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Chapter 1: Introduction

This chapter introduce a brief review of some basic definitions and statistical distributions.

1.1 Definition and Basic Concept

In this chapter, we give some basic definitions and concepts.

Population:

e A population is the largest collection of elements or individuals in which we are interested in a particular time and
about which we want to make some statement or conclusion.

e The population values usually denoted by X = (X, X5, ..., Xy ), Where N is the number of elements in the population,
called the population size.

Sample:

e A sample is a subset of a population on which we collect data.

e The sample values usually denoted by x = (x4, x5, ..., X;,), Where n is the number of elements in the sample, called the
sample size.

Parameter:

e A parameter is a measure (or number) obtained from the population values.
e Values of the parameters are unknown in general.
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Statistic:

e A statistic is a measure (or number) obtained from the sample values.
e Values of the statistic are known in general.

Random Variable:

e A random variable X is a function that associates a real number with each element in the sample space.

e Most of the time, statisticians deal with two special kinds of random variables, that are discrete and continuous random
variables.

Discrete Random Variable:
A random variable X is discrete if:

1. It can take on values from finite or countable values.
2. It has a discrete distribution, called the probability mass function (pmf) of X if, for each possible outcome x

fx(x) =0, X fx(x)=1, and  fx(x)=PX =x).
Continuous Random Variable:
A random variable X is continuous if:

1. It can take on values from an interval or not countable values.
2. It has a continuous distribution, called the probability density function (pdf) for X, defined over the set of real
numbers, if

fx(x) =0 forallx €R, ffooofx(x)dx =1, and Pa<X<bh)= f;fx(x)dx :
Cumulative Distribution Function:
Let X be a random variable. The cumulative distribution function (distribution function or cdf) of X is a function such that

7
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Fy(x) =P(X <x), for —oo < x < o0,
Random Sample:
A random sample is a sample that is chosen randomly. Random sample are used to avoid bias and other unwanted effects.
Joint Probability distribution:
The function f(x, y) is a joint probability distribution of the random variables X and Y if:

1. f(x,y) =0,forall (x,y).
2. Y2y f(x,y) =1if XandY are discrete

N fy f(x,y)dydx = 1 if X and Y are continuous.

Independent Random Variables:

Let X, X5, ..., X,, be a n random variables, discrete or continuous, with joint probability distribution f (x4, x5, ..., x,,). The
random variables X;, X,, ..., X, are said to be mutually statistically independent if and only if

[y, %z, 0, x0) = f1 (1) f2(x2) e fn(3).
For all (x4, x5, ..., x,,) within their range.
Expectations and Moments:

The rth moment about the origin of the random variable X is given by

z x" fx(x), If X is discrete,

= E(X") =
jx’” fx(x)dx, If X is continuous.
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The first moment (mean or expected value) and the second moment are given by i, = u = E(X) and 1, = E(X?),
respectively.

The variance is defined as
4 7 2
Var(X) = 0% = i, — if = E[((X —w)?*] = EX?) — (E(X))".

The standard deviation is the square root of the variance denoted as

o =Vo? = \/E(XZ) — (E(X))z.
The rth central moment of X is defined as
z(x — )" fx(x), If X is discrete,
E[X—w'] =
j(x —w)" fx(x)dx, IfX is continuous.

Remark:
If Y = aX + b, then the mean and the variance of Y are given by

EY)=aE(X)+b and Var(Y) =a?*Var(X)
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Examplel.2:

Consider the following distribution:

Find: 1. P(X =0),P(X < 1),P(X = 2).
2. The cdf of X.
3. The mean and the variance.

Solution:

1 2 | Total

fx)

0.33

0.24

0.15]0.28

1. P(X =0) =024, P(X<1) =057, P(X=>2)=0.28.

2. The cdf of X'is

X

F(x)

05710721

3. The mean and the variance are given as

Then,

X

-2

1 2

Total

f(x)

0.33

0.2410.15|0.28

1

E(X)

-0.66

0

0.15|0.56

0.05

E(X?)

1.32

0

0.15|1.12

2.59

E(X) =005 and Var(X) = E(X?) - (E(X))" = 2.59 — 0.052 = 2.5875.

10
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Example 1.3:

Let X be a continuous random variable whose probability density function is

Find:

f(x)=3x% for0<x<1.

1. Prove f(x)is a pdf.
2. P(0.5<X<1).
3. The cdf of X.

4. E(X) and Var(X).

Solution:
1. Since f(x) =0 forallx € (0,1) and

[, fGdx = [ 3x?dx = x3]5 = 1. Thus, f(x) is a pdf.

2.
3.
4.

P(0.5<X<1)=[ 3x2dx= x’]}5=1-0.5%=0.875.

F(x) = f;c 3x2dx = x3]¥ = x5,
1 3 3
E(X) = [, 3x%dx = Zx“](l) =:.
E(XZ)—j13 ix = 5]1—3
=), xtdx =zx7lo =
3 /3)\?
Var(X) = E(X?) — (E(X))Z =g- (Z) = 0.0375.

11
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Moment-Generation Function:
The moment-generation function (mgf) of a random variable X is given by E (etX) and is denoted by, My (t). Hence,
Y.e¥f(x), ifXisdiscrete,
My(t) = E(e™) =3 = o
fx e™ f(x)dx, if X is continuous

Some properties of the mgf:

L My, q(t) = e®My(t).
2. My (t) = My(at).

1.2 Discrete Probability Distributions

In this section, we present some commonly used distributions for the discrete random variable.

1.2.1 Bernoulli and Binomial Distribution

A Bernoulli trial can result in a success with probability p and a failure with probability g = 1 — p. Then the probability of

the binomial random variable X, the number of successes in n independent trials, is

flx;n,p) = (;‘)pxq”‘x, x=012,..,n.

n!

ny _
where () = - —
The mean, variance and mgf of the binomial distribution, Binomial(n, p), are

u=np, o> =npq and M(t) = (pe’ + )™

12
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Example 1.4:
The probability that a certain kind of component will survive a shock test is 0.75. Find:

1. The probability that exactly 2 of the next 4 components tested survive.
2. The probability that more than 2 of the next 4 components tested survive.
3. The mean and the standard deviation.

Solution:
Assuming that the tests are independent and p = 0.75 for each of the n = 4 tests, we obtain:
4
f(x;4,0.75) = (x> (0.75)*(0.25)**, x=0,1,2,3,4.
1. f(2;4,0.75) = (3)0.7520.25% = 0.2109
2. P(X >2) = f(3;4,0.75) + £ (4;4,0.75) = (5)0.75%0.25" + (;)0.75%0.25° = 0.7383

3. u=np=(4)(0.75) =3 ando = ,/npq = \/4(0.75)(0.25) = 0.866.

1.2.2 Poisson Distribution

The probability distribution of the Poisson random variable X with parameter A, Poisson(A), representing the number of
outcomes occurring in a given time interval or specified region denoted by t, is

e—At(At)x
fx; At) = — O X< 0,1,2,..
where 4 > 0 is the average number of outcomes per unit time, distance or area.

13




STAT 223 Theory of Statistics 1 Dr. Samah Alghamdi

The mean and the variance of the Poisson distribution are
u=oc?%=A1t
Example 1.5:
Births in a hospital occur randomly at an average rate of 1.6 births per hour. Calculate:

1. The probability of observing 4 births in a given hour.

2. The probability of observing more than or equal to 2 births in a given hour.
3. The mean of births per hour.

4. The probability of observing 1 birth per 2 hours.

5. The variance of births per 30 minutes.

Solution:

Let X be the number of births in a given hour and At = 1.6 per hour. The pdf of X is given as

6_1'6(1.6)x
f(x;1.6) = BT x=0,1,2,..
1 f(4;16) = 2% = 0,0551
2. PX=22)=1-PX<2)=1-[f(1;16)+ f(0;1.6)] = 0.4751
3. u=At=1.6
e 32(3.2)1
4. At =(1.6)(2) =3.2 = f(1;3.2) = — = 0.1304
5. 02 = At = (1.6)(0.5) = 0.8.

14
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1.3 Continuous Probability Distributions
1.3.1 Uniform Distribution
The density function of the continuous uniform random variable X on the interval [a, b] is
f(x;a;b) =$, a<x<h.
The mean and the variance of the uniform distribution, Uniform(a, b), are
a+b 5 _ (b-a)?

[1=T and o“ = PR

Example 1.6:

Suppose that a large conference room at a certain company can be reserved for no more than 4 hours. In fact, it can be assumed
that the length X of a conference has a uniform distribution on interval [0, 4].

(a) What is the probability density function?
(b) What is the probability that any given conference lasts at least 3 hours?

Solution:
(a) The appropriate density function for the uniformly distributed random variable X in the situation is
1
41 l

(O)PIX 23] = [, dx = "

4

15
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1.3.2 Exponential Distribution

The pdf of the exponential distribution for a continuous random variable X with parameter 8 > 0, denoted as Expnential (%)
IS given as
flx;0) =0e 9 x>0
The mean and the variance of this distribution are
1 1
E(X) =3 and V(X) =9z

The cdf and mgf obtained as

-1
F(x)=1-e7% and M(t)=%=(1—§) ,t<6.

1.3.3 Gamma Distribution

The continuous random variable X has a gamma distribution with parameters a and %, Gamma (a, %) if its density function

is given by

o D= BY a-1,-Bx
f(x,a,ﬁ)—r(a)x e P* x=0

where @ > 0,8 > 0 and I'(a) is a gamma function defined as

(e )

MNa)=(a—1)! = f y*le ¥ dy

0

16
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The mean, the variance and the mgf are

EG) =%, V=% and M() = (L)' =(1-%) " t<p

Note:

1. The exponential distribution is a special case of gamma distribution with % parameter when a = 1.

I'(a)
B -

2. fooo x*le Pxdx =

1.3.4 Weibull Distribution

The continuous random variable X has a Weibull distribution, with parameters a and %, if its pdf is given by

f (x; a, %) = aﬂxﬁ‘le‘“"ﬁ, x>0

where @« > 0 and § > 0.

The cumulative distribution function for the Weibull distribution is given by
F(x)=1- e=axl

Note: For 8 = 1, the Weibull density reduces to the exponential density function.

17
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1.3.5 Chi-Squared Distribution

The random variable X has a chi-squared distribution with v > 0 degrees of freedom, denoted as, X~x?(v), if its pdf is given
by

,,1 xg_le_g, x>0
2@)r(2)

2

f&x,v) =

The mean and the variance are

E(X)=v and V(x)=2v.
The mgf of this distribution is M(t) = (1 — Zt)_g, t > %
1

Note: It is a special case of gamma distribution in which a = g and g = 5

Example 1.7:
Let X be a y2(10). Find:

1. Find P(X > 20.5).
2. a,if P(X >a) =0.05.

Solution:
By x? Table (Table I) and v = 10, we get

1. P(X > 20.5) = 0.025
2. P(X > a) = 0.05, thus a = 18.31.

18
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1.3.6 Normal Distribution

The most important continuous probability distribution in the entire field of statistics is the normal distribution. Its graph,
called the normal curve, is the bell-shaped curve of following figure, which approximately describes many phenomena that
occur in nature, industry, and research.

Jix)

/T

b

— g >

Definition:

The density of the normal random variable X, with mean u and variance a2, X~N(u, 62), is

1

1 __1
X; U,0) = ——e 202
f(x; wo) o

—_ N2
(x u)’_oo<x<oo

where —co < p < oo and o > 0.
The properties of the normal curves:

1. The mode = median = mean = pu.

2. The curve is symmetric about the mean u.

3. The normal curve depends on the parameters p and o, its mean and standard deviation, respectively.

4. The mean u and the variance a2 determine the location and the shape of the normal curve, respectively.

19
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5. The total area under the curve and above the horizontal axis is equal to 1.

1
[,Lt+50'2t2

6. The mgfis givenby M(t) =e

1.3.7 Standard Normal Distribution

The distribution of a normal random variable with mean 0 and variance 1 is called a standard normal distribution and
defined as

1 -z

f(Z)= Ee 2, —00 < z < 00,
The properties of the standard normal curves:

1. The mode = median = mean = 0.
2. The curve is symmetric about the mean 0.
3. The total area under the curve and above the horizontal axis is equal to 1.

4. The mgf is given by M(t) = ezt

Application: we are able to transform all the observations of any normal random variable X into a new set of observations of
a normal random variable Z with mean 0 and variance 1. This can be done by mean of the transformation i.e.

If X~N(u, 02), then Z = ’%“~N(0,1).

20
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Example 1.8:
Given a standard normal distribution, find the area under the curve that lies

1. tothe left of z = 1.84.
2. tothe right of z = 1.84.

Solution: From Table II,

1. the area to the left of z = 1.84 is equal to,
P(Z < 1.84) = 0.9671.
2. the area to the right of z = 1.84 is equal to,
P(Z>184)=1—-P(Z<1.84)=1-0.9671 = 0.0329.

Normal Approximation to the Binomial:
Theorem 1.1:

If X is a binomial random variable with mean p = np and variance a2 = npq, then the limiting form of the distribution of

X —np

v 1pq

/ =

~N(0,1)

asn — oo,

21
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1.3.8 T-Distribution

A continuous random variable T is said to have a t-distribution with parameter v > 0 if its pdf defined as

£ (e
\/ﬁl’(g) (1+7) ; —oo <t < oo,

ftv) =

The properties of the standard normal curves:

1. The mode = median = mean = 0.
The curve is symmetric about the mean 0.
Compared to the standard normal distribution, the t-distribution is less peaked in the center and has higher tails.

It depends on the degrees of freedom v.
T-distribution approaches the standard normal distribution as v — oo.

o gk LN

The total area under the curve and above the horizontal axis is equal to 1.

Example 1.9: Find:

1. P(T < 2.145) when v = 14.
2. t0_995 When V= 7.

Solution: From Table Il

1. P(T < 2.145) = 0.975 when v = 14.

22
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1.3.9 F-Distribution

If a random variable X has a F-distribution with parameters r and v, we write X~F (r, v) . Then the probability density function
for X is given by

. 1 1% r1 r (%)
f(x,r,v)—B(%’%)(v) X (1+vx)

For real x > 0. Here is B(a, b) = [ y%~1(1 — y)?~1dy is the beta function and r, v > 0.
0

Theorem 1.2:

If F,(r,v) has F-distribution with r and v degrees of freedom, then

1
E,(r,v)

Fl—a(vl T) =

has F-distribution with v and r degrees of freedom.

23
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1.4 Transformation of Variables

In standard statistical methods, the result of statistical hypotheses testing, estimation, or even statistical graphics does not
involve a single random variable but, rather, functions of one or more random variables. As a result, statistical inference
requires the distribution of these functions. In this section, we represent methods to find the distribution of these functions.

1.4.1 Discrete Random Variable
1.4.1.1 One-to-One Transformation:
Theorem 1.3:

Suppose that X is a discrete random variable with probability distribution f(x). Let Y = u(X) define a one-to-one
transformation between the values of X and Y so that the equation y = u(x) can be uniquely solved for x in terms of y, say
x = w(y). Then the probability distribution of Y is

9 = flw»M].
Example 1.11:

Let X be a discrete random variable with pmf as

X
flx) = 7 x=0,1,3.

Find the pmf of the random variable Y = X2,
Solution:
Since the value of X are all positive, the transformation defines a one-to-one correspondence between the x and y values.

24
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Hence,
Since x=0,1,3=y=0,1,9andy =x? = x =\/§.
Then, the pmf of Y is given by

g =f({y) =2 y=0109.

Similarly, for a two-dimension transformation.

Theorem 1.4:

Suppose that X; and X, are discrete random variables with joint probability distribution f(x,, x,). Let Y; = u,(X;, X;) and
Y, = u,(X;, X;,) define a one-to-one transformation between the points (x4, x,) and (y;, y,) so that the equations

Y1 = up(xq, %) and y, = up(xq, x5)

may be uniquely solved for x; and x, in terms of y, and y,, say x; = w,;(y,,y,) and x, = w,(y;,y,). Then the joint
probability distribution of Y; and Y, is

g1, y2) = fIwi (v, ¥2), wa (71, 72)]

25
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1.4.2 Continuous Random Variable

This section introduced three methods of transformation to find the distribution of continuous random variable.

1.4.2.1 One-to-One Transformation
Theorem 1.5:

Suppose that X is a continuous random variable with probability distribution f(x). Let Y = u(X) define a one-to-one
correspondence between the values of X and Y so that the equation y = u(x) can be uniquely solved for x in terms of y, say
x = w(y). Then the probability distribution of Y is

g = flwI-ll

where |J| = [w'(y)| = |Z—;| and is called the Jacobian of the transformation.

Example 1.12:
Let X be a continuous random variable with probability distribution
* 1<x<5
fe) =12’ e
0, elsewhere.

Find the probability distribution of the random variable Y = 2X — 3.

Solution:
The inverter solution of y = 2x — 3 yields x = (y + 3)/2, from which we obtain ] = w'(y) = Z—i = %

26
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Therefore,

+3
1<x<5 = 1<yT<5:> 2<y+3<10=> —-1<y<7

Using Theorem 1.5, we find the density function of Y to be

(y+3)/ 1

2 (1) _ y+3 _

gy) = 12 (2)_ 48’ 1<y<7
0, elswhere

Theorem 1.6:

Suppose that X; and X, are continuous random variable with joint probability distribution f(x,,x,). Let Y; =
u, (X4, X,) and Y, = u,(X;,X,) define a one-to-one transformation between the points (x;,x,) and (y,,y,) so that the
equations y; = u,(xy,x,) and y, = u,(xy,x,) may be uniquely solved for x, and x, in terms of y, and y,, say x; =
w; (v1,¥-2) and x, = w,(y4,y,). Then the joint probability distribution of Y; and Y, is

91, y2) = fIwi (1, ¥2), wo (y1, v2) 1. 171
where the Jacobian is 2 X 2 determinant as

6x1 ax1

_|ov: oy
|‘]| axz axZ '

oy, 0y,
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1.4.2.2 Distribution Function Method (cdf Method):
The general method works as follows:
If X be an independent random variable with pdf f (x) and Y = u(X) be a function of X. Then, find

1. Fx(x), cdf of X.

2. The region of .

3. F(y) =P(Y <y) = P(u(X) <y) =PX s w(Y)) = Fx(w(Y)).
4. The density function f,, (y) by differentiating Fy, ().

Example 1.13:
Suppose the random variable X has a pdf
fx(x) =3x% 0<x<l1.
Find the pdf of Y = 2X + 3.
Solution:
From Example 1.3, we get Fy(x) = x3.

Since0<x<1=>0<2x<2=>3<y<5.

RO) =P sy) = Pex+3 sy =paxsy-3) =r(x 20 = 5 (58 = (3.

Then, the pdf of Y is £, (y) = dF;;” =3(y-3)% 3<y<s.
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1.4.2.3 Moment-Generating Method:

Theorem 1.7: (uniqueness Theorem)

Let X and Y be two random variables with moment-generating functions My (t) and My (t), respectively, if My (t) = My (t)
for all values of t, then X and Y have the same probability distribution.

Theorem 1.8:

If X1,X,.....,X, are independent random variable with moment-generating functions My (t), My, (t), ....., My (t),
respectively,and Y = X; + X, + ---. +X,,, then

My(t) = Mxl(t)sz(t) MXn(t)
Moreover, if My (£), My, (t), ....., My _(t)are equals. Then, My (t) = (MXl(t))n.
Example 1.14:

If X;,X,,....., X, are independent, each with an exponential distribution with parameter %. Show that Y = Y7, X; has a

gamma distribution with parameters n and %.
Solution:

Since that the mgf of expnential (%) IS My(t) = %. Thus, the mgf of Y is given by

MY(t) = MZ?=1Xi(t) = MX1+X2+"'-+Xn(t) = MXl(t)'MXZ (t) MXn(t) - (ﬁ)n

which is the mgf of Gamma (n, %)
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Chapter 2: Sampling Distribution

In a typical statistical problem, we have a random variable X of interest but its probability distribution f(x) is not known.
This problem can be classified in one of two ways:

1. f(x) is completely unknown (Sampling Distribution).
2. The form of f(x) is known but the parameter 8 is unknown (Statistical Inference).

In this chapter, we will discuss the first problem and introduce some solution methods. First, let us begin with important
definitions.

Random sample:

Let X;, X5, ..., X, be a n independent random variables, each of which has the same probability distribution f(x). Define
X1,X,, ..., X,, to be a random sample of size n from the population f(x) and write its joint probability distribution as

f Qe xp, s x0) = f1(x) f2(x2) oo frn ().
Statistic:

Any function of the random sample and does not depend upon any unknown parameter is called a statistic.

Sampling Distribution:

The probability distribution of a statistic is called a sampling distribution.

In this chapter, we studied several of the important sampling distributions of frequently used statistic. Applications of these
sampling distributions to problems of statistical inference are considered throughout most of the remaining chapters.
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In Chapter 1 we defined the two parameters u and a2, which measure the center of location and the variability of a probability
distribution, respectively. Here, we shall define some important statistics that describe corresponding measures of a random
sample. The most common statistics are the sample mean and variance.

Mean and Variance:

Let X;, X,, ..., X,, denote a random sample of size n from a given distribution. The statistic

= 1
X =-Yi1 X,

n

is called the mean of the random sample, and the statistic
1 —
5% = — X (X — X)?,
Is called the variance of the random sample.

Now, we should view the sampling distribution of X and S2 as the mechanisms from which we will be able to make inference
on the unknown parameters u and o2.

2.1 Sampling Distribution of X

Suppose that we have a population with mean u and variance o2 and let X;, X,, ..., X,, be a random sample of size n from this
population. Let the mean of the random sample be X. Now, consider the following theorems of different cases of sampling
distribution of X.
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Theorem 2.1:

Let X,,....,X, be independent random variables such that, for i =1,..,n, X; has a N(u; ¢/) distribution. LetY =
™, a; X;, where a, ..., a,, are constants. Then, the distribution of Y is N(T%, a; w;, X1t alo?).

Proof:
Using independent and the mgf of normal distribution, for t € R, the mgf of Y is,

My(t) = E(e™) = E[e' T k]

1.2 2.2
— n ta;X; n aijuit+-a;o;t
= izlE[e i l]_ i1 € 27t

— pliz1 aipt+3 Y, afoft?
which is the mgf of a N(X7L; a;u;, X1, aZo?) distribution.

i

Example 2.1:
Let X;~N(3,2) and X,~N(2,1). Find the distribution of Y = 5X; — 2X,.

Solution:
E(Y)=5E(X,) —2E(X,) =15—4 =11
Var(Y) = 25E(X;) + 4E(X,) = 50 + 4 = 54
Then, the distribution of Y is obtained as Y~N (11, 54).
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Theorem 2.2:

If X;, X5, ..., X,, is a random sample from any distribution with mean u and variance ¢?2; then

2

. 2 g
ug = wpand variance o; = —.
Proof:

Since X4, X5, ..., X,, is a random sample, then

> 1 1 1
Hx = E(X)=E(; ?:1Xi)=; i EQX) =—nu=p

— 2
of =Var(X) =Var (% ?lei) = % n o Var(X) = %n % = %

Theorem 2.3:

Suppose that X, X5, ..., X;,, be a random sample of n observations are taken from a normal population with mean u and
variance 2. Each observation X;,i = 1,2, ...., n, has the same normal distribution. Hence, we conclude that

— 2 _ 2
1. X has a normal distribution with mean u and variance % [i. e. X~N (,u, %)]

_ X
2. 7 = — N(0,1).
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Proof:

Since, we know X3, X,, ..., X,, are independent random variables and have the same normal distribution, then they have the
same mgf which is

1 2.2
My, (t) = ettt2%t i =1,2,..,n
Now, by using the mgf transformation method (Theorem 1.8), we get
Me(®) = E(e™) = B (enZh¥it) =  (entXariet+x0)
n
_ E( b Xyttt X ) (Mxl (%)) , for any random variable X,

iy 22\" tla_ztz
etn™2%nz | =Mz,
2

which is the mgf of the normal distribution with mean u and variance %

Theorem 2.4: Central Limit Theorem:

If X1, X5, ..., X, is a random sample of size n from any distribution with mean u and variance ¢?; if X is the mean of the
random sample, then as n — oo,

— 2 _ 2
1. X has approximately a normal distribution with mean x and variance % [i. e. X~N (y, a—)]

2. 7 —T~N(O 1.
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Example 2.2:

An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed, with mean
equal to 800 hours and a standard deviation of 40 hours, find the probability that a random sample of 16 bulbs will have an
average life of less than 775 hours.

Solution:
The sampling distribution of X will be approximately normal, with g = 800 and o; = % = 10. Then,

775-800
10

P(X < 775) = P (z < ) = P(Z < —2.5) = 0.0062.

Theorem 2.5:
Let X;,X,, ..., X,, is a random sample of size n from a normal distribution with mean u and unknown variance o2, then

— 2
1. X has a t-distribution with mean u, variance % and (n — 1) degrees of freedom.

_ X
2. T —_— S/_\/ﬁ"’t(n_l).

Example 2.3:

A sample of 16 ten-year-old girls had a standard deviation of 12 pounds. Assume the population is normal distribution with
mean weight 70 pounds. Find P(X > 74).
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Solution:
We have, u = 70, S = 12 and n = 16. Then, X has a t-distribution with n — 1 = 15 degree of freedom. Thus,

74 — 70
12/4/16

P()?>74)=1—P<T< )zl—P(T<1.333):1—0.9:0.1

2.2 Sampling Distributions from the Normal and Chi-Squared Distributions

In this section we introduce some sampling distributions of some important and useful random variables.

Theorem 2.6:

N2
Let Z~N(0,1). Then, U = Z? = (%) follows the chi-squared distribution with 1 degree of freedom i.e. Z%~y2.
Proof:

We know that the pdf of Z is f(z) = \/%e_?z. Now, to find the distribution of U, use the cdf transformation method as

following:
Fy(w) = P(U <u) = P(Z% < u) = P(—Vu < Z <Vu) = F;(\u) — Fz(—V).

Therefore,
fo@) = f(Va) 5 = fo(—u) &

1 11 _1 1 11 _1 1 1 _u
=-U 2—e 2u+—u 2—¢ zuzl—u 2@ 2
2 V21T = /1

221“()

which is the pdf of chi-squared distribution with 1 degree of freedom.
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Corollary 2.1:
Let X, X5, ..., X,, be a random sample of size n from a normal population with mean u and variance 2. If the mean of the
random sample is X, where X~N (,u, ) and —~N(0 1), then
X—[,L _ 2
(a/\/ﬁ) A1
Proof:

Left as an exercise.

Theorem 2.7
LetZ,,Z,, .....,Z, be independent random variables with Z; = %~N(O, 1), where X;~N(u;,0;) foreachi =1,2,..,n. If
N2
Y=Y, z2=Y", (%) then Y follows the chi-squared distribution with n degrees of freedom. We write Y =
?=1Zi ~Xn-
Proof:

Since Z,, Z,, ..., Z,, are independent, then
My(t) = Mgn ,2(t) = E(e(et vz +-+z)e)
= E(et).E(e?!) ... E(e%t)
= M,2(t) M3(t) ... M2 (1)

1

From Theorem 2.6, each Z? follows x? and therefore it has mgf equal to (1 — 2t)~ 2. Conclusion:
n n
M, (t) = (sz(t)) =(1-2t)"z, for t >
This is the mgf of chi-squared distribution with n degrees of freedom.
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Corollary 2.2:
N2
Let X;, X5, ..., X,, is a random sample from N (u, 62), then ¥\, (%) ~X2.

Theorem 2.8:
If $2 = —Y" . (X; —X)? is the sample variance of a random sample from a normal distribution with mean u and variance
Z,then
(n—1s*
= T ~Xn-1
Proof:

Since §2 = ﬁ L (X;—X)?% where X = ; ™ . X;; then we can redefine U as
_(-1S?_ T, (X%

0-2 0-2

Now, let
X=X =YX =) - (X = w]?
=YX —w? =2 — WX — ) + (X — w?]
=Y X — w2 =2(nX =) (X — w+nX — p)?
(X — w)? = 2n(X — w?+n(X — p)?
Z L (X — w)? —n(X — p)?.

Then,

U= L IZ (6 — )2 = n (8 — 2] = Tk, (1) - (21

o
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Use the mgf transformation method to find the distribution of U as follows

5953

2

My(t) = E(eUY) = E

2
. n Xi—u . . .
Since, )it (_0' ) and ( N_) are independent random variables (Prove it), we can get

o2 P E(e ?=1(Xi0__ﬂ)2t> M_ - 2(t)
My () = E(ezzal(lT“) t>E<e—<aNﬁ> ) _ =D

i=1 o

uyc\ M ()
E(e("/\;%) ) (a/\/ﬂﬁ)

From Corollary 2.1 and Corollary 2.2, we found that

b () g and ()2

e,
M e =(1—20)72 and M, , () = (1—2£)"2
i=1( o ) (0‘/\/_)
Then,
n
(1-2t) 2 _nD)
My(t) = ———=(1-21)
(1-2t)” 2
which is the mgf of chi-squared distribution with n — 1 degrees of freedom. Thus,
(n—1)S?
0—~Xn 1
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Theorem 2.9:

Let X~x2, Y~x2.If X,Y are independent then X + Y~x2.,,..
Proof:

Left as an exercise.

Theorem 2.10:

Let Z denote a random variable that is Z~N(0,1); let U denote a random variable that is U~ y?2 and let Z and U are independent.

Then,
Z
T - ~tk
JU/k
Proof:

Since are Z and U independent, the joint density of Z and U is given by
fzu(z,u) = f7(2). fy (W)

1 _l2 1 k_4 _u
= —e 2 T uz e 2
IO
1 kg 12 1
=— uz e 2 2, u>0,—0<z<

The one-to-one transformation will be used to obtain the pdf of T. Define the random variables

Z

mand Y=U

T =

Then, we can write
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£y

zZ="= and u=y
Therefore, the Jacobian is
dz 0z
—_ —_ \/7 t
at o = —
U= oo =[F 20| =%
o oy 0 1
Thus, the joint pdf of T and Y is given by
t/y 1 ko _y? vy
fr,y(t,y)=fz,u(£,y>-|]|= " % y2 e W 2-=, y>0-0<t<w
vk e (5) var '

The marginal pdf of T is then

o w kri_ _¥(;.2
fT(t)zfo fT,Y(t;y)dJ’:lm;fo yz ‘e 2<1+k) dy

22 T3k
By using gamma function, F[g‘o? = f0°° x*1e=F* dx, then we get
yass s 2N
fr(t)=@1 &) (2)( +%) i —o<t< oo

k
2

2 r() ( ) Ok

And this is the pdf of t-distribution with k degrees of freedom.

41




STAT 223 Theory of Statistics 1 Dr. Samah Alghamdi

Theorem 2.11:
Let X;, X, ..., X,, be a random sample of size n from a N(u, 02), where o2 is unknown. Then,
X—u .
s/vn 7Y
Proof:
Since S2 = ni m (X, —X)?, write
X—u_ X=w/(a/Vn)
S/\Vn .
/ \/ ?=1(Xi _X)z

(n—1)o?

From Theorem 2.3 and Theorem 2.8, we obtam

Zl 1(XL X) 2
/\F ~N(0,1) and S ~Xn1

Then, from Theorem 2.10, we conclude that
X—u .
S/\/ﬁ (n-1)
Theorem 2.12:
Let U and V are two independent random variables such that U~y2 and V~yZ, . Then,
U/n
7 Jor NFn,m
V/m
where n and m are the degrees of freedom of F-distribution.

42




STAT 223 Theory of Statistics 1 Dr. Samah Alghamdi

2.3 Sampling Distribution of $?

The sample variance S? is given by

n—1

n
1 _
5% = E (X; —X)?
i=1

From Theorem 2.8, we found that the distribution of S? is

(n—1)s*
T gz Anm1
By using this conclusion, we can calculate the mean and the variance of S? as follows
n—1)s2
E(%) =n—1 = E(§?) = og?
o
(n—1)S2 " 20"
Var —Qz =2(n—1) = Var(S ):n—l
Corollary 2.3:
The general derivation of the mean and the variance of the sample variance S? that does not assume normality are given by
2y _ -2 2y _ Ha _ 0*(n-3)
E(S°) =o“and Var(54) = .~ D)

where u, = E[(X — p)*] is the fourth central moment of X.
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2.4 Sampling Distribution of Order Statistics
In this section, the concept of order statistic will be defined and some of their properties.
Order Statistic:

Let X;, X,, ..., X,, be arandom sample of size n from a cumulative distribution function F(x). Then,Y; < Y, < .- <Y, where
Y; are the X; arranged in order of increasing degrees and are defined to be the order statistics correspondlng to the random
sample X, X5, ..., X,,.

Theorem 2.13:

Let X3, X5, ..., X,, be a random sample of size n from a continuous cdf F(x) and pdf f(x); letY; < Y, <--- <Y, be the order
statistics of this random sample. Then, the marginal pdf of any order statistic of order k, say Y;, is given by

Fro0) = e [F@)1 1 = FOI" (), fora <y, <b.

Corollary 2.4.

As a result of Theorem 2.13, the marginal pdf of Y, = min[X;, X5, ..., X,;] and the marginal pdf of Y,, = max[X,, X,, ..., X,,]
are, respectively, given by

fr,1) =n[1 =F)I" ' f(y), fora<y, <b
fr, ) = n[F)]" f (), fora <y, <b.
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Theorem 2.14:

LetY; < Y, <--- <Y, be the order statistics based on the random sample X, X, ..., X,, from a continuous distribution with
pdf f(x) and support (a, b). Then, the joint pdf of the order statistics is given by,

fOLY2 w0 Yn) = fD)f ) . fOm), fora<y, < y, <-- <y, <b.

Theorem 2.15:

LetY; < Y, <-.- <Y, be the order statistics based on the random sample X;, X,, ..., X,,. Then, the joint pdf of any two order
statistics, say Y, < Yy, is expressed in terms of cdf F(x) and pdf f(x) as follows

n!
frk O yi) = - DIG—r— DItk [F)) M [F(yie) — F(y) ]

[1-=FI"  f)fn), a<y, <y <b

Example 2.4:
LetY; <Y, <Y; <Y, denote the order statistics of a random sample of size 4 from a distribution having pdf
f(x) = 2x, 0<x<1
Compute:
1. P(3<1,)
2. The joint distribution of Y; and Y5.
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Solution:

Here F(x) = x?2, provided that 0 < x < 1, so that

4!
L fr,(v3) = 5= (1 = ¥ (2y3) = 24(y5 —y3 ), 0<y; <1
Thus,

P G < Ys) = f%l fr,(V3) dys = f%l 24(3’3 Y3 )d)’3

2. f130ny3) = oo 1 [vd — yilt [1 = y5]' 2y; 25

=96 y; y3 [y5 —yil [1—-y3]
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Chapter 3: Point Estimation

In this chapter, we begin by formally outlining the purpose of statistical inference. We follow this by discussing the problem
of point estimation of population parameters. We confine our formal developments of specific estimation procedures to
problems involving one sample.

Statistical Inference:

Statistical inference consists of those methods by which one makes inferences or generalizations about a population. There
are two types of methods, the classic method of estimating a population parameter, whereby inferences are based strictly on
information obtained from a random sample selected from the population, and the Bayesian method, which utilizes prior
subjective knowledge about the probability distribution of the unknown parameters in conjunction with the information
provided by the sample data. Throughout of this chapter and the next, we shall use classical methods to estimate unknown
population parameters such as the mean and the variance by computing statistics from random samples and applying the
theory of sampling distributions, much of which was covered in Chapter 2. Bayesian estimation will be discussed in Chapter
5.

Statistical inference may be divided into two major areas: estimation and tests of hypotheses, see Figure 3.1. We treat only
estimation area in this course. Estimation methods divide into two parts, point estimation which we will discuss it in this
chapter and interval estimation that will discuss in Chapter 4.

L Statistical Inference
Figure 3.1 ! ' 1
L Estimation L Test of Hypotheses

47 L Point Estimation L Interval Estimation
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Point Estimate and Estimator:

A point estimate of some population parameter 6 is a single value 8 of an estimator which is a statistic T. For example, the
value x of the estimator (statistic) X, computed from a sample of size n is a point estimate of the population parameter p.

3.1 Point Estimation Methods

This section introduced two different methods to derive the point estimator that are, method of moments estimator (MME)
and maximum likelihood estimator (MLE).

3.1.1 Method of Moments Estimation

Let X;,X,,...,X,, be random sample of size n from a distribution with probability distribution
f(x; 01,05, .....,0,),(04, ...,0,) € Q. The expectation u;, = E(X*) is frequently called the kth moment of the distribution,

k
k=1,23,... The sum M, = ?:1%‘ is the kth moment of the sample, k = 1,2,3,.... The method of moments

estimators, 64, 0,, ....., 8,., are then the solution of the following rth equations,
Hi = M;
fOI’ 01, 92, ey 91«, [ = 1, 2, W, I
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3.1.2 Maximum Likelihood Estimation

Maximum likelihood estimation is one of the most important approaches to estimation in all of statistical inference. In this
section we develop statistical inference (point estimation) based on likelihood methods. We show that this procedure are
asymptotically optimal under certain conditions (regularity conditions).

Likelihood Function

Suppose that X3, ...., X;, are independent identically distributed (iid) random variables with common probability density
function (continuous case) or probability mass function (discrete case), f (x; 8). Then, the likelihood function is given by,

LG;x) =1L, f(x;;0),0 € Q.

where x = (X1, v o , X, ). Because we will treat L as a function of 6 in this section, we will often write it as L(8). Actually,
the log or In of this function is usually more convenient to work with mathematically. Denote the log L(8) by

logL(6) = Y logf(x;;6),0 € Q.

Note that there is no loss of information in using log L(8) because the log is a one-to-one function. In this section, we will
generally consider X as a random variable.

Maximum Likelihood Estimator:

Given independent observations x;, x,, ...., x,, from a probability distribution f(x; 6,,0,,.....,0,),(64, ...,0,) € Q, the
maximum likelihood estimators 8;, 8., ....., 8, are that which maximizes the likelihood function L(64, 65, ....., 8,; x).
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To determine the MLE, we use the following estimating equations (EE). Then, the MLE is the solution of these equations

dL(O;;x) —0 or dlog L(6;x)

=0, i=12,..,r
30, 00, ) yey

There is no guarantee that the MLE exists or if it does whether it is unique.

Example 3.1:
Consider a Poisson distribution with probability mas function

e Hu*

flx,w) = x=0,12,...

x!
Supposed that a random sample X, X,, ..., X,, is taken from the distribution. Find:

1. The method of moments estimator of p.
2. The maximum likelihood estimator of .

Solution:

1. Since the Poisson distribution has one parameter, then we will derive only the first moment of the distribution and the
first moment of the sample, as following

E(X) = pand M; = ¥7, L
Solving the equation, E(X) = M,, then the MME is obtained as
~ Xi S
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2. The likelihood function is

Now consider

n
e_nﬂﬂzi=1xi

L(xlﬂXZﬂ xnl#) = ?:1f(xi'u) =

n .
i=1%i"

log L(xy, X, - X 1) = =1 + S x; log g — log [Ty % !,

dlog L(x1,X9,...Xn; Xi
g(gz n#)=_n+z?=1_l=0’
u

Solving for fi, the maximum likelihood estimator is given by

n X

[l :Zi=1;:)?'

The second derivative of the log-likelihood function is negative, which implies that the solution above indeed is
maximum. Since u is the mean of the Poisson distribution (Chapter 1), the sample average would certainly seem like a
reasonable estimator.

Example 3.2:

Suppose 10 rats are used in a biomedical study where they are injected with cancer cells and then given a cancer drug that is
designed to increase their survival rate. The survival times, in months, are 14, 17, 27, 18, 12, 8, 22, 13, 19, and 12. Assume

that the exponential distribution applies.

fCoB) = {%e_x/ﬁ' ¥>0

0, elsewhere
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Drive the method of moments and the maximum likelihood estimates of the mean survival time.
Solution:

To find the method of moments estimate we need to calculate the following moments
E(X)=pand My = 310,20
By equating these moments, we get the MME as
F=3it=X=162
Now, the log-likelihood function for the date, given n = 10, is
log L(x1, X3, ..., X10; f) = —10 log B —% 10X,

Setting

dlog L 10 1 10 _
g - 5 gt =0

Applies that
A = 1
f=X= 1—02}21Xi =16.2.

As a result, the estimator of the parameter 3, the population mean, is the sample average X.
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3.2 Properties of the Estimators

In this section, we will study several measures of the quality of an estimator, so that we can choose the best. Some of these
measures tell us the quality of the estimator with small samples, while other measures tell us the quality of the estimator with
large samples. The last are also known as asymptotic properties of estimators.

Small-sample Properties: | Large-sample Properties:
(n finite or infinite) (N—>o)

Unbiasedness (mean). Asymptotic unbiasedness

Sufficiency Consistency.

Complete Asymptotic efficiency

Efficiency (variance). Asymptotic normality.

3.2.1 Unbiasedness

Let X, ...., X,, be a random sample from the probability distribution f(x; 8); and let T denote an estimator of 8. We say that
a statistic T is an unbiased estimator of 6 if

E(T) =26, v 6
If T is not unbiased (that is, E(T ) # 6), we say that T is a biased estimator of 8.
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3.2.2 Mean Squared Error

Let X;, ...., X,, be a random sample from the probability distribution f(x; 8). Let a statistic T is an estimator of 6. Then, the
mean squared error of T, MSE, is given by

MSE(T) = E[(T - )?] = Var(T) + (6 — E(T))"
The term (6 — E(T)) is called the bias of the estimator T . Note That if T is an unbiased estimator of 8, then the MSE is
MSE(T ) = Var(T)

Proof:
2
MSE(T) = E[(T-6)2] = E [((T—E(T)) - (6-E(T))) ]
= B[(r- B)Y —2(r - E)) (o - ET) + (0 - ET))'
= E(r-E(T)) = 2E(r-ET))(6-E(T)) +E(o - E(T))’
= Var(T) + [(0 - E(T))Z]
Theorem 3.1:

If T, and T, are two estimators of 9, then T; is better estimator than T, if

MSE(T,) < MSE(T,).
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3.2.3 Consistency
Any estimator (statistic) T that converges to a parameter 6 is called a consistent estimator of that parameter 9, i.e.

lim P(IT — 6| =€) =0, V6.
n—-0oo

Theorem 3.2:
An estimator T,, based on a sample of size n is consistent for 6 if

1. lim E(T,)) = 6 (asymptotically unbiased) and
n—-oo

2. lim Var(T,) = 0.

n—oo

3.2.4 Sufficiency

Let X;,X,, ...., X;,, denote a random sample of size n from a distribution f(x; 8),0 € Q. Let T(x) be a statistic whose
distribution is f(t; 6). Then, T is a sufficient statistic of 8 if and only if

H?:l f(xi; 9)

does not depend on 6.
Fr(t; 6) P
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Theorem 3.3: (Factorization Theorem)

Let X;, X, ...., X,, denote a random sample from a distribution f(x; 8),6 € Q. The statistic T'(x) is a sufficient statistic of 6
if and only if we can find two nonnegative functions, K; and K5, such that

?=1f(xi; 9) = Kl(tle)-KZ(xllxz' .,Xn),

where K, (x4, x5, ...., X,,) does not depend upon 6.

Theorem 3.4:

Let X, X5, ...., X,, denote a random sample from a distribution that has probability distribution f (x; 8).6 € Q. If a sufficient
statistic T'(x) of 6 exist and if a maximum likelihood estimator 8 of @ also exists uniquely, then 8 is a function of T (x).

Example 3.3:

Let X, X,, ...., X,, be a random sample has exponential distribution with parameter g as following:
1
flx,B) = Ee‘x/ﬁ, x>0

Show that the estimator X is an unbiased, consistent and sufficient statistic estimator, then find the mean squared error of .
Solution:

We know that the mean and the variance of X are
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E(X) =p and Var(X) = p?

Then,
EX)=EX) =5
Thus, the statistic X is an unbiased estimator of 8. Now, we will find the variance of X as
— 2
Var(X ) = VarX) £
n n

Thus,

lim Var(X ) = lim (ﬁ—z) =0,

n—oo n—oo n
Therefore, since X is an unbiased estimator of g and lim Var(X ) = 0, from Theorem 3.2, the estimator X is a consistent
n—-oo

estimator.

Now, we need to derived the distribution of T which can be found by using the mgf transformation method as
% 2:ln=1Xi n -n
0 = (6%) = (<7 ) = (o () = (-2

which is the mgf of Gamma (n, £), thus the pdf of X is (let T = X)

n _n
fT(t; n,ﬁ)z —t"le 5, t>0,

) T
1 1 _yn )
?=1f(xl; ﬁ) = ?=1Ee_xi/ﬂ = Ee 2i=1xl/ﬁ ’
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1 Y xi/B
M, fxip) g ™ () f-n
B [
frit,n- " oa-1," B n
( n) ﬁnl"(n)t e

which does not depend on g, thus we conclude that T = X is a sufficient statistic estimator.

The MSE of X is given by
MSE(X) =Var(X) = %2 (since X is an unbiased estimator).

Thus, the estimator X is unbiased, consistent and sufficient statistic estimator of 8. Notice that the estimator X is the MME
and the MLE of B.

Example 3.4:

Let X;, X,, ...., X,, be a random sample with Poisson pmf and parameter , i.e.

e Hu*

f(x,[l) = X = 0, 1, 2,

x!
Show that the MLE of u is an unbiased, consistent and sufficient statistic estimator then find the mean squared error of u.

Solution:

From example 3.1, the MLE of u is X and we know that the mean and the variance of Poisson distribution with parameter u
are given by

EX)=Var(X) =u
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Then,
EQR) = E(*525) = 3L EX) = () = o

which conclude that the MLE of u is an unbiased estimator. Thus,

n

X\ 1w 1

_ _ 1 X; U

MSE(X) =Var(X) = Var( lnl l) = EZ Var(X,) = ﬁ(nu) ==
1=

lim Var(X) = lim (E) =0,

n—oo n—-oo \n
Therefore, the estimator X is a consistent estimator of p.
Now,

—l,,X; —np Y X -ny,,nx
e”ﬂl_e ”ul:ll_e ”H’

?=1 f(xlhu) = ?:1

- n - n
x;! izlxi! i=1xl'!

Thus, [T f (x;, 1) can be written by a product of two functions K; (t,8) = e ™ u™* which depends on the parameter u and
the MLE, T = x and K, (x, x5, ..., Xp) =

T which depends only on the random sample. Therefore, we conclude that
i=17i*

T = X is a sufficient statistic estimator.

Thus, the MLE, X is unbiased, consistent and sufficient statistic estimator of p.
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Theorem 3.5:

Let X;,X,,...,X, denote a random sample from a distribution f(x; 6),0 = (6,,0,,...,6;). Then, statistic T =
(Ty, Ty, ..., T},) are joint sufficient statistic of 8 = (64, 6,, ...,0) if and only if
L(x;0) = [T, f(x; 6) = K (£,0). K,(x1, %y, ..., %),

where K, (x4, x5, ...., X,,) does not depend on 6.

Example 3.5:
Let X;, X5, ..., X,, be a random sample drawn from continuous uniform distribution when x € (0, 8). Find the following:

(a) The MLE of 6.

(b) Prove that ¥,, = Maximum(X,, X,, ..., X;,) IS a sufficient statistic, asymptotically unbiased and consistent estimator of
0.

(c) An unbiased estimator of 6.

Solution:

(@) The pmf and cdf of the uniform distribution of x € (0, 8) are defined as

1 x

f(x,@) =5 and F(X) =5

and the likelihood function is given by

L(x1, %5, ., Xp; 8) = 0<x; 56

H_n )
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Then, the maximum of such functions cannot be found by differentiation but by selecting 6 as small as possible. Now,
each x; < @, in particular Y,, < 6. Thus, the likelihood function attains to the maximum value when

1
()"

L(xy, %z, ) %03 0) =

or 6 =Y, is the MLE for 6.
(b) To find the properties of the estimator Y,,, we should first derive the distribution of it as:

f(ynig)__yn , 0<y,<#6
Thus,

s fGpe) _ _1/6" 1
f(v,.6) (/oM y""  nyrl

The estimator Y, is sufficient statistic for 8. Now, the mean and the variance of are given by

dose not depend on @

E(Y)—f iy =———— y"+19= "0
"(n+1)"" I, (n+1)
E(Y;) = j —ytdy = ———— yoe| = no
0o 0" "(n+2)"" I, (n+2)
n 62 n? 6* n 6%

Var(y,) = E(v?) — (E(v,))" = m+2) (it 1)? i+t 1)
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Thus,
lim E(Y, ) = — im0y
now S T I D) ame (D)
n 62
hm Var(Y, ) = 11m =0

w(n+2)(n+1)2

Therefore, Y,, is asymptotically unbiased and consistent estimator of 6.

(n+1)

(c) Since E(Y,) = % thus we can choose T = Y,, which is an unbiased estimator for 8 such that E(T) =

(n+1)
E (("“) Yn) = 9.

n

Example 3.6:

Let X, X,, ...., X,, denote a random sample from a distribution that is N (u, 62), —o0 < u < o, a2 > 0. Find the following:

1. Maximum likelihood estimators of x and ¢ 2.
2. Method of moments estimators of u and o2.
3. Properties of MLE and MME of p and o2.

Solution:

1. Maximum likelihood estimators of x and ¢2:

The pdf of the N(u, o2) is
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o 0%) = ——e 22’ x50
JMJ - ma y
The likelihood and the logarithm of the likelihood function may be written in the form
L(#J 0-2; le ee ,xn) = (\/ 27‘[0‘) n e_mzlﬁl(xl M)Z
= (271)_% (02)_2 e‘ﬁzﬁl(xi—u)z
1
lOgL(#J 0'2 3 XLy ey xn) = —%log(zn) — %log(O-Z) _ ﬁ i:1(xi _ ‘L[)Z’

We observe that we may maximum by differentiation In L (i, 6% ; x4, ....., x,) With respect to u and o. We have

dlogL 1

ou o2 ?=1(xi - :u),
dlogL n 1 n 5
90z = 352 T o =1 (X — )7,

If we equate these partial derivatives to zero and solve simultaneously the two equations thus obtained, the solutions for u
and o2 are found to be

1 . _
= rtixi—w =02yt x—nu=0=>a=2X,

n 1

202 | 204 71'1:1(361' o 'u)z =0= Z?:l(xi - ’u)z = no?,

T (Xi-m? N (XX )?
n n '

$6'\2=
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2. The method of moments estimators of x and ¢2:
Since we want to find MME for two parameters u and o2, then we must equate first two population moments

EX)=u,EX?») =0%+pu?

with first two sample moments
X; X7
M; = Z?=171M2 = Z?=17
Then, we get
fi=X,and
Xt X7 X\% _ I (Xi-X)?
0%+ p? = ?:17 =>02=27i1:17_(2?:1;) = == n ,
3. Estimators properties:
a) Unbiasedness:
E@=EX)=pn

Thus, the estimator X is an unbiased estimator of p.
A 1 \/
E(6%) = E (30, (X; — X)?),

We know that the term Y7, (X; —X)? can be written as
=1 (X —X)? = = (X — w?* —n(X — p)?,

Then,
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E(6%) =~ [N, EX; — )% — nE(X — )],
— %(Z?:l o2 —nVar(X))

1 o? n-1)c?
=—(n 2—n—)=( )
n n n

Therefore, 62 is biased estimator of 2.
Note: The estimator §2 = —— " ,(X; — X)? is an unbiased estimator (Prove).
n-—1

b) Mean squared error:
The MSE of u and o2 are given, respectively, by

0.2

MSE(f) = MSE(X) =Var(X) = —

MSE(62) =Var(62) +E [(02 _E( &2))2]
We need to find the variance of 2. From Theorem 2.8,

(X —X)?
o2 -

2
Xn-1

Define S? = % m L (X; — X)?, now since X~N(u, a?), thus we can conclude that

n St . =1 (X —X)? -

2
Xn-1

g2 o2

65




STAT 223 Theory of Statistics 1

Therefore,

n S?
Var( 021> =2(n—-1)=>Var(S?) =

The MSE is, then given by

MSE(6%) = =——;

2(n—1)c*
2

n

2(n—1)c* N <02 ~ (n— 1)02>2

_ -1)o* n (0'_2)2 _ (2n-1)o*

b) Consistency:
The estimator X is a consistent estimator of u because

1. It is an unbiased estimator of pu.

2. lim Var(X) = lim = = 0.

n—oo n-oo n

The estimator &2 of g2 is also consistent estimator because

1.1im E(6?) = lim [(n_i)az] = lim [02 - %2] = g2

n—-oo n—oo n—co
2. lim Var(§?) = lim [2(” 1)"] lim [___

d) Sufficiency:

(asymptotically unbiased).
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The likelihood function of N(u, a2) is obtained as
L f(xg p02) = (\/%0)_71 o~ 707 i (Kim i)’
_ (\/—0) e - ol T e (X=X 4 n(R-w)?]
_ (\/_0) Py 2 [nsZ+n(X—p)?]
Let T, = X, T, = S2. Then, we can write
1 f(xi; m,0%) = Ky (Ty, Ty; 1, 0%). Ko (X)

— 1
where K, (Ty, Ty, u,02) = (V2mo) " e~ 222 T ang g, (x) = 1.

Therefore, (T, T,) are jointly sufficient statistic of (u, o2).

Exponential Family:

A probability distribution f(x, 8) is said to be a member of the exponential family if it can be written of the form
f(x,0) = a(8)b(x)e @™
where, 1. a(0) and c(0) are functions of parameter 6.

2. b(x) and d(x) are functions of the random sample X.
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Example 3.7:

If X;,X,,...,X,, is a random sample, determine whether the following probability distribution are member of exponential
family or not:

1. Expnential (%)
2. Bernoulli(p).
Solution:

1. The pdf of the exponential distribution with parameter % Is defined as
flx;0) =0e 9% x>0

It is a member of exponential family where a(8) = 6,b(x) = 1,¢(0) = —6,d(x) = x.
2. The pmf of Bernoulli distribution with parameter p is
fGp) =p*q" ™", x=0,1.

which can be written as

f(X; p) = eX ane(l—x) Ing — plng +x (Lnp—-Lnq)

Therefore, the Bernoulli distribution is a member of exponential family where a(p) = e ,b(x) = 1,c(p) = Lnp —
Lng,d(x) = «x.
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3.2.5 Minimal Sufficiency

A sufficient statistic T is a minimal sufficient statistic if, for any other sufficient statistic U, T is a function of U.

Theorem 3.6:

If X;,X,, ..., X,be random sample with probability distribution f(x,8) and let T(x) be a statistic of the random sample.
Suppose for any random sample Y3, Y,, ..., Y,, from probability distribution f(y, 8) such that T'(y) is a statistic and the ratio

?:1 f(xlre)
[ (i)

Then, T (x) is a minimal sufficient statistic estimator of 6.

does not depend on 8 ifand only if T(x) = T (y).

Example 3.8:

If X1, X,, ..., X,, are independent identically random sample from Poisson(8). Show that T = )., X; is a minimal sufficient
statistic for 6.

Solution:
The pmf of Poisson(0) is given as

e—@ex
f(x) 9) = X X = 0, 1, 2,

Then, for any random sample Y ~Poisson(6)
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R fCcif) _ e0 9 /I, xyt _ 9%=1tEim
L fu8)  emO oI,y Ty x /Ty v

which does not depend on 8 iff ¥, x; = X", v;.This implies that T = ¥ , X; is a minimal sufficient statistic for 6.

Theorem 3.7:
If Xy, X5, ..., X,be random sample from exponential family,
f(x,0) = a(8)b(x)ec®ax)

Then, T = Y, d(x;) is a minimal sufficient statistic estimator of 6.

Theorem 3.8:

If X;,X,, ..., X,, be arandom sample from

£(x,8) = a(6)b(x)eZi=14@)4
where & vector of parameters, 8 = (84, 6,, ..., 6;). Then,

T =XYi1di(x), j=1,2,..,k;

are jointly minimal sufficient statistic estimators of 8 = (6,0, ..., 6;).
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Example 3.9:
Find a minimal sufficient statistic for the probability distribution in Example 3.7.
Solution:

Since d(x) = x for the exponential and Bernoulli distributions, then the statistic T = };I-; X; is a minimal sufficient statistic
for both distributions.

3.2.6 Completeness
A sufficient statistic T (x) of 8 is called complete if for any function g(T) such that
E(g(T)) = 0, for all 8 implies that g(T) = 0, forall T.

Theorem 3.9:
Let Xy, X5, ..., X,, be a random sample from £ (x, 6) such that
f(x,0) = a(6)b(x)e®4®

Then, T = Y, d(x;) is complete minimal sufficient statistic of 6.

Examples 3.10:
Let X;, X5, ..., X;, be a random sample from Bernoulli(p). Show that T = }i-; X; is a complete sufficient statistic for p.
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Solution:

From Example 3.7, we found that Bernoulli distribution is a member of exponential family with d(x) = x. Therefore, by
using Theorem 3.9, T = ™, X; is complete minimal sufficient statistic for p.

Now, we want to use the definition of completeness to get the same result:

Since X~Bernoulli(p), then

n n
My(s) = E(e) = E(esT%) = (My,(5)) = (g +peD)™
which is the mgf of Binomial(n, p). Thus, the pdf of T is
— n t ,n—t —
f(t)—(t)pq ,t=0,1,..,n

Suppose for any function of T, g(T), that
t
E(9(1) = Zio g(M(DPta"™ ™ = 4" Bt g(N(F) (2) =0

=g (2) +9m() (2)+~+9m() (2)" =0
=29g0)=g(1)=--=gn)=0=g(T)=0,forall T.

Thus, T is complete sufficient statistic for p.
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Example 3.11:
Let X;, X5, ..., X,~0e~ %% x > 0. Show that T = Y™ , X; is a complete sufficient statistic for 6.

Solution:

Since X~Exponential (%) then the distribution of T = .7, X; is given as
no. n 6 \"
My (s) = E(e®) = E(es2ha%) = (My, () = (35)

which is the mgf of Gammma (n, 7). Thus, the pdf of T is

07’1
fr(t) = Fn) t"le 0t >0
Then, E(gm) = f° g(t)%t”‘le‘etdt —0

Only g(t)%:)t"‘1 =0 g(t) =0, forall T.

Therefore, T is complete sufficient statistic for 6.
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Score Function

Let X, X,, ..., X,, be a random sample from probability distribution f (x, ), then the score function, u(8), is the derivative of

the log-likelihood function with respect to the parameter 6:

u(9) = ilogL(x, 0)

a6
Properties of Score Function:
1. Mean
Elu(0)]=0
Proof:

Eu(8)]=E [%logL(x, 6)]

2
= fxl ...fan(x, ) (ﬁlogL(x, 9)) dx,, ...dx,

dL(x,0)
= fxl IXn L(x, 9) (%) dxn dxl
=2 [ [ L(x0)dx,..dx; ==(1)=0
ae xl XX xn ) n - 1 ae

74




STAT 223 Theory of Statistics 1 Dr. Samah Alghamdi

2. Variance (Fisher Information)

2
Var[u(08)] =E (%logL(x, 0))

Proof:

Var[u(8)] =E [(u( 9))2] — (E[u(6)])?

2
0
— logL
(ae ogL(x, 9)) ‘
The Fisher information, I, (6) or I,,(6), of a random sample X, X,, ..., X,, about 8 is defined as

3 2
@logL(x, 0)

Since E[u( 8)] = 0, then

Varfu(6)] = E (u(0))’| = E

Fisher Information

0
1(0) =Var [%logL(x, 9)] =E

Properties of Fisher Information:

aZ
1. Iy(6) = —E [mlogL(x, 9)]
Proof:
I __ i " o__ 6_2
LetL =L(x,0),L = Py L(x,0)and L" = e L(x,8), then
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aelegL(x 0) =2 [—logL(x 9)] ae[ ]
_ L'L- (Ll)2 L" (L/)2

E[2logL(x,0)] = E[——(L’)Z] E[—] E[(L)]

The first term in the right side can be written as
LII
E I:T:I = fx fanL dxn d

FE
=57 k. ...fan(x, ) dx,, ...

aez
The second term is obtained as

E [(L?)z] =E [(%)2 =F [(%logL(x, 9))2]

[aezlogL(x 6)] E [—] E[ ] —E [(%logL(x,H))zl
This implies that,

I,(0) = E [(:—elogL(x, 9))2] - —F [ 2 logL(x, 9)]

(1)—0

Then,

. Ix(8) =nlI(0)
where I(0) is the Fisher information at one observation defined as

0
1(6) =Var <%logf(x 9))

0
—log f(x; 9)] =E =—E [aezlogf(x, 9)]

i
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Proof:

Ix(0) =Var [aa—elogL(x, 0)] = Var % o log f(x; 9)] =y, Var [% Log f (x;; 9)] =n1(0).

3. If Xand Y are two independent random samples from probability distributions f(x, 8) and f (y, ), respectively, then

Ixy(0) =1x(0) + Iy(0)
Proof:

I 2
Ixy(6) =E (%logL(x,y, 6)) ]

[ 2
=E (%log(L(x, 0)L(y, 9))) ] (Since X and Y are independent)

i 2
_ 9 9
=E (69 logL(x, 0) + ——logL(y, 9)> ]
/o 2 9 2 d 9
= F (ﬁlogl’(x’ 9)) +E <£logL(y, 9)) + 2E (ﬁlogL(x, 9)) E (ElogL(}’, 9))

9 2 ? 2
=E <£logL(x, 9)) +E (ﬁlogL(y, 9))

= IX(H) + IY(H)
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Examples 3.12:

Let X;, X5, ..., X;, be a random sample from normal distribution with parameters 0 and 6. Find the Fisher information of 6,

Ix(6).
Solution:

We know that the normal distribution when u = 0 and o2 = @ is given by

X2

e 20,—o0o < x < oo

f(x,@) =\/m

The likelihood and the log-likelihood functions are then obtained as
_Tl _iz‘n 2
L(x,0)=(2n8) 2 e 26 i=1%i
logL(x,0) = ——log(Zn) — —1og(g) _ _Zl x2
9
1. I4y(@) =Var [glogl,(x’ 9)]

From the log-likelihood function, we get the first partial derivative with respect to 9 as

9 _ _n Il 1xi2
logL(x 0) = + e

0 = Vr |-y B g

. T X n 2 2 Y X2 .. .
Note that: == Yic1 Z{ ~xn, then Var [T] = 2n, and this implies that

2n
Ix(6) = 202 202
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2. I;(8) = nlI(6)
log f (x, ) = —>log(2m) — >log(6) — g

ﬁlogf(x 0) = —%+ﬁ

XZ
Iy(8) =nl1(60) =nVar [Elogf(x, 9)] =nVar [—— +2
n X?
= m Var ?
. X2 X?
Since, - = Z?%~x2 thenVar [?] = 2, therefore we get
Ix(6) = o
3. 1,(8) = —E [aezlogL(x 9)]
First, we should find the second partial derivative of log-likelihood function with respect to 8, which is equal to
Yizg X
aezlogL(x 0) = —2 9;;

L X nE(X;?)
Ix(6) = —E [692 logL(x, )| = — |12 — =] = 1y T PO

From definition of variance,
Var(X) = EX?) — (EX) = E(X?) = Var() + (EX) =0+ 0=
Then,
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Regularity Conditions:
(i) logL(x,0) or log f(x,8) is differentiable for all 6.

D ?
iy /. ...fan(x; 0)dx, ..dx; = fxl ...fxnﬁL(x; 0)dx, ...dx,

.2
(i) [, ...fxn t(xy, .., %) L(x;0) dx,, ...dx;
9
= fxl ...fxn (X1, s Xn) 55 L(x; 0) dxy ...dxy

2
(iv) 0<E|=logL(x;0)| <oo, forallg.

3.2.7 Minimum Variance Unbiased Estimator (MVUE)

If a statistic T be an estimator for a parameter t(0), is called to be a MVUE for 7(8) if

1. E(T) = t(6) unbiased estimator of 7(0).
2. Var(T) has minimum variance compared to any other unbiased estimator.

Theorem 3.10: Cramér-Rao Lower Bound (CRLB)

Let X;, ..., X, be a random sample from f(x,6) and T (X, ..., X,) be an unbiased estimator of 7(8) such that (8) is
differentiable function of 8. Then, under the regularity conditions, the minimum variance of any unbiased estimator T is

()"
nl(6)

Var(T) =
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Proof:

Since T is an unbiased estimator of 7(0) [i.e. E(T ) = ©(6)]. Then, under the regularity conditions, we get

0

#(0) = —=1(0) == E(T) = — [ . [ t(x1, .., 1;)L(x; 0) d2; ...dx,

£(0) = [ . [ tQy, s X)) = L(2;0) dity ... dity
= [ tley, e, xy) [;—elogL(x; 9)] L(x;0)dx, ...dx,,
= [ tley, e, xy) [;—elogL(x; 9)] L(x;0)dx; ...dx, — [ ... [ ©(0) [:—elogL(x; 9)]L(x; 0)dx; ...dx,
= [ J[t0xqy, e, x0) — T(0)] [%logL(x; 6)] L(x;0)dx; ...dx,,
=FE |[t(xq, ..., %) — T(O)] [aa—elog L(x; 9)”
Now consider the covariance of T and score function as following

Cov [T,aa—elogL(x; 6)] =E [Taa—elogL(x; 6)] — E[T]E [aa—elogL(x; 0)] = 1(60)

Now by the Cauchy-Schwarz inequality, we get

] 2 d
—_— . < —_ .
Cov [T, 30 log L(x; 8)] < Var[T]Var [66 log L(x; 8)]

Then,
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a 2
[£(0)]? < E[t(xy, ..., %) — T(0)]? E [%log L(x; 9)]

[£(6)]?
or Var[T] = W

. 2
Remark: If there exists an unbiased estimator T of 7(8) that its variance attains the CRLB = %, then T is an MVUE

estimator of ().

3.2.8 Efficiency
An unbiased estimator T of 7(80) is called an efficient estimator of 7(8) if and only if

CRLB
efr =varm =

Theorem 3.11:
If T, and T, are both unbiased estimators of (), then the efficiency of T, and T, is defined as follows
> 1, T, is more efficient than T}
Var(Ty) . .
(T 1, T, and T, are equally efficient
ar(T2) (<1 , T, is more efficient than T,

eff(Ty,T;) =

82




STAT 223 Theory of Statistics 1 Dr. Samah Alghamdi

Asymptotic Efficiency
An unbiased estimator T of () is called an asymptotically efficient estimator of 7(8) if

| o _ i CRLB
1meff() Nim —— (T)

Example 3.13:

If X;, X,, ..., X, hasan exponential distribution with parameter % Let T, and T, are unbiased estimates of A1 and % respectively.
Find CRLB of T; and Ts.

Solution:
The pdf of the exponential distribution with parameter % is given by
flx,A) = le™ x>0
Then, the likelihood and the log-likelihood functions are obtained as
L(x,A) = [Th, f(x;, 1) = Ate 2Tz %
logL (x,A) =Y logf(x;,A) =nlogA—AY" x;

Taking the first and second partial derivatives of the Iog-llkellhood function with respect to A, we get

d
32 —logL(x,A) =

Xi

o

NERE

NI:

l
2

FYP —logL(x,A) = —
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Then, the Fisher information of A is derived as
62

IX(A) = —F [W

n
logL(x, /1)] =z

Now, we want to find the CRLB for T, and T, of the two cases when t(4) = A and when (1) = %

The case when 7(1) = 1= 1'(1) = 1, then the CRLB for T} is

RGO

T, = = =—
CRLB(T) =T 39" = /2~
The second case, when t(4) = % =>17W0A) =— /%2 then the CRLB for T, is
2
()" (=1/2H? 1
B T == = =
CRLB(T>) L) n/ A2 nA2
Note that CRLB(T,) < CRLB(T,) and
_ T Var(X;)) 1 n 1
=1 L
Ver) === ~@Er e
Then, X is an efficient estimator of % such that
@) = CRLB(X) _
X =3r®) ~

Remark: X isthe MLE of %
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Example 3.14:

Let X, X,, ..., X,,~ Poisson(4). Find CRLB of the MLE of A and prove it is an efficient estimator.

Solution:

From Example 3.1 and Example 3.4, we get the MLE of 1 is T = X and it is an unbiased estimator of A where
D) =A=>7Q) =1

The pdf of Poisson distribution with parameter A is defined as
-1 91x

flx, 1) = x=20,1,2,..

x!
The logarithm function of the pdf and the derivatives are

log f(x,A) = xlogd — 1 —logx!

dlogf(x,1) x

ER 7t
0%logf(x, )  «x
92 )2

Then, the Fisher information is given as

6210gf(x,ﬂ)] _E (X) B

n
02 2

Iy(A) =nl(A) = —nE [ P

where E(X) = A. Therefore, the CRLB is equal to
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W) 1 2

1_
LD T n

CRLB =

Note that Var(X) = % and thus the variance of the MLE equals to the CRLB. Therefore, the MLE, X, is an efficient estimator
of A.

Example 3.15:
Let X1, X,, ..., X,, be a random sample from N(u, ). Show that,

(i) X is an efficient estimator of p.

(i) §2= ﬁ * (X; — X)? is an asymptotically efficient of o2.

(iii) §2 = %2?:1(& — X)? is an asymptotically efficient of o2
(iv) §2 = % n L (X; — u)? is an efficient estimator of o2 if u is known.
Solution:

The pdf of the N(u, 62), the likelihood and the log-likelihood functions are

1
flou0%) =——e 22 %M x>0

2TTO

n n 1 wn
L(u,0%) = (2n) 2 (%) 2 o~ 707 Dic (xim)?
n

1
log L(, %) = —Zlog(2m) — 7log(07) — = XL (i — ),
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The first and second partial derivatives with respect to u and o2 are

dlogL 1 o dlogL n 1 «n 2
ow of i=1(x; — 1), 392 252 + oot i=1(xX; — )
d%logL _  n 9%logL _ n 1 wn 2
o ot vt~ o1 e iz (X H)

Now, to study the efficiency, we need to determine the unbiasedness, CRLB and the variance:
(i) The efficiency of X:

From Example 3.6, we get

E(X)=pandVar(X) = i

n

i.e. X is an unbiased estimator of x. Now, the Fisher information of u is given as

2

0 5 n
Iy(w) = —E a—leOgL(#;U ) =

Thus, the CRLB of X is
' 2
(W) o*

Iy (1) n
which is equal to the variance of X, then we conclude that the estimator X is an efficient of u. Notice that, X is the MLE

of u.

CRLB(X) =
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(ii) The efficiency of 2 = — 3™, (X; - )%

(n—1)s* YL,(X—-X)?
o2 - o2 -
4
and E(S?) = a2, Var(5?) = % Thus, S? is an unbiased estimator of o2. The Fisher information of &2 is given by

2
Xn—l

2 62 2 n 1 N 2
Iy(c®) = —E WlogL(u,a )| = —T‘LH'FE EX; —w
i=1
From Corollary 2.2, when X;~N (i, 62),i = 1,2,..,n, then

ta (B) ~xz and B[z, (22) ] = n

o o
Therefore,

5 n n n
k(0%) = =gt 5a = 30
Now, the CRLB is obtained as
(T'(az))z 1 20"
Iy (0?) - n/2c* ~Tn
CRLB(S?) 20%/n n—1
Var(S?) =204/11—1 T n

CRLB(S?) =

eff(S%) =
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1 (5?) = lir ntlo (1 1)—1
1meff im - im —) =

n—-oo

Then, S? is asymptotically efficient of 2.

(iii) The efficiency of S? = ; X=X

From Example 3.6,
E(s?) = %D and var(sp) =227
i.e. SZis not an unbiased estimator of o2. The CRLB of S2 is obtained as

(7 (02)) 1 20t

CRLB(S%) =

Ix(0?) n/ZG4 n
CRLB( S?) 20%/n n
ef f (SD) = = Y
Var(S{) 2(n—-1)oc*/n> n-1
1
hmeff(S)—hm = lim ——=1
n-oon — n—oo 1 — 1
n
Then S is an asymptotically efficient of o 2.
(iv) The efficiency of S2 —; X = w3
From Corollary 2.2, when X;~N (u,02),i = 1,2,..,n, then
Xi— 2
()~
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Therefore, the mean and the variance of SZ are calculated as follows

n

X — )2 nS?
S (& ﬂ)]mﬂ_;
() o

i=1

E

n
=n=—=E(S;) =n=E(S5) =0
o

n

X — i 2 nS? n? 20"
S omro St
o o 9 "

i=1

Var

Now, the CRLD and the efficiency of SZ are

(T’(O‘Z))Z 1 204
Ix(0?) - n/2c% ~n

CRLB(S3) 20*/n _

Var(S2) =~ 20%*/n

CRLB(S?) =

eff(53) =

Thus, S7 is an efficient estimator of 2.

Theorem 3.12: (Rao-Blackwell Theorem)

Let X;,...,X, be a random sample from f(x,8),0 may be a vector of parameters; and let S; = s; (X, ..., X), ..., Sk =

s (X4, ..., X,,) be a set of jointly sufficient statistics. Let the statistic T = t(X,, ..., X,,) be an unbiased estimator of 7(9).
Define,

T'=E(T|S,, ..., Sk)
Then,
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1. T'is astatistic and it is a function of the sufficient statistics S, ..., S. Write T' = t' (S, ..., Si) -
2. T'is an unbiased estimator of 7(8); E(T") = t(6).
3. Var(T") < Var(T) forall 8,and Var(T') = Var(T) iff T' =T,

Proof:

1. S,,...., S, are sufficient statistics; so, the conditional distribution of any statistic T, given S, ...., Sy is independent of 6,
hence T' = E[T|S,, ...., Si] is independent of 8, and so T is a statistic which is obviously a function of S, ...., S.

2. E[T'] = E[E[T|Sy, ..., S]] = E[T] = ©(6) [using E[Y] = E[E[Y|X]]].
3. we can write
MSE[T] = Var[T] = E[(T —E[T'D*| = E[(T-T' +T' — E[T'])?]
= E[(T —T")?] + 2E[(T = T")(T' — E[T'D] + E[(T" — E[T'])?]
= E[(T = T")?]+2E[(T = T')(T' — E[T'D] + Var[T']
But
E[(T—T)(T' —E[T'D] = E[E[(T = T')(T' = E[T'DISy, ..., Si]]
and
E[(T =T )(T' — E[T'DIS; = 51; e} Sk = il = {t' (54, ., i) — E[T'BEIT —T)|S; = S5 o5 Sie = Skl
= {t'(51, ., 5x) — E[T'IYE[T|S; = 51; o3 Sk = Sic] — E[T'|S; = S35 005 Sk = si])
= {t'(51, ., 5k) — E[T'1}[t' (51, v, S) — t'(Sq, o, Sx)] = 0

and therefore
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Var[T] = E[(T — T")?] + Var[T'] = Var[T']
Note that Var[T] > Var[T'] unless T equals T' with probability 1.

Example 3.16:
Let X;, ..., X,, be a random sample from the Bernoulli(p)
flx;p) =p*qt™, x=0o0r1l
and let T = X; be an unbiased estimate of p. Find a MVVUE of p.
Solution:

Since, T = X; is an unbiased estimator such that E(T) = E(X,) = p. From Example 3.9, we get S =}, X; is a sufficient
statistic. According to the Rao-Blackwell Theorem

T = E(T18) = EGGI S, X) = ) Xy POGIE, X))

= (0)P(X; = 0|XiL, X; = ) + (DPX; = 11Xz, X; = 5)

_ P(X=1Y% X;=S) _ P(X;=1)P(X,X;=S-1)

P X=s) P(Z1 Xi=S)
_p(EDP e -1l Sin=s) s -
() pS qn=S T-DI(n-S)! ol on
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Thus, T’ = X is a statistic and a function of a sufficient statistic S and an unbiased estimator of p where E(T") = E(X) = p.
Therefore, T' = X is a MVUE of p with minimum variance such that

_ X 1 pq
V Tl — V X — V 1=1“*1 — —
ar(T") ar(X) ar ( m ) — npq -

While, V(T) =V(Xy) =pq
Thus, V(T") <V(T)

Theorem 3.13: (Lehman-Scheffé Theorem)

Let X, ..., X;, be arandom sample from f (x, 8), @ may be a vector of parameters (6, ..., ;). If S = s(S4, ..., S;) isacomplete
sufficient statistic and if T* = t*(S) a function of S, is an unbiased estimator of 7(8). Then, T*is UMVUE of 7(8).

Proof:

Let T' be any unbiased estimator of 7(6) which is a function of S; thatis, T’ = t'(S). Then E[T*—T'] = 0 for all 8 € @,
and T* — T' is a function of S; so by completeness of S, P[t*(S) = t'(S)] = 1 for all 8 € @. Hence there is only one unbiased
estimator of 7(8) that is function of S. Now let T be any unbiased estimator of 7(8). T* must be equal to E[T|S] since E[T|S]
is an unbiased estimator of t(6) depending on S. By Theorem 3.11, Var[T*] < Var[T] for all 8 € @; so T*is an UMVUE.
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Example 3.17:

Let X;, X5, ..., X,, be arandom sample from the Exponential( ),

flx,B) = %e‘x/ﬁ, x>0

Find UMVUE of £ and %

Solution:

Since the exponential distribution is a member of the exponential family, then S = I, X; is a complete sufficient statistic.
Thus, we need to derive two functions of S that are unbiased estimators of § and %.

1. Put Ty = ¢S, cis a constant such that
E(TY) =B=E(S) = = cEQEL,X)=p=>cnf=F=>c=-
Thus, T{ = ¢S = X isa UMVUE of S.
2. PutT, = % , C IS a constant such that

N = () = t V-1
51 = E(5) = < B (5w) =
Since, S = Y, X; ~ Gamma (n, ), then
©o _ n-—1
<1) zj LR S Gt O 1
0

S sT()B" T (n— DB
Thus,
E(T;) =cE(l> :c;zl:c:n—l
S (m—-1DB B
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isa UMVUE of =

Therefore, T, = % =

lll

3.3 Properties of Maximum Likelihood Estimators

Let X;,X,, ..., X,, be a random sample with probability distribution f(x,8). If MLE = 8 of 8 and under certain regularity
conditions, then @ satisfies the following properties:

1. Invariance: Let h(6) be a function of 8. Then, T = k() is the MLE of h(6).
. Sufficiency: If a sufficient statistic exists for 8, the MLE of & must be a function of it.
. Asymptotically unbiased: lim E(8) = 0

n—-oo

2
3
4. Consistency: lim P(|§ —6| =¢) =0, v
5

n—oo

. Asymptotic efficiency: If a most efficient unbiased estimator T of 0 exists (i.e. T is unbiased and its variance is equal
to the CRLB). Then, the maximum likelihood method of estimation will produce it.
6. Asymptotic normality: The MLE 8 of 6 has asymptotic normal distribution such that
~ d
Vn(6-6) - N( (9)) n — oo where Var(8) = CRLB(9) =
In general, if 7(6) be the MLE of 7(8), then (8) has distribution as

Vi(t(6) ~ 7(6)) 5 N (0,550 ) or 1) 5w (x(6) L)

1(9)'
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3.4 Location and Scale Invariance

3.4.1 Location Invariance:

Location Parameter:

Let f(x) be any pdf. The family of pdfs f(x — u) indexed by parameter u is called the location family with standard pdf
f(x) and u is the location parameter for the family.

Equivalently, i is a location parameter for f(x) iff the distribution f(x — u) does not depend on .
Location Invariant:
Let X, X, ..., X;, be a random sample of a distribution with pdf (or pmf); f(x, u); u € Q.

* An estimator t(x4, ..., x,,) is defined to be a location equivariant iff

t(x; +¢, ..., x, +¢) =t(xy,...,x,) + c forall values c.

* An estimator t(x, ..., x,) is defined to be a location invariant iff
t(xy + ¢, .., xy + ) = t(xy, ..., x,) for all values c.

Example 3.18:
* IfX~N(8,1), then the distribution of X — 8 ~N(0,1) is independent of & — 6 is a location parameter.

e Lett(xy,..,x,) =X.Then,

X1+c++xp+c  xq+-+xp+nc
t(x; +¢ o xy+¢) == == n

n n

=X+c=t(xg,..,x,) +¢
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— X is location equivariant.

o Lett(xy,..,x,) =S%= ﬁ n_(X; — X)2. Then,

t(x; +¢, e, xy+c) = — ?zl(Xl- +c—-(X+ c))2 =52 =t(xy, ., %)

1
n_

— S2 location invariant.

3.4.2 Scale Invariant:

Scale Parameter:

Let f(x) be any pdf. The family of pdfs % f (g) for o > 0, indexed by parameter ¢ is called the scale family with standard
pdf f(x) and o is the scale parameter for the family.

Equivalently, o is a scale parameter for f(x) iff the distribution i f (g) does not depend on o.

Scale Invariant:
Let X;, X5, ..., X,, be a random sample of a distribution with pdf (or pmf); f(x,0); o € Q.

* An estimator t(x, ..., x,) is defined to be a scale equivariant iff

t(c xq, ..., Cxy) = c t(x4, ..., x,) Tor all values c.

* An estimator t(x4, ..., X,,) is defined to be a scale invariant iff
t(c xq, ..., xy) = t(xq, ..., x,) for all values c.
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Example 3.19:
* If X~Exponential (%) then the distribution % f (g) Is independent of 8 — @ is a scale parameter.

e Lett(xy,..,x,) = X. Then,

¢ (xq++xp)

t(cxq, .o, Cxy) = =cX=ct(xg,..,x,)

— X is scale equivariant.

X4

Let t(xq, ..., x,) = PSR Then,
_ CX1 _ X1 _
t(cxq, 0, CXy) = Xrex, — Xax = t(Xq, veer X))
X, . . .
— is scale invariant.
1+X>

3.4.3 Location-Scale Invariant:

Location-Scale Parameter:

Let f(x) be any pdf. The family of pdfs i f (%) for o > 0, indexed by parameter (u, o) is called the location-scale family
with standard pdf f(x) and u is a location parameter and o is the scale parameter for the family.

Equivalently, u is a location parameter and o is a scale parameter for f(x) iff the distribution % f (’C?T“) does not depend on
uand o.

98




STAT 223 Theory of Statistics 1 Dr. Samah Alghamdi

Location-Scale Invariant:
Let X;, X5, ..., X,, be a random sample of a distribution with pdf (or pmf); f(x,0); o € Q.
* An estimator t(x4, ..., x,) iIs defined to be a location-scale equivariant iff
t(cx; +d,..,cx, +d)=ct(xq,..,x,) + d forall values ¢ > 0 and d.

* An estimator t(xy, ..., x,) is defined to be a location-scale invariant iff
t(cx,+d,...,cx, +d) = t(xyq, ..., x,,) for all values ¢ > 0 and d.

Example 3.20:
o If X~N(u.c?), then the distribution of Y = % ~N(0,1) is independent of u and 02 — u and o2 are location-scale
parameters.
e Lett(xy,..,x,) = X. Then,

t(cx; +d,...,cx, +d) = chatotxmind _ ¢4 = t(xq, .., X)) +d

n

— X is location-scale equivariant.
Y, —Y;
o Lett(xy,..,x,) = ”Tl Then,

_ (CYn+d)_(CY1+d) CYn—Cyl YTl_Yl

t(cx,+d,..,cx,+d) = gy === t(xq, ) Xy)

Y,—Y; . . . .
— ”Tl is location-scale invariant.
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Chapter 4: Interval Estimation

Chapter 3 dealt with the point estimation of a parameter or made the inference of estimating the true value of the parameter
to be a point. In this chapter, we might make the inference of estimating that true value of the parameter is contained in some
interval that is called interval estimation.

Confidence Interval:

Let X;, X5, ..., X,, be a random sample from f(x,0). Let T;, = t;(Xy,...,X,) and T, = t,(Xy, ..., X,) be two statistics
satisfying T; < T, for which P(T; < t(0) < T,) = 1 — a, where a does not depend on 6, then the random interval (T, T,)
is called 100 (1 — a)% confidence interval for (8), « is called the confidence coefficient and T; and T, are called the lower
and upper confidence limits, respectively, for 7(0).

4.1 Confidence Intervals from Normal Distribution

In this section, we derive confidence intervals for the mean u and the variance o2 when the random sample X;, X,, ..., X,, has
normal distribution.

4.1.1 Confidence Interval for the Mean
There are two cases to consider depending on whether or not a2 is known.

First Case (a2 is known):
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If the sample is selected from a normal population or, if n is large enough, (Theorem 2.3 and Theorem 2.4) the sampling
distribution of the sample mean X when o2 is known is given by

X—u
o/Vn

Then, we establish a 100 (1 — a)% confidence interval for u when o is known as following:

~N(0,1)

M - —_—
P( Zl—%<a/\/ﬁ<zl—%)_1 a

> o o] o
P(X—zl_%ﬁ<y<X+zl_%ﬁ)—1—a

where z, _a is a value from z-table.
2

Second Case (6 is unknown and n<30):

Now, we turn to the problem of finding a confidence interval for the mean u of a normal distribution when we are not known
the variance o2 and the sample size n is small. In Theorem 2.11 we found that

X—p
S/\/ﬁ ~t(n—1)

where S is the sample standard deviation. Then, we can find 100 (1 — a)% confidence interval for  when o2 is unknown as
following:

X-u 1 _
P (_t(l—%,n—l) < SV < t(l—%,n—l)) =1l—-a

101




STAT 223 Theory of Statistics 1 Dr. Samah Alghamdi

= S S S
P (X - t(l—%,n—l)\/_ﬁ <u<X+ t(l—%,n—l) \/_ﬁ) =1—a
where Lo no1y Is a value from t-table with n — 1 degrees of freedom.
>
Example 4.1:

Let X;, X, ..., X1 be a random sample from N (i, 16) and let the sample mean X be 3.67. Find 95% confidence interval for
the population mean p.

Solution:

Since population variance is known, 62 = 16, and X = 3.67, n = 10; then 95% confidence interval for the population mean
U is

3.67 + 2,

N| R
3
o

where, the value of z-table z, _« is found as
2
a a
1-a=095=a=0.05= §=0'025:1_§=0'975
— Zl—% == 20_975 == 196

Then, 3.67 + 1.96 — = 3.67 + 2.4792
V10

= u € (1.1908,6.1492)
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4.1.2 Confidence Interval for the VVariance

Let the random variable X be N(u, 62). We shall discuss the problem of finding a confidence interval for a2. Our discussion
will consist of two parts: the first when p is a know number, and second when u is unknown.

First Case (u is known):

Let X, X5, ..., X,, denote a random sample of size n from distribution that is N (u, 2), where u is known. From Corollary 2.2,
we got that

0_2 Xn

Let us select a probability, say 1 — a, then 100 (1 — a)% confidence interval for a2 when p is known is given by

2 Niz1 (Xi—p)? 2 _ 1

2 2 -
X&) Xa-Zm)

where X?gn) and xé_ « - are x* values with n degrees of freedom.
2’ 2’

)

Second Case (u is unknown):

Now, we discuss the case when u is not known. This case can be handled by making use of the facts from Theorem 2.8 that

(n-1)s?

~X7’l—1 or ?:1(Xi_}_()2 2

~Xn-1

o2 o2

103




STAT 223 Theory of Statistics 1 Dr. Samah Alghamdi

when the sample variance s? is computed. Then, for a fixed positive integer n > 2, we can find a 100 (1 — a)% confidence
interval for o2 as

2 (n-1)s? 2 _
P (X(l—%,n—l) <72 < X(%,n—1)) =1l-a

_ 2 _ 2
p<<zi<02<gn¢)=1_a

X(%,n—l) X1- Zn-1)

where X?gn_l) and Xé_ a . are x* values with n — 1 degrees of freedom.
2’ 2’

-1)

Example 4.2:

Let X;,X,, ..., X,c be a random sample from normal distribution when the sample variance is equal to 2.3. Find 90%
confidence interval for the population variance 2.

Solution:

We want to construct a confidence interval for o2 when the population is normal with unknown mean, thus we should use the
following case

P (2‘2(2'3) < g? < 2223 ) =09

(&2 X(1-224)

55.2 55.2
Pl-—"—<o0%< =0.9
(%20 X(1- 224
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a (04
1-a=09=>a=01= E=005:>1—E=095

= Xo0s24) = 3642 and  xZg.954) = 13.85

55.2 55.2
36.42°13.85

— o2 € ( ) — o2 € (15157, 3.9856)

4.2 Pivotal Quantity Method
Pivotal Quantity:

Let X3, X5, ..., X;, be a random sample from f(x, 8). Let Q = q(X4, ..., X,,; 6) be a function of X3, ..., X,, and 6. If Q has a
distribution that does not depend on 6, then Q is defined to be a pivotal quantity.

Example 4.4:
Let X;, X, ..., X,, be arandom sample from N( 8,9). Then,

1. X— 6~N (O ) and TNN(O 1) are pivotal quantities.

2. X —20~N (—9,;) is not pivotal quantity.
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Pivotal Quantity Method:

If Q =q(X,,...,X,; 0) is apivotal quantity and has a probability distribution, then for any fixed 0 < a < 1 there will exist
q, and g, suchthatg, < g,and P(; <Q<gq,)=1—-«

Therefore, we can find 100 (1 — a)% confidence interval for (8) as

P(ti(xqy, ., %) <T(0) < ty(xq, .0, x))=1—a
where t; and t, are functions of the random sample does not depend on 6.
Remark:

If X;,X,,...,X, is a random sample from f(x,8), and the corresponding cumulative distribution function F(x, @) is
continuous in X. Then, a pivotal quantity can be given as

Q=-2 Z?:l lOgF(xi: 9) ~ X%n
Then, the (1 — a)100 % confidence interval for 7(8) is given as

2 2 1
P (X(1— .2n) <Q< X(%,m)) =l-a

Example 4.5:
If X3, ..., X,, be a random sample from the density function
fx)=0x%"1, 0<x<1

Find a pivotal quantity for 6 and use it to construct 100(1 — a)% confidence interval for 6.
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Solution:
The CDF of x is given by

F(x) = foxexg‘ldx =xY 0<x<1
So, the pivotal quantity can be of the form
Q=-2 Z?zllogxf’ = —20 Y-, logx;

where Q~ x3,,, then one can construct 100(1 — a)% confidence interval for 6 as

2 2 —1_
P <x(1_%’2n) <Q< x(%m)> =1l-a

n
2 2 —1_
P (X(l—%,Zn) < —ZHZlogxi < x(%m)> =1—-a
i=1

2
~ X(Zamy ~X(1-%op)
2% logx; 2= logx;

4.3 Large Sample Confidence Interval

From Section 3.3, the MLE 8 of 8, has an asymptotic normal distribution when n is large which is given by

V(6 -0) SN (0:5) or 95N (0,-5)
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Thus, we can write

~

1/ nl(0)

Use the distribution of the MLE 8 to construct 100(1 — a)% confidence interval for the parameter 6 as following:

~N(0,1)

~

P(—z a<;<zl_g)=1—a
2

"z 1/yni(®

<9<§+Z a

~ 1 1
PlO — a =1—-«
< 21_5\/711(9) 1_7#711(9))

In General:

Since the MLE 7(0) of 7(8), has an asymptotic normal distribution when n is large as following:

, 2
O (r(e), ((6)) )

nl(6)

REORIO
t(6)/nl(6)

Then, 100(1 — a)% confidence interval for the parameter 7(8) is given by

7(0) — T(H)

P(—Zl_g )—1—a

2 T(B)/w/nl(e

~N(0,1)
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P (f(@) — Zl_%m

1(0)

<7(0) <t(O)+z _«a

2

1(6)
Jnl(8)

)-1-e

Example 4.6:
Let X~Exponential(f) with large sample size. Construct 100(1 — )% confidence interval for 3.

Solution:

The pdf of the exponential distribution with parameter £ is defined as
1
fx,p) = Ee"‘””, x>0

We found from Example 3.2 and Example 3.3 that the MLE of f is X and it is an unbiased estimator (i.e. E(X) = ). Thus,
X has an asymptotic normal distribution that is

1

X~N(ﬁ,r@)

Now we need to derive the Fisher information, 1(0):

logf(x;9)=—log[3—%
61 9 = 1 x
55108/ (x; )——E‘Fﬁ
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0 1 X Var(X) 1
1(0) =Var [%logf(x; 9)] =Var [—— —| = =

B B p* B?
The asymptotic normal distribution of the MLE is

X N(,B,n) or B/\/ﬁ_\/n(ﬁ 1) N(0,1)
Thus, 100(1 — a)% confidence interval for 8 is obtained as

P(_Z1—%<ﬁ(g_1><z1—%)=l_a
= —Zl_%<§—1<21_%
vn B Vn
:1—21_%<)—?<1+Zl_%
vn B Vn
Xvn XVn
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Chapter 5: Bayesian Estimation

In the last two Chapters 3 and 4, we assumed the random sample came from some known probability distribution f(x, 8) and
we used the classic method to estimate the unknown parameter 8 which was some fixed. In this Chapter, we will estimate 6
using the Bayesian method which is define the unknown parameter 6 as a random variable and has a distribution depending
on previous information called prior distribution.

Prior and Posterior Distributions

Consider a random variable X that has a distribution of probability that depends upon the symbol 6, where 6 is an element of
a well-defined set €. Let us now introduce a random variable @ that has a distribution of probability over the set Q. The
probability distribution h(6) is called the prior distribution of ©. Moreover, we now denote the probability distribution of
X by f(x|0) since we think of it as a conditional distribution of X, given ® = 6. For clarity in this chapter, we will use the
following summary of this model:

X160 ~ f(x[6)
® ~ h(6)
Thus, we can write the joint conditional distribution of X, given ® = 0, as
L(x[0) = f(x1]60)f (x210) ... f (x,16)
Thus, the joint distribution of X and © is
9(x,6) = L(x|8)h(8) (5.1)
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The marginal distribution of X is given by

(x,0)d0, if O is a continuous
g1(x) = fe g
Yo 9(x,0), if@isadiscrete

In either case the conditional distribution of ©, given the sample X, is

_g(x8) _ L(X|0)n(®)
kOl =0 = = o (5.2)

The distribution defined by this conditional distribution is called the posterior distribution. The prior distribution reflects
the subjective belief of © before the sample is drawn while the posterior distribution is the conditional distribution of © after
the sample is drawn. Further discussion on these distributions follows an illustrative example.

Example 5.1:
Consider the model
X;|6 ~iid Poisson (6)
® ~ I'(a, B), a and S are known

Hence, the random sample is drawn from a Poisson distribution with mean 8 and the prior distribution is I'(a, #8) distribution.
Thus, in this case, the joint conditional pdf of X, given ® = 0, is

9*1e=0  QXneg=t

x1! xn!

L(x|6) = ,,=0,1,2,...,i=1,2,....,n,

and the prior pdf is
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a—le_g
h(9)=W,O<9<OO
Hence, the joint mixed continuous discrete pdf is given by
6
xle—e gxne—e Ha—le_ﬁ
9(x,6) = L(x|6)h(6) [ | T

9Li=1 xi+a—1e_<nﬁﬁ+1>e

TS, ! T(@)B?

Provided that x; = 0,1,2,3,....,i = 1,2,...,nand 0 < 8 < oo, Then, the marginal distribution of the sample, is

B+1
0o 62?=1xi+a—1e_(n B )9
gl(x) Jo ?:1 xi! F(a)ﬁa

FrQL,x +a)
Yhoxita
r @ (B

Finally, the posterior pdf of ©, given X = x, is

6
x. 0 grizixita-1, (nﬁﬁ+1)
9(x,0)
k(@lX) = = Yroxita
91(x) n B =17
M(Zi,x +a) <W>
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B
np+1’

Provided that 0 < 8 < oo. This conditional pdf is one of the gamma type with parameters a* = >, x; + e and B* =

Notice that the posterior pdf reflects both prior information (e, ) and sample information (3,7, x;).

\ B
9|Xl "’F(le‘l‘a,nﬂ_l_l)

i=1

Remarks:

1. In Example 5.1 notice that it is not really necessary to determine the marginal pdf g, (x) to find the posterior pdf k(8|x).
If we divide L(x|0)h(6) by g, (x), we must get the product of a factor, which depend upon x but does not depend upon 6,
say c(x), That s,

0

n (_B_
k(0]x) = c(x) gLi=1¥ita=1 ¢ <nﬁ+1>

Provided that 0 < 8 < o, and x; =0,1,2,3,....,i = 1,2, ...,n. However, c(x) must be that “constant” needed to make
k(6|x) a pdf, namely

1
C(X) = B Z?zlxi+a
M, x +a) (m)
Accordingly, we frequently write that k(6|x) is proportional to L(x|8)h(8); that is, the posterior pdf can be written as
k(0|x) o« L(x|6)h(6) (5.3)

Note that in the right-hand member of this expression all factors involving constants and x alone (not 8) can be dropped. For
illustration, in solving the problem presented in Example 5.1, we simply write
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0

np+1’

0 < 0 < oo. Clearly, k(6]x) must be gamma pdf with parameter a* = Y, x; + @ and §* =

2. There is another observation that can be made at this point. Suppose that there exists a sufficient statistic T = t(X) for the
parameter so that

L(x]0) = fr(t|6).k(X),
where now f;(t | 6) is the pdf of T, given ® = 6. Then we note that
k(@]x) o fr(t]6)h(6) (5.4)

5.1 Bayesian Point Estimation

Suppose we want a point estimator of 8. From the Bayesian viewpoint, this really amounts to selecting a decision function &,
so that §(x) is a predicted value of 8 (an experimental value of the random variable ®) when both the computed value x and
the conditional pdf k(6]x) are known. Now, in general, how would we predict an experimental value of any random variable,
say W, if we want our prediction to be “reasonably close” to the value to be observed?. Many statisticians would predict the
mean, E (W), of the distribution of W; others would predict a median (perhaps unique) of the distribution of W, and some
would have other predictions. However, it seems desirable that the choice of the decision function should depend upon a loss
function L]0, 5(x)]. One way in which this dependence upon the loss function can be reflected is to select the decision
function § in such a way that the conditional expectation of the loss is minimum. A Bayes’ estimate is a decision function §
that minimizes the expectation of the loss function E{L[0, §(x)]|X = x} and then
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Jy L16,8(x)]k(8]x)d6, if @ is a continuous
Yo L[6,6(x)]k(6]x), if © is a continuous

5(x) = E{L[6,8(0)]|X = x} = (5.5)

Is called Bayes’ estimator of 6.

Some Possible Loss Functions:

1. Squared Error Loss Function:
The squared error loss function is given by
L[6,5(x)] = [0 — §(x)1?
Then, the Bayes’ estimate is the mean of the conditional distribution of @, given X = x
6(x) = E(O|x)
2. Absolute Error Loss Function:
The absolute error loss function is given by
L]8,8(x)] = [0 —6(x)l
Then, a median of the conditional distribution of ©, given X = x, is the Bayes’ solution
& (x) = Median of ©
where the median, m, is the solution of

m 1
j k(Olx)do = >

It is easy to generalize this to estimate a function of 8, for a specified function 7(8). For the loss function L[6, §(x)], a Bayes
estimate of t(0) is a decision function § that minimizes

E{L[1(8),6()]IX = x} = [_ L[t(6),6()] k(8]x)db (5.6)
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The random variable §(X) is called Bayes’ estimator of 7(6).

Example 5.2:
Consider the model
e X;|6 ~iid Binomial (1,6)
©® ~Beta(a, f) , a and B are known
That is, the prior pdf is

h(9) = Mea-lu -0t 0<o<1

NGIINCE)
when a and S are assigned positive constants. We seek a decision function § that is a Bayes’ solution. The sufficient statistic
iIsY = YT X;, which has a Binomial (n, 8) distribution. Thus, the conditional pdf of Y given ® = 6 is
n
g(y|0) = (y) Y1 —-6)"Y y=0,1,...,n

Thus by Equation (5.4), the conditional posterior pdf of ©, given Y = y at positive probability density, is
k(Bly) « 8Y(1—-6)"Y0* 1 (1-0)Ff10<0<1
That is
[(a+ [ +n)
(e +y)I(B+n—y)

k(8|y) = gety-1(1—9)Fmr-10<h <1

117




STAT 223 Theory of Statistics 1 Dr. Samah Alghamdi

andy = 0,1, ....,n. Hence, the posterior pdf is a beta density function with parameters (a« + y, § + n — y). We take squared
error loss, i.e., L[8,5(y)] = [0 — 6(y)]?, as the loss function. Then, the Bayesian point estimate of 8 is the mean of this beta
pdf which is

a+y

Y=

5.2 Bayesian Interval Estimation

For fixed «, we can find two functions u(x) and v(x) so that the conditional probability

v(x)
Plux) <o <vx)|X =x) = j k(@|x)d6 =1 —«a

u(x)

which is defined to be 100(1 — a)% Bayesian interval estimates of 8. This interval is often called credible interval, so as
not to confuse them with confidence interval.

Example 5.3:

Recall Example 5.1 where X, X,, ..., X, is a random sample from a Poisson distribution with mean 8 and aI'(a, 8) prior, with

« and 8 known, is considered. As given, the posterior pdfisaTl (y + a, %) pdf, where y = Y7, x;, i.e.

B
o1 NF(H B+ 1)

Find:
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a) Bayes’ point estimator of © using the squared error loss function.
b) Bayes’ point estimator of © using the absolute error loss function.
c) (1 —£&)100% credible interval for ©.

d) aandcwhen,a =2, =4,n=12,y =8, = 0.05.

Solution:

a) If we use the squared error loss function, the Bayes’ point estimate of © is the mean of the posterior

_BO+a)

5%) nf+1

b) If we use the absolute error loss function, the Bayes’ point estimate of @ is the median of the posterior or it is the
solution, m, of the following equation:

_(np+1)6
.[m (nﬁ + 1)y+a 9y+a—1e 4] 1
0

IO+ a)pr+e 2

c) To obtain a credible interval, from that the posterior distribution of ® we get that
2(np +1) 2(nf + 1) 5

O~T(y+a,2) e ~X
B B 2(y+a))
Based on this, the following interval isa (1 — £)100% credible interval for ©
Xa-L204a) S 6 X aray
B 2 B 2
o oc , )
2005+ D) X(1- £ 20+0)) 20+ XS24
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where )(2 and )(2 are the lower and upper x? quantiles for a x? distribution with 2(y + «) degrees of
(1- g,z(y+a)) (%,2(y+a)) PPEr x4 X (y ) deg
freedom.

d fa=2,=4,n=12,y = 8,& = 0.05, then the point estimator is

4(8 +2)

and the 95% credible interval for O is

4
2 2
0€ <—2(48 1) X(0.975,20) 2048+ 1) X(o.ozs,zo))

From x? distribution Table: x 025 20y = 3417, X{o.975,20) = 9-59, thus
© € (0.3914,1.3947)
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TABLE I
Percentage Points of the x* Distribution; x°, o
P> 'v.a)=a
o
v__| 0.001 [0.005 [0.010 | 0.025 [0.050 [ 0.100 | 0.250 | 0.500 | 0.750 | 0.900 | 0.950 | 0.975 | 0.990 | 0.995 [ 0.999
1 1083 | 788 |663 |502 |384 |271 132|045 [010 |0.02
2 1382 | 1060 | 921 | 738 |599 |461 |277 [139 [058 [021 010 | 005 [002 |00l
3 1627 | 1284 [ 1134 [ 935 | 781 |625 |411 |237 [121 |058 |035 [022 011 |007 |002
4 | 1847 | 1486 | 1328 |11.14 | 949 | 778 |539 |336 [192 |1.06 | 071 | 048 |030 |02l |0.09
5 [2052 [1675 [1509 [1283 [11.07 | 924 |663 | 435 [267 |16l |[115 [083 |055 |04l |021
6 | 2246 | 1855 | 1681 | 1445 | 1259 | 1064 | 7.84 | 535 | 345 | 220 | 164 |124 | 087 | 068 | 038
7 2432 [2028 [18.48 |16.01 |14.07 |12.02 |9.04 |635 [425 [283 |217 [169 |1.24 | 099 [0.60
8 2612 |21.95 [20.09 |17.53 | 1551 | 1336 | 1022 | 7.34 | 507 |3.49 | 273 | 218 |1.65 | 134 | 0.86
9 2788 |2359 [21.67 [19.02 | 1692 | 1468 | 1139 |8.34 |590 [4.17 | 333 [270 [2.09 |[1.73 [1.15
10 [ 2959 [2519 [23.21 [ 2048 |1831 [1599 [1255 | 934 |6.74 | 487 |394 |3.25 |256 |2.16 | 1.48
11 | 3126 | 2676 |24.72 | 2192 |19.68 |17.28 | 13.70 | 10.34 | 7.58 | 5.58 | 457 | 3.82 | 3.05 | 2.60 | 1.83
12| 3291 | 2830 | 2622 | 2334 |21.03 |[1855 | 1485 [11.34 844 | 630 | 523 | 440 |3.57 |3.07 | 221
13 | 3453 | 2982 |27.69 | 2474 | 2236 | 1981 |1598 |12.34]930 | 7.04 | 589 |501 |4.11 |3.57 | 262
14 | 3612 | 3132 [29.14 | 2612 | 2368 [21.06 |[17.12 [ 13.34 | 10.17 | 7.79 | 657 | 5.63 | 4.66 | 407 | 3.04
15 | 37.70 | 3280 | 30.58 | 2749 | 2500 |2231 |18.25 |14.34 | 11.04 | 855 | 7.26 | 626 | 5.23 | 4.60_ | 3.48
16 | 3925 | 3427 |32.00 | 2885 | 2630 |2354 |1937 |[1534| 1191 | 931 | 796 | 691 |581 |514 | 3.94
17 | 4079 [ 3572 [ 33.41 |30.19 |27.59 |[24.77 | 2049 [16.34 | 12.79 | 10.09 | 8.67 | 7.56 | 6.41 | 5.70 | 4.42
18 | 4231 |37.16 | 3481 | 3153 | 2887 |2599 |21.60 |17.34 | 13.68 | 10.86 | 939 | 8.23 | 7.01 | 626 | 4.90
19 | 4382 | 3858 [36.19 | 3285 | 3014 |27.20 [2272 | 1834|1456 | 11.65 ] 10.12 | 891 | 7.63 | 6.84 | 5.41
20 | 4531 | 40.00 | 37.57 | 3417 | 3141 | 2841 | 2383 | 1934|1545 | 12.44| 1085 | 959 [ 826 | 7.43 | 592
21 | 4680 | 41.40 | 38.93 | 35.48 | 32.67 | 29.62 | 24.93 | 20.34 | 1634 | 13.24 | 11.59 | 10.28 | 8.90 | 8.03 | 6.45
22 | 4827 | 42.80 | 40.29 | 36.78 | 33.92 | 30.81 | 26.04 | 21.34 | 17.24 | 14.04 | 12.34 | 1098 | 9.54 | 8.64 | 6.98
23 | 4973 | 44.18 | 41.64 | 38.08 | 3517 | 3201 | 2714 | 2234 | 18.14 | 14.85 | 13.09 | 11.69 | 10.20 | 926 | 7.53
24 | 5118 | 4556 | 42.98 | 3936 | 36.42 | 33.20 | 28.24 | 23.34 | 19.04 | 15.66 | 13.85 | 12.40 | 10.86 | 9.89 | 8.08
25 | 5262 | 4693 | 44.31 | 40.65 | 37.65 | 34.38 | 29.34 | 24.34 | 1994 | 16.47 | 14.61 | 13.12 | 11.50 | 10.52 | 8.65
30 | 5970 |53.67 | 50.89 | 46.98 | 43.77 | 40.26 | 34.80 | 29.34 | 24.48 | 20.60 | 18.49 | 16.79 | 14.95 | 13.79 | 11.59
40 | 73.40 | 66.77 | 63.69 | 59.34 | 55.76 | 51.81 | 45.62 | 39.34 | 33.66 | 29.05 | 26.51 | 24.43 [ 22.16 | 20.71 | 17.92
50 | 86.66 | 79.49 | 76.15 | 71.42 | 67.50 | 63.17 | 56.33 | 49.33 | 42.94 | 37.69 | 34.76 | 32.36 | 29.71 | 27.99 | 24.67
60 | 9961 |91.95 |88.38 | 83.30 | 79.08 | 74.40 | 66.98 | 59.33 | 52.29 | 46.46 | 43.19 | 40.48 | 37.48 | 35.53 | 31.74
70 | 1123210421 | 100.43 | 95.02 | 90.53 | 85.53 | 77.58 | 69.33 | 61.70 | 55.33 | 51.74 | 48.76 | 45.44 | 43.28 | 39.04
80 | 12484 | 11632 | 112.33 | 106.63 | 101.88 | 96.58 | 88.13 | 79.33 | 71.14 | 64.28 | 60.39 | 57.15 | 53.54 | 51.17 | 46.52
90 | 137.21 | 12830 | 124.12 | 118.14 | 113.15 | 107.57 | 98.65 | 89.33 | 80.62 | 73.29 | 69.13 | 65.65 | 61.75 | 59.20 | 54.16
100 | 149.45 [ 140.17 | 135.81 | 129.56 | 124.34 | 118.50 | 109.14 | 99.33 | 90.13 | 82.36 | 77.93 | 74.22 | 70.06 | 67.33 | 61.92
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TABLE I1
Areas Under The Standard Normal Curve

z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .000 :0002__|
-3. .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .000 :
- .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .000 .0005 |
= .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .000 .000
-3. .0013 .0013 .001 .0012 .00 .0011 .0011 .0011 .0010 .001
-2. .0019 .0018 .001 .0017 .00 .0016 .0015 .0015 .0014 .0014
-2. .0026 .0025 .0024 .0023 .002 .0022 .0021 .0021 .0020 .0019
-2. .0035 .0034 .003 .0032 .00 .0030 .0029 .0028 .0027 .0026
=2. .0047 .0045 .004. .0043 . 00 .0040 .0039 .0038 .0037 .0036
-2, .0062 .0060 .0059 .0057 .005: .0054 .0052 .0051 .0049 .0048 |
- 0082 .0080 .0078 .0075 .007 .0071 .0069 .0068 .0066 .0064 |
= .0107 04 102 .0099 .009 .0094 .009 .0089 .0087 .0084
= .0139 .0136 .0132 .0129 .0125 .0122 .011 .0116 .0113 .011
- .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .014.
- .0228 .0222 .0217 .0212 .0207 .0202 .019 .0192 .0188 .0183
-1. .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
=1. .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .030 .0294
= .0446 .0436 .0427 .0418 .04 .0401 .039. .0384 .037. .0367
= .0548 .0537 .0526 .0516 . 05! .04 95 .048: .0475 .046 .0455
= .0668 .0655 .064 .0630 .06 .0606 .0594 .0582 .057 .0559
- 0808 .0793 .077 .07 64 .074 .07 35 .072 .0708 .0694 .0681
=1. .0968 .0951 .0934 .091 .090 .0885 .0869 .0853 .0838 .0823
= .1151 .1131 .111 .109: . 107 .1056 .1038 .1020 .1003 .0985
= .1357 .1335 .1314 . 129 . 127 .1251 .1230 .1210 .1190 .1170 |
= .1587 .1562 .1539 .151 .1492 . 1469 .1446 .1423 .1401 .1379 |
-0. .1841 .1814 .1788 .1762 .1736 L1711 .1685 .1660 .1635 .1611 |
-0. .2119 .2090 .2061 .2033 . 200: .1977 .1949 .1922 . 1894 .186
-0. .2420 .2389 .2358 .2327 . 229 .2266 .2236 .2206 .2177 .214
-0. .2743 .2709 .267 .2643 .26 1 .2578 .2546 .2514 .2483 .2451 |
-0. .3085 .3050 .301 .2981 . 294 .2912 .2877 .284 .2810 .277
= 3446 409 .337 . 3336 .3300 .3264 .3228 .319. 3156 .312
= 3821 .3783 .374 .3707 .3669 .3632 .3594 .355 .3520 3|
= .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897
= .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286
-0. .5000 4960 .4920 .4880 .4840 .4801 .476 472 .4681
. .5000 .5040 .5080 .5120 .5160 .5199 .5239 .527 .5319
. .5398 .54 38 .5478 .5517 .5557 .5596 .5636 .567. .5714
A 79 5832 5871 .591 .5948 5987 .6026 .6064 .6103
R .617 6217 .6255 .629: .6331 368 .6406 .644. .6480
.4 .655. 6591 .6628 . 6664 .6700 .6736 .67 .6808 .6844
N 6915 6950 .6985 .701 .7054 .7088 .712. .7157 .7190
B .7257 .7291 .7324 .735 .7389 .7422 .7454 .7486 .7517
5 .7580 .7611 7642 .7673 .7704 . 7734 .7764 .7794 .7823
. .7881 .7910 .7939 . 7967 .7995 .8023 .805 .807 8106
5 .8159 .8186 .8212 .8238 . 8264 .8289 .831 .834 .8365
. .841 .8438 .8461 . 8485 .8508 .8531 .8554 .857 .8599
B .864 .8665 .8686 .8708 .8729 .8749 .877 .8790 .8810
- .884 .8869 .8888 .8907 .8925 .8944 .896. .8980 .8997
. .9032 .9049 .906 .9082 .9099 .9115 .913 .9147 .9162
-4 .9192 .9207 .922 .9236 .925 .9265 .927 .9292 .9306
B .9332 .9345 .9357 .9370 .938: .9394 .9406 .9418 .9429
B 1452 1463 .9474 . 9484 .94 9 .9505 .9515 .9525 .9535
B .9554 .9564 .9573 . 9582 .959 .9599 .9608 .9616 .9625
o .964 .9649 .9656 . 9664 .967 .9678 .9686 .9693 .9699
. .971 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .976
A .977. .9778 .9783 .9788 .9793 .9798 .9803 .9808 .981
5 .982 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854
. .986 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .988
. .989 .9896 .9898 .9901 .9904 .9906 .9909 .991 91
.4 .991 .9920 .992 .9925 .9927 .9929 .993 .993 934
. .9938 .9940 .994 .9943 .994 5 .9946 .994. .994 .995
. .9953 .9955 .995 .9957 .9959 .9960 .996 .9962 .996.
5 .9965 .9966 .996 .9968 .9969 .9970 .997 .9972 .997
! .9974 .9975 .997 6 .9977 .9977 .9978 .997 .9979 .9980
. .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986
. .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990
. .9990 .9991 .999 .9991 .9992 .9992 .9992 .9992 .9993
. .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995
. .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996
.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997
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TABLE III

Crirical Values of rhe r-distriburion ity )

v=df touo B=
1 3078 4
E] 1sss 20
3 1628 X
4 1553 132
= 1 176 > Q1S
5 14a=0 1 o4z
7 1415 1.905
| i 397 1 260
B 1 383 | 533 31
10 1372 1.812 54
11 1363 1796 18
12 1 355 I 780 =1
K 13 1071 D
14 : B8 1.761 4
1s 1 1 2
i6 3 1 3
17 3 ’
1s %4
19 o
20 =¥
21 =
23 2 1.717 3
23 1319 1714 0
21 1 318 L7 >
35 1315 1708 5
26 1315 1.70& o
27 EYE] 1 703 3
25 1 313 1 /01 ’
25 1311 1.€95 3
30 1310 1.€97 7
35 T 306, 1 6596 >
au 1 L6540 2
4= 1 L6792 20141
sSo i L.G752 Z.00%06
60 I G706 = 0003
70 L6662 10044
8C L. 6641 15901
°n 1 GG20 1 SRGT
1n 1 60> 1 SRAD
120 L6577 1.5799
140 L.6558 16771
TGl 1 GoA 15719
150 L6o3= 1 a2
200 L.6325 15719
«© 1642 1.960
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