation. However, apart from being 
unexpected, it does not look particularly interesting. Nevertheless, it does suggest that
there may be other similar relations that are more useful. Indeed, we can use the fact
that H, G, and A are all state functions to derive three more Maxwell relations. The 
argument to obtain them runs in the same way in each case: because H, G, and A are
state functions, the expressions for dH, dG, and dA satisfy relations like eqn 3.49. All
four relations are listed in Table 3.5 and we put them to work later in the chapter.

(b) The variation of internal energy with volume

The quantity πT = (∂U/∂V)T, which represents how the internal energy changes as the
volume of a system is changed isothermally, played a central role in the manipulation
of the First Law, and in Further information 2.2 we used the relation

πT = T
V

− p (3.51)

This relation is called a thermodynamic equation of state because it is an expression
for pressure in terms of a variety of thermodynamic properties of the system. We are
now ready to derive it by using a Maxwell relation.

A thermodynamic
equation of state

DEF
∂p

∂T

ABC

A Maxwell
relation

DEF
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ABC
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DEF

∂U
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Table 3.5 The Maxwell relations

From U:
S

= −
V

From H:
S

=
p

From A:
V

=
T

From G:
p

= −
T
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Justification 3.4 The thermodynamic equation of state

We obtain an expression for the coefficient πT by dividing both sides of eqn 3.47 by
dV, imposing the constraint of constant temperature, which gives

T

=
V T

+
S

Next, we introduce the two relations in eqn 3.48 and the definition of πT to obtain

πT = T
T

− p

The third Maxwell relation in Table 3.5 turns (∂S/∂V)T into (∂p/∂T)V, which com-
pletes the proof of eqn 3.51.

Example 3.6 Deriving a thermodynamic relation

Show thermodynamically that πT = 0 for a perfect gas, and compute its value for a
van der Waals gas.

Method Proving a result ‘thermodynamically’ means basing it entirely on general
thermodynamic relations and equations of state, without drawing on molecular
arguments (such as the existence of intermolecular forces). We know that for a
perfect gas, p = nRT/V, so this relation should be used in eqn 3.51. Similarly, the
van der Waals equation is given in Table 1.7, and for the second part of the ques-
tion it should be used in eqn 3.51.

Answer For a perfect gas we write

V

=
V

=

Then, eqn 3.51 becomes

πT = − p = 0

The equation of state of a van der Waals gas is

p = − a

Because a and b are independent of temperature,

V

=
V

=

Therefore, from eqn 3.51,

πT = − p = − − a = a

This result for πT implies that the internal energy of a van der Waals gas increases
when it expands isothermally (that is, (∂U/∂V)T > 0), and that the increase is 
related to the parameter a, which models the attractive interactions between the

n2

V 2
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particles. A larger molar volume, corresponding to a greater average separation 
between molecules, implies weaker mean intermolecular attractions, so the total
energy is greater.

Self-test 3.11 Calculate πT for a gas that obeys the virial equation of state 
(Table 1.7). [πT = RT 2(∂B/∂T)V /V 2

m + · · ·]

3.9 Properties of the Gibbs energy

Key points (a) The variation of the Gibbs energy of a system suggests that it is best regarded as a

function of pressure and temperature. The Gibbs energy of a substance decreases with tempera-

ture and increases with pressure. (b) The variation of Gibbs energy with temperature is related to

the enthalpy by the Gibbs–Helmholtz equation. (c) The Gibbs energies of solids and liquids are 

almost independent of pressure; those of gases vary linearly with the logarithm of the pressure.

The same arguments that we have used for U can be used for the Gibbs energy 
G = H − TS. They lead to expressions showing how G varies with pressure and tem-
perature that are important for discussing phase transitions and chemical reactions.

(a) General considerations

When the system undergoes a change of state, G may change because H, T, and S all
change. As in Justification 2.1, we write for infinitesimal changes in each property

dG = dH − d(TS) = dH − TdS − SdT

Because H = U + pV, we know that

dH = dU + d(pV) = dU + pdV + Vdp

and therefore

dG = dU + pdV + Vdp − TdS − SdT

For a closed system doing no non-expansion work, we can replace dU by the funda-
mental equation dU = TdS − pdV and obtain

dG = TdS − pdV + pdV + Vdp − TdS − SdT

Four terms now cancel on the right, and we conclude that for a closed system in the
absence of non-expansion work and at constant composition

dG = Vdp − SdT (3.52)

This expression, which shows that a change in G is proportional to a change in p or T,
suggests that G may be best regarded as a function of p and T. It may be regarded as
the fundamental equation of chemical thermodynamics as it is so central to the 
application of thermodynamics to chemistry: it suggests that G is an important quan-
tity in chemistry because the pressure and temperature are usually the variables under
our control. In other words, G carries around the combined consequences of the First
and Second Laws in a way that makes it particularly suitable for chemical applications.

The same argument that led to eqn 3.48, when applied to the exact differential 
dG = Vdp − SdT, now gives

p

= −S
T

= V (3.53)The variation of G
with T and p

DEF
∂G

∂p

ABC
DEF

∂G

∂T

ABC

The fundamental equation of
chemical thermodynamics
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These relations show how the Gibbs energy varies with temperature and pressure 
(Fig. 3.19). The first implies that:

• Because S > 0 for all substances, G always decreases when the temperature is raised
(at constant pressure and composition).

• Because (∂G/∂T)p becomes more negative as S increases, G decreases most
sharply when the entropy of the system is large.

Therefore, the Gibbs energy of the gaseous phase of a substance, which has a high
molar entropy, is more sensitive to temperature than its liquid and solid phases 
(Fig. 3.20). Similarly, the second relation implies that:

• Because V > 0 for all substances, G always increases when the pressure of the 
system is increased (at constant temperature and composition).

• Because (∂G/∂p)T increases with V, G is more sensitive to pressure when the 
volume of the system is large.

Because the molar volume of the gaseous phase of a substance is greater than that of
its condensed phases, the molar Gibbs energy of a gas is more sensitive to pressure
than its liquid and solid phases (Fig. 3.21).

(b) The variation of the Gibbs energy with temperature

As we remarked in the introduction, because the equilibrium composition of a system
depends on the Gibbs energy, to discuss the response of the composition to tempera-
ture we need to know how G varies with temperature.

The first relation in eqn 3.53, (∂G/∂T)p = −S, is our starting point for this discus-
sion. Although it expresses the variation of G in terms of the entropy, we can express
it in terms of the enthalpy by using the definition of G to write S = (H − G)/T. Then

p

= (3.54)

We shall see later that the equilibrium constant of a reaction is related to G/T rather
than to G itself,8 and it is easy to deduce from the last equation (see the following
Justification) that

p

= − (3.55)

This expression is called the Gibbs–Helmholtz equation. It shows that, if we know the
enthalpy of the system, then we know how G/T varies with temperature.

Justification 3.5 The Gibbs–Helmholtz equation

First, we note that

p

=
p

+ G =
p

− =
p

−

Then we use eqn 3.54 to write

p

− = − = −

When this expression is substituted in the preceding one, we obtain eqn 3.55.
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Fig. 3.19 The variation of the Gibbs energy
of a system with (a) temperature at
constant pressure and (b) pressure at
constant temperature. The slope of the
former is equal to the negative of the
entropy of the system and that of the latter
is equal to the volume.
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Fig. 3.20 The variation of the Gibbs energy
with the temperature is determined by the
entropy. Because the entropy of the
gaseous phase of a substance is greater than
that of the liquid phase, and the entropy of
the solid phase is smallest, the Gibbs energy
changes most steeply for the gas phase,
followed by the liquid phase, and then the
solid phase of the substance.

8 In Section 6.2b we derive the result that the equilibrium constant for a reaction is related to its standard
reaction Gibbs energy by ΔrG

7/T = −R ln K.
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Pressure, p
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Fig. 3.21 The variation of the Gibbs energy
with the pressure is determined by the
volume of the sample. Because the volume
of the gaseous phase of a substance is
greater than that of the same amount of
liquid phase, and the entropy of the solid
phase is smallest (for most substances), the
Gibbs energy changes most steeply for the
gas phase, followed by the liquid phase, 
and then the solid phase of the substance.
Because the volumes of the solid and liquid
phases of a substance are similar, their
molar Gibbs energies vary by similar
amounts as the pressure is changed.

Pressure, p

Vo
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Δp

Volume
assumed
constant

Actual
volume

pi pf

Fig. 3.22 The difference in Gibbs energy 
of a solid or liquid at two pressures is equal
to the rectangular area shown. We have
assumed that the variation of volume with
pressure is negligible.

The Gibbs–Helmholtz equation is most useful when it is applied to changes, 
including changes of physical state and chemical reactions at constant pressure. Then,
because ΔG = Gf − Gi for the change of Gibbs energy between the final and initial states
and because the equation applies to both Gf and Gi, we can write

p

= − (3.56)

This equation shows that, if we know the change in enthalpy of a system that is 
undergoing some kind of transformation (such as vaporization or reaction), then we
know how the corresponding change in Gibbs energy varies with temperature. As we
shall see, this is a crucial piece of information in chemistry.

(c) The variation of the Gibbs energy with pressure

To find the Gibbs energy at one pressure in terms of its value at another pressure, the
temperature being constant, we set dT = 0 in eqn 3.52, which gives dG = Vdp, and 
integrate:

G(pf) = G(pi) + �
pf

pi

Vdp (3.57a)

For molar quantities,

Gm(pf) = Gm(pi) + �
pf

pi

Vm dp (3.57b)

This expression is applicable to any phase of matter, but to evaluate it we need to know
how the molar volume, Vm, depends on the pressure.

The molar volume of a condensed phase changes only slightly as the pressure
changes (Fig. 3.22), so we can treat Vm as a constant and take it outside the integral:

Gm(pf) = Gm(pi) + Vm�
pf

pi

dp = Gm(pi) + (pf − pi)Vm (3.58)

Self-test 3.12 Calculate the change in Gm for ice at −10°C, with density 917 kg m−3,
when the pressure is increased from 1.0 bar to 2.0 bar. [+2.0 J mol−1]

Under normal laboratory conditions (pf − pi)Vm is very small and may be neglected.
Hence, we may usually suppose that the Gibbs energies of solids and liquids are 
independent of pressure. However, if we are interested in geophysical problems, then,
because pressures in the Earth’s interior are huge, their effect on the Gibbs energy can-
not be ignored. If the pressures are so great that there are substantial volume changes
over the range of integration, then we must use the complete expression, eqn 3.57.

• A brief illustration

Suppose that for a certain phase transition of a solid ΔtrsV = +1.0 cm3 mol−1 independent

of pressure. Then for an increase in pressure to 3.0 Mbar (3.0 × 1011 Pa) from 1.0 bar 

(1.0 × 105 Pa), the Gibbs energy of the transition changes from Δ trsG(1 bar) to

ΔtrsG(3 Mbar) = Δ trsG(1 bar) + (1.0 × 10−6 m3 mol−1) × (3.0 × 1011 Pa − 1.0 × 105 Pa)

= Δ trsG(1 bar) + 3.0 × 102 kJ mol−1

where we have used 1 Pa m3 = 1 J. •

ΔH

T 2

DEF
∂(ΔG/T)

∂T

ABC
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V = nRT/p
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Fig. 3.23 The difference in Gibbs energy for
a perfect gas at two pressures is equal to the
area shown below the perfect-gas isotherm.
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Fig. 3.24 The molar Gibbs energy of a
perfect gas is proportional to ln p, and the
standard state is reached at p 7. Note that, as
p → 0, the molar Gibbs energy becomes
negatively infinite.

interActivity Show how the first
derivative of G, (∂G/∂p)T, varies with

pressure, and plot the resulting expression
over a pressure range. What is the physical
significance of (∂G/∂p)T?

The molar volumes of gases are large, so the Gibbs energy of a gas depends strongly
on the pressure. Furthermore, because the volume also varies markedly with the 
pressure, we cannot treat it as a constant in the integral in eqn 3.57b (Fig. 3.23). For a
perfect gas we substitute Vm = RT/p into the integral, treat RT as a constant, and find

Gm(pf) = Gm(pi) + RT�
pf

pi

dp = Gm(pi) + RT ln (3.59)°

This expression shows that, when the pressure is increased tenfold at room temperature,
the molar Gibbs energy increases by RT ln 10 ≈ 6 kJ mol−1. It also follows from this
equation that, if we set pi = p 7 (the standard pressure of 1 bar), then the molar Gibbs
energy of a perfect gas at a pressure p (set pf = p) is related to its standard value by

Gm(p) = G 7
m + RT ln (3.60)°

Self-test 3.13 Calculate the change in the molar Gibbs energy of water vapour
(treated as a perfect gas) when the pressure is increased isothermally from 1.0 bar
to 2.0 bar at 298 K. Note that, whereas the change in molar Gibbs energy for a con-
densed phase (Self-test 3.12) is a few joules per mole, the answer you should get for
a gas is of the order of kilojoules per mole [+1.7 kJ mol−1]

The logarithmic dependence of the molar Gibbs energy on the pressure predicted
by eqn 3.60 is illustrated in Fig. 3.24. This very important expression, the con-
sequences of which we unfold in the following chapters, applies to perfect gases
(which is usually a good enough approximation). Further information 3.2 describes
how to take into account gas imperfections.

The molar Gibbs energy
of a perfect gas

p

p 7

pf

pi

1

p
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Exercises

Assume that all gases are perfect and that data refer to 298.15 K unless
otherwise stated.

3.1(a) Calculate the change in entropy when 25 kJ of energy is transferred
reversibly and isothermally as heat to a large block of iron at (a) 0°C, 
(b) 100°C.

3.1(b) Calculate the change in entropy when 50 kJ of energy is transferred
reversibly and isothermally as heat to a large block of copper at (a) 0°C, 
(b) 70°C.

3.2(a) Calculate the molar entropy of a constant-volume sample of neon at
500 K given that it is 146.22 J K−1 mol−1 at 298 K.

3.2(b) Calculate the molar entropy of a constant-volume sample of argon at
250 K given that it is 154.84 J K−1 mol−1 at 298 K.

3.3(a) Calculate ΔS (for the system) when the state of 3.00 mol of perfect gas
atoms, for which Cp,m = R, is changed from 25°C and 1.00 atm to 125°C and
5.00 atm. How do you rationalize the sign of ΔS?

3.3(b) Calculate ΔS (for the system) when the state of 2.00 mol diatomic
perfect gas molecules, for which Cp,m = R, is changed from 25°C and 
1.50 atm to 135°C and 7.00 atm. How do you rationalize the sign of ΔS?

3.4(a) A sample consisting of 3.00 mol of diatomic perfect gas molecules at
200 K is compressed reversibly and adiabatically until its temperature reaches
250 K. Given that CV,m = 27.5 J K−1 mol−1, calculate q, w, ΔU, ΔH, and ΔS.

3.4(b) A sample consisting of 2.00 mol of diatomic perfect gas molecules at
250 K is compressed reversibly and adiabatically until its temperature reaches
300 K. Given that CV,m = 27.5 J K−1 mol−1, calculate q, w, ΔU, ΔH, and ΔS.

3.5(a) Calculate ΔH and ΔStot when two copper blocks, each of mass 10.0 kg,
one at 100°C and the other at 0°C, are placed in contact in an isolated
container. The specific heat capacity of copper is 0.385 J K−1 g−1 and may be
assumed constant over the temperature range involved.

3.5(b) Calculate ΔH and ΔStot when two iron blocks, each of mass 1.00 kg, one
at 200°C and the other at 25°C, are placed in contact in an isolated container.
The specific heat capacity of iron is 0.449 J K−1 g−1 and may be assumed
constant over the temperature range involved.

3.6(a) Consider a system consisting of 2.0 mol CO2(g), initially at 25°C and 
10 atm and confined to a cylinder of cross-section 10.0 cm2. It is allowed to
expand adiabatically against an external pressure of 1.0 atm until the piston
has moved outwards through 20 cm. Assume that carbon dioxide may be
considered a perfect gas with CV,m = 28.8 J K−1 mol−1 and calculate (a) q, (b) w,
(c) ΔU, (d) ΔT, (e) ΔS.

3.6(b) Consider a system consisting of 1.5 mol CO2(g), initially at 15°C and
9.0 atm and confined to a cylinder of cross-section 100.0 cm2. The sample is
allowed to expand adiabatically against an external pressure of 1.5 atm until
the piston has moved outwards through 15 cm. Assume that carbon dioxide
may be considered a perfect gas with CV,m = 28.8 J K−1 mol−1, and calculate 
(a) q, (b) w, (c) ΔU, (d) ΔT, (e) ΔS.

3.7(a) The enthalpy of vaporization of chloroform (CHCl3) is 29.4 kJ mol−1 at
its normal boiling point of 334.88 K. Calculate (a) the entropy of vaporization
of chloroform at this temperature and (b) the entropy change of the
surroundings.

3.7(b) The enthalpy of vaporization of methanol is 35.27 kJ mol−1 at its
normal boiling point of 64.1°C. Calculate (a) the entropy of vaporization 
of methanol at this temperature and (b) the entropy change of the
surroundings.

7
2

5
2

3.8(a) Calculate the standard reaction entropy at 298 K of

(a) 2 CH3CHO(g) + O2(g) → 2 CH3COOH(l)

(b) 2 AgCl(s) + Br2(l) → 2 AgBr(s) + Cl2(g)

(c) Hg(l) + Cl2(g) → HgCl2(s)

3.8(b) Calculate the standard reaction entropy at 298 K of

(a) Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

(b) C12H22O11(s) + 12 O2(g) → 12 CO2(g) + 11 H2O(l)

3.9(a) Combine the reaction entropies calculated in Exercise 3.8a with the
reaction enthalpies, and calculate the standard reaction Gibbs energies at 
298 K.

3.9(b) Combine the reaction entropies calculated in Exercise 3.8b with the
reaction enthalpies, and calculate the standard reaction Gibbs energies at 298 K.

3.10(a) Use standard Gibbs energies of formation to calculate the standard
reaction Gibbs energies at 298 K of the reactions in Exercise 3.8a.

3.10(b) Use standard Gibbs energies of formation to calculate the standard
reaction Gibbs energies at 298 K of the reactions in Exercise 3.8b.

3.11(a) Calculate the standard Gibbs energy of the reaction 4 HCl(g) + O2(g)
→ 2 Cl2(g) + 2 H2O(l) at 298 K, from the standard entropies and enthalpies of
formation given in the Data section.

3.11(b) Calculate the standard Gibbs energy of the reaction CO(g) +
CH3OH(l) → CH3COOH(l) at 298 K, from the standard entropies and
enthalpies of formation given in the Data section.

3.12(a) The standard enthalpy of combustion of solid phenol (C6H5OH) is 
−3054 kJ mol−1 at 298 K and its standard molar entropy is 144.0 J K−1 mol−1.
Calculate the standard Gibbs energy of formation of phenol at 298 K.

3.12(b) The standard enthalpy of combustion of solid urea (CO(NH2)2) is 
−632 kJ mol−1 at 298 K and its standard molar entropy is 104.60 J K−1 mol−1.
Calculate the standard Gibbs energy of formation of urea at 298 K.

3.13(a) Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when a sample of nitrogen gas
of mass 14 g at 298 K and 1.00 bar doubles its volume in (a) an isothermal
reversible expansion, (b) an isothermal irreversible expansion against pex = 0,
and (c) an adiabatic reversible expansion.

3.13(b) Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when the volume of a sample
of argon gas of mass 21 g at 298 K and 1.50 bar increases from 1.20 dm3 to
4.60 dm3 in (a) an isothermal reversible expansion, (b) an isothermal
irreversible expansion against pex = 0, and (c) an adiabatic reversible expansion.

3.14(a) Calculate the maximum non-expansion work per mole that may be
obtained from a fuel cell in which the chemical reaction is the combustion of
methane at 298 K.

3.14(b) Calculate the maximum non-expansion work per mole that may be
obtained from a fuel cell in which the chemical reaction is the combustion of
propane at 298 K.

3.15(a) (a) Calculate the Carnot efficiency of a primitive steam engine
operating on steam at 100°C and discharging at 60°C. (b) Repeat the
calculation for a modern steam turbine that operates with steam at 300°C and
discharges at 80°C.

3.15(b) A certain heat engine operates between 1000 K and 500 K. (a) What is
the maximum efficiency of the engine? (b) Calculate the maximum work that
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can be done by for each 1.0 kJ of heat supplied by the hot source. (c) How
much heat is discharged into the cold sink in a reversible process for each 
1.0 kJ supplied by the hot source?

3.16(a) Suppose that 3.0 mmol N2(g) occupies 36 cm3 at 300 K and expands
to 60 cm3. Calculate ΔG for the process.

3.16(b) Suppose that 2.5 mmol Ar(g) occupies 72 dm3 at 298 K and expands
to 100 dm3. Calculate ΔG for the process.

3.17(a) The change in the Gibbs energy of a certain constant-pressure process
was found to fit the expression ΔG/J = −85.40 + 36.5(T/K). Calculate the value
of ΔS for the process.

3.17(b) The change in the Gibbs energy of a certain constant-pressure process
was found to fit the expression ΔG/J = −73.1 + 42.8(T/K). Calculate the value
of ΔS for the process.

3.18(a) Calculate the change in Gibbs energy of 35 g of ethanol (mass density
0.789 g cm−3) when the pressure is increased isothermally from 1 atm to 
3000 atm.

3.18(b) Calculate the change in Gibbs energy of 25 g of methanol (mass
density 0.791 g cm−3) when the pressure is increased isothermally from 
100 kPa to 100 MPa. Take kT = 1.26 × 10−9 Pa−1.

3.19(a) Calculate the change in chemical potential of a perfect gas when its
pressure is increased isothermally from 1.8 atm to 29.5 atm at 40°C.

3.19(b) Calculate the change in chemical potential of a perfect gas 
that its pressure is increased isothermally from 92.0 kPa to 252.0 kPa 
at 50°C.

3.20(a) The fugacity coefficient of a certain gas at 200 K and 50 bar is 0.72.
Calculate the difference of its molar Gibbs energy from that of a perfect gas in
the same state.

3.20(b) The fugacity coefficient of a certain gas at 290 K and 2.1 MPa is 0.68.
Calculate the difference of its molar Gibbs energy from that of a perfect gas in
the same state.

3.21(a) Estimate the change in the Gibbs energy of 1.0 dm3 of benzene when
the pressure acting on it is increased from 1.0 atm to 100 atm.

3.21(b) Estimate the change in the Gibbs energy of 1.0 dm3 of water when the
pressure acting on it is increased from 100 kPa to 300 kPa.

3.22(a) Calculate the change in the molar Gibbs energy of hydrogen gas when
its pressure is increased isothermally from 1.0 atm to 100.0 atm at 298 K.

3.22(b) Calculate the change in the molar Gibbs energy of oxygen when its
pressure is increased isothermally from 50.0 kPa to 100.0 kPa at 500 K.

Problems*

Assume that all gases are perfect and that data refer to 298 K unless otherwise

stated.

Numerical problems

3.1 Calculate the difference in molar entropy (a) between liquid water and ice
at −5°C, (b) between liquid water and its vapour at 95°C and 1.00 atm. The
differences in heat capacities on melting and on vaporization are 37.3 J K−1

mol−1 and −41.9 J K−1 mol−1, respectively. Distinguish between the entropy
changes of the sample, the surroundings, and the total system, and discuss the
spontaneity of the transitions at the two temperatures.

3.2 The heat capacity of chloroform (trichloromethane, CHCl3) in the range
240 K to 330 K is given by Cp,m /(J K−1 mol−1) = 91.47 + 7.5 × 10−2 (T/K). In a
particular experiment, 1.00 mol CHCl3 is heated from 273 K to 300 K.
Calculate the change in molar entropy of the sample.

3.3 A block of copper of mass 2.00 kg (Cp,m = 24.44 J K−1 mol−1) and
temperature 0°C is introduced into an insulated container in which there is
1.00 mol H2O(g) at 100°C and 1.00 atm. (a) Assuming all the steam is
condensed to water, what will be the final temperature of the system, the heat
transferred from water to copper, and the entropy change of the water,
copper, and the total system? (b) In fact, some water vapour is present at
equilibrium. From the vapour pressure of water at the temperature calculated
in (a), and assuming that the heat capacities of both gaseous and liquid water
are constant and given by their values at that temperature, obtain an improved
value of the final temperature, the heat transferred, and the various entropies.
(Hint. You will need to make plausible approximations.)

3.4 Consider a perfect gas contained in a cylinder and separated by a
frictionless adiabatic piston into two sections A and B. All changes in B are
isothermal, that is, a thermostat surrounds B to keep its temperature constant.
There is 2.00 mol of the gas in each section. Initially TA = TB = 300 K, VA = VB

= 2.00 dm3. Energy is supplied as heat to Section A and the piston moves to
the right reversibly until the final volume of Section B is 1.00 dm3. Calculate
(a) ΔSA and ΔSB, (b) ΔAA and ΔAB, (c) ΔGA and ΔGB, (d) ΔS of the total
system and its surroundings. If numerical values cannot be obtained, indicate
whether the values should be positive, negative, or zero or are indeterminate
from the information given. (Assume CV,m = 20 J K−1 mol−1.)

3.5 A Carnot cycle uses 1.00 mol of a monatomic perfect gas as the working
substance from an initial state of 10.0 atm and 600 K. It expands isothermally
to a pressure of 1.00 atm (Step 1), and then adiabatically to a temperature of
300 K (Step 2). This expansion is followed by an isothermal compression
(Step 3), and then an adiabatic compression (Step 4) back to the initial state.
Determine the values of q, w, ΔU, ΔH, ΔS, ΔStot, and ΔG for each stage of the
cycle and for the cycle as a whole. Express your answer as a table of values.

3.6 1.00 mol of perfect gas molecules at 27°C is expanded isothermally from
an initial pressure of 3.00 atm to a final pressure of 1.00 atm in two ways: 
(a) reversibly, and (b) against a constant external pressure of 1.00 atm.
Determine the values of q, w, ΔU, ΔH, ΔS, ΔSsur, ΔStot for each path.

3.7 The standard molar entropy of NH3(g) is 192.45 J K−1 mol−1 at 298 K, and
its heat capacity is given by eqn 2.25 with the coefficients given in Table 2.2.
Calculate the standard molar entropy at (a) 100°C and (b) 500°C.

3.8 A block of copper of mass 500 g and initially at 293 K is in thermal contact
with an electric heater of resistance 1.00 kΩ and negligible mass. A current of
1.00 A is passed for 15.0 s. Calculate the change in entropy of the copper,
taking Cp,m = 24.4 J K−1 mol−1. The experiment is then repeated with the
copper immersed in a stream of water that maintains its temperature at 293 K.
Calculate the change in entropy of the copper and the water in this case.

3.9 Find an expression for the change in entropy when two blocks of the same
substance and of equal mass, one at the temperature Th and the other at Tc, are
brought into thermal contact and allowed to reach equilibrium. Evaluate the

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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