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STAT 333 

 --- Section 2.1:  Basic Inference 

 

Basic Definitions 

 
Population: The collection of all the individuals of interest.   

• This collection may be _large_ or even infinite. 
 

Sample:  A collection of elements of the population. 
 

• Suppose our population consists of a finite number (say, N) of elements.   

 
Random Sample:  A sample of size n from a finite population such that 

each of the possible samples of size n was equally likely to have been 

obtained . 

 

Another definition: 

 
Random Sample:  A sample of size n forming a sequence of   

n independent and identically distributed (iid) random variables  

X1,X2,……..,Xn 

 
•Note these definitions are equivalent only if the elements are drawn 

with replacement  from the population. 

 

• If the population size is very large, whether the sampling was done 

with or without replacement makes little practical difference. 

 

 

 

 

 

 

Multivariate Data 



2 | S t a t 3 3 3 ( S e c t i o n  2 . 1 , 2 . 2 )  

 

 
• Sometimes each individual may have more than one variable 

measured on it. 

 
• Each observation is then a multivariate random variable (or random 

vector ) 

                                   Xi = (yi1 , yi2 , ……. , yik ) 

 

Example:  If the weight and height of a sample of 8 people are 

measured, our multivariate data are: 

     X1 = (y11 , y12 ) 

     X2 = (y21 , y22 ) 

     X3 = (y31 , y32 )                 where, yi1 : weight , yi2: height 

     X4 = (y41 , y42 )                              i=1,2,……8 

     X5 = (y51 , y52 ) 

     X6 = (y61 , y62 ) 

     X7 = (y71 , y72 ) 

     X8 = (y81 , y82 ) 

 

• If the sample is random, then the components Yi1 and Yi2 might not be 

independent, but the vectors X1, X2, …, X8 will still be independent and 

identically distributed. 

 
• That is, knowledge of the value of X1, say, does not alter the 

probability distribution of X2. 

 

 

 

 

 

 

 

Measurement Scales 
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Nominal Scale: 

If a variable simply places an individual into one of several (unordered) 

categories, the variable is measured on a nominal scale. 

 

Examples: 

    Hair color ,Gender , Nationality, Major 

 

Ordinal Scale: 

If the variable is categorical but the categories have a meaningful 

ordering, the variable is on the ordinal scale. 

 
Examples:  

    Grades of students, Rating of movies, Education level , 

Likerty-Type scale (Strongly agree, agree ,….) 

 

Interval Scale: 

If the variable is numerical and the value of zero is arbitrary rather than 

meaningful, then the variable is on the interval scale. 

 
Examples:  

         Temperature in Cᵒ       

         Temperature in Fᵒ                   

 
Note: For interval data, the interval (difference) between two values is 

meaningful, but ratios between two values are not meaningful. 

 

 

 
Ratio Scale: 

If the variable is numerical and there is a meaningful zero, the variable is 

on the  ratio scale. 
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Examples: 

            Height  , Speed ,Age, Weight loss ,height 

• With ratio measurements, the ratio between two values has meaning. 

 
Weaker  ------------------------------------→  Stronger 

     Nominal         ordinal       interval               ratio 

 
Note: 

• Most classical parametric methods require the scale of measurement of 

the data to be interval (or stronger). 

• Some nonparametric methods require ordinal (or stronger) data; others 

can work for data on any scale. 

• A parameter is a characteristic of a population. 

 

Examples of parameter : 

        Population mean (µ) 

        Population standard deviation ( ) 

        Population proportion ( P) 

        Population median  

 
• Typically a parameter cannot be calculated from sample data. 

 
• A statistic is a function of random variables. 

 
• Given the data, we can calculate the value of a statistic. 

 
Examples of statistic :  

        Sample mean  

        Sample standard deviation (S ) 

        Sample proportion ( p) 
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        Sample median 

 

Order Statistics 

 
• The k-th order statistic for a sample X1, X2, …, Xn is denoted X(k) and is 

the k-th smallest value in the sample. 

 

• The values X(1) ≤ X(2) ≤ … ≤ X(n) are called the ordered random sample. 

 
Example:  

 If our sample is:  14, 7, 9, 2, 16, 18 

then X(3) = 

 

                         X(5) =  
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Section 2.2:  Estimation 

 
• Often we use a statistic to estimate some aspect of a population of 

interest. 

 

• A statistic used to estimate is called an estimator. 

 

Familiar Examples: 

 
• The sample mean:  

 

 

 
• The sample variance: 

 

 
• The sample standard deviation: 

 

 

 
• These are point estimates (single numbers).   

 

• An interval estimate (confidence interval) is an interval of numbers 

that is designed to contain the parameter value. 

 

• A 95% confidence interval is constructed via a formula that has 0.95 

probability (over repeated samples) of containing the true parameter 

value. 

 

Familiar large-sample formula for CI for µ: 
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Some Less Familiar Estimators 

 
• The cumulative distribution function (c.d.f.) of a random variable is 

denoted by F(x): 

 

F(x) = P(X < x) 

• This is 
−

x

dttf )(  when X is a continuous r.v. 

Example:   

If X is a normal variable with mean 100, its c.d.f. F(x) should look like: 

    
 
• Sometimes we do not know the distribution of our variable of 

interest. 

 

• The empirical distribution function (e.d.f.) is an estimator of the true 

c.d.f. – it can be calculated from the sample data. 

 

Example:  Suppose heights of adult females have normal distribution 

with mean 65 inches and standard deviation 2.5 inches.  The c.d.f. of this 

distribution is: 
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R Code: 

# An example with a simulated data set with LOTS of 

observations: 

simul.height.data <- rnorm(n=500, mean=65, sd=2.5) 

plot(ecdf(simul.height.data)) 

plot(ecdf(simul.height.data), verticals=TRUE) 

plot(ecdf(simul.height.data), verticals=TRUE, do.points=FALSE) 

 

 

Output: 
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R Code: 

gridpts <- seq(55,75,by=0.1) 

lines(gridpts,pnorm(gridpts,mean=65,sd=2.5),col='red') # true cdf 

superimposed in red 

 
Example 

 
Example : 

Now suppose we do NOT know the true height distribution.   

We randomly sample 5 females and measure their heights as: 69.3, 66.3, 

62.6, 62.9, 67.4 
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R Code: 

 

# Example from class: 

female.heights <- c(69.3,66.3,62.6,62.9,67.4) 

plot(ecdf(female.heights)) 

plot(ecdf(female.heights), verticals=TRUE) 

plot(ecdf(female.heights), verticals=TRUE, do.points=FALSE) 
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• The survival function is defined as 1 – F(x), which is the probability 

that the random variable takes a value greater than x. 

• This is useful in reliability/survival analysis, when it is the probability 

of the item surviving past time x. 

 

• The Kaplan-Meier estimator (p. 89-91) is a way to estimate the 

survival function when the survival time is observed for only some of 

the data values. 
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The Bootstrap 

• The nonparametric bootstrap is a method of estimating 

characteristics (like expected values and standard errors) of summary 

statistics. 

• This is especially useful when the true population distribution is 

unknown. 

• The nonparametric bootstrap is based on the e.d.f. rather than the 

true (and perhaps unknown) c.d.f. 

 

Method:  Resample data (randomly select n values from the original 

sample, with replacement) m times.  

• These “bootstrap samples” together mimic the population. 

• For each of the m bootstrap samples, calculate the statistic of interest. 

• These m values will approximate the sampling distribution. 

• From these bootstrap samples, we can estimate the:  

(1) expected value of the statistic 

(2) standard error of the statistic 

(3) confidence interval of a corresponding parameter 

 

 

Example:  We wish to estimate the 85th percentile of the population of 

BMI measurements of SC high schoolers.  

 

• We take a random sample of 20 SC high school students and measure 

their BMI. 

 

• See code on course web page for bootstrap computations: 

Estimated standard error of sample 85th percentile is 1.65 

 

A 95% bootstrap CI for the population 85th percentile is : 

                  (26.6 , 30.65 ) 



13 | S t a t 3 3 3 ( S e c t i o n  2 . 1 , 2 . 2 )  

 

 

R Code: 

### Bootstrap example: 

 

# function to calculate the 85th percentile of a sample vector: 

 

perc85 <- function(input.vec){ 

output <- quantile(input.vec, prob=0.85) 

return(output) 

} 

قيمه وهي توزيع      20* ادخال البيانات   

binomail 

 

bmi.samp <- 

c(21.8,36.6,22.0,24.4,22.2,20.0,19.2,21.6,27.2,28.9,19.4,28.1,18.6,26.6,

20.6,26.7,26.5,25.3,29.6,24.7) 

my.n <- length(bmi.samp) 

 *ايجاد عينات  

#Defining the number of resamples: 

my.m <- 1000 

 

*Setting up the matrix to hold bootstrap-sample values 

 

setup.data.matrix <- matrix(bmi.samp, nrow=my.m, ncol=my.n, 

byrow=T) 

 

* carrying out the sampling (with replacement): 

 

bootstrap.data.matrix <- apply(setup.data.matrix, 1, sample, size=my.n, 

replace=TRUE) 

 

* Transposing to get back to same dimensions as setup.data.matrix 

 

bootstrap.data.matrix <- t(bootstrap.data.matrix) 
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# Calculating the sample mean for each of the bootstrap samples 

 

my.85.percs <- apply(bootstrap.data.matrix, 1, perc85) 

 

*Find standard error of this statistic (85th percentile) : 

 

sd(my.85.percs) 

 

*Find 95% Bootstrap interval estimates for population 85th percentile: 

 

lower.upper.CI <- quantile(my.85.percs, probs=c(0.025, 0.975)) 

 

print(paste("95% bootstrap interval for 85th percentile: ", 

round(lower.upper.CI,2) )) 

 

 

 

 

Output: 

 

>sd(my.85.percs) 

[1] 1.43296 

 

 

>lower.upper.CI <- quantile(my.85.percs, probs=c(0.025, 0.975)) 

 

>print(paste("95% bootstrap interval for 85th percentile: ", 

round(lower.upper.CI,2) )) 

[1] "95% bootstrap interval for 85th percentile:  26.5"  

[2] "95% bootstrap interval for 85th percentile:  30.65" 

 

 

 

 

 


