## STAT 333 --- Section 2.1: Basic Inference

# **Basic Definitions**

**Population:** The collection of all the individuals of interest.
This collection may be <u>large</u> or even <u>infinite</u>.

**Sample:** A collection of elements of the population.

• Suppose our population consists of a finite number (say, N) of elements.

**<u>Random Sample</u>:** A sample of size n from a finite population such that each of the possible samples of size n was <u>equally likely</u> to have been obtained.

# Another definition:

**<u>Random Sample</u>:** A sample of size *n* forming a sequence of n independent and identically distributed (iid) random variables  $X_{1}, X_{2}, \dots, X_{n}$ 

•Note these definitions are equivalent only if the elements are drawn with replacement from the population.

• If the population size is very large, whether the sampling was done <u>with</u> or <u>without</u> replacement makes little practical difference.

## Multivariate Data

# • Sometimes each individual may have <u>more than one</u> variable measured on it.

• Each observation is then a <u>multivariate</u> random variable (or <u>random vector</u>)

 $\underline{X_i} = (y_{i1} , y_{i2} , \ldots , y_{ik})$ 

**Example:** If the weight and height of a sample of 8 people are measured, our <u>multivariate</u> data are:

 $\underline{X}_{1} = (y_{11}, y_{12}) \\
\underline{X}_{2} = (y_{21}, y_{22}) \\
\underline{X}_{3} = (y_{31}, y_{32}) \\
\underline{X}_{4} = (y_{41}, y_{42}) \\
\underline{X}_{5} = (y_{51}, y_{52}) \\
\underline{X}_{6} = (y_{61}, y_{62}) \\
\underline{X}_{7} = (y_{71}, y_{72}) \\
\underline{X}_{8} = (y_{81}, y_{82})$ where,  $y_{i1}$ : weight,  $y_{i2}$ : height i=1,2,.....8

• If the sample is random, then the components  $Y_{i1}$  and  $Y_{i2}$  might not be independent, but the vectors  $X_1, X_2, ..., X_8$  will still be independent and identically distributed.

• That is, knowledge of the value of  $\underline{X}_1$ , say, does not alter the probability distribution of  $\underline{X}_2$ .

# **Measurement Scales**

## Nominal Scale:

If a variable simply places an individual into one of several (unordered) categories, the variable is measured on a <u>nominal</u> scale.

# Examples:

Hair color ,Gender , Nationality, Major

# **Ordinal Scale:**

If the variable is categorical but the categories have a meaningful ordering, the variable is on the <u>ordinal</u> scale.

## Examples:

Grades of students, Rating of movies, Education level, Likerty-Type scale (Strongly agree, agree, ....)

# **Interval Scale:**

If the variable is numerical and the value of zero is arbitrary rather than meaningful, then the variable is on the <u>interval</u> scale.

# Examples:

Temperature in C<sup>o</sup> Temperature in F<sup>o</sup>

<u>Note:</u> For <u>interval</u> data, the interval (difference) between two values is meaningful, but <u>ratios</u> between two values are not meaningful.

#### **Ratio Scale:**

If the variable is numerical and there is a meaningful zero, the variable is on the <u>ratio</u> scale.

#### Examples:

Height , Speed ,Age, Weight loss ,height
With <u>ratio</u> measurements, the ratio between two values has meaning.

| Weaker ←- |         | → Stronger |       |
|-----------|---------|------------|-------|
| Nominal   | ordinal | interval   | ratio |

## Note:

• Most classical parametric methods require the scale of measurement of the data to be interval (or stronger).

• Some nonparametric methods require ordinal (or stronger) data; others can work for data on any scale.

• A <u>parameter</u> is a characteristic of a population.

## **Examples of parameter :**

Population mean ( $\mu$ ) Population standard deviation ( $\sigma$ ) Population proportion (P) Population median

- Typically a parameter cannot be calculated from sample data.
- A <u>statistic</u> is a function of random variables.
- Given the data, we can calculate the value of a statistic.

## **Examples of statistic :**

Sample mean Sample standard deviation (S) Sample proportion (p) Sample median

# **Order Statistics**

• The *k*-th order statistic for a sample  $X_1, X_2, ..., X_n$  is denoted  $X^{(k)}$  and is the *k*-th smallest value in the sample.

• The values  $X^{(1)} \le X^{(2)} \le \ldots \le X^{(n)}$  are called the ordered random sample.

## Example:

If our sample is: 14, 7, 9, 2, 16, 18

then  $X^{(3)} =$ 

 $X^{(5)} =$ 

## Section 2.2: Estimation

• Often we use a statistic to <u>estimate</u> some aspect of a population of interest.

• A statistic used to estimate is called an **estimator**.

#### Familiar Examples:

•The sample mean:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• The sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

• The sample standard deviation:

$$S = \sqrt{S^2}$$

• These are **point estimates** (single numbers).

• An **interval estimate** (**confidence interval**) is an interval of numbers that is designed to contain the parameter value.

• A 95% confidence interval is constructed via a formula that has 0.95 probability (over repeated samples) of containing the true parameter value.

#### Familiar large-sample formula for CI for µ:

$$(\bar{X}-Z_{1-\frac{\alpha}{2}}\,\frac{s}{\sqrt{n}}$$
 ,  $\bar{X}+Z_{1-\frac{\alpha}{2}}\,\frac{s}{\sqrt{n}}$  )

## **Some Less Familiar Estimators**

• The **cumulative distribution function** (c.d.f.) of a random variable is denoted by F(*x*):

• This is 
$$\int_{-\infty}^{x} f(t)dt$$
 when X is a continuous r.v.

#### Example:

If *X* is a normal variable with mean 100, its c.d.f. F(x) should look like:



• Sometimes **we do not know the distribution** of our variable of interest.

• The **empirical distribution function** (e.d.f.) is an estimator of the true c.d.f. – it can be calculated from the sample data.

**Example:** Suppose heights of adult females have normal distribution with mean 65 inches and standard deviation 2.5 inches. The c.d.f. of this distribution is:



• Now suppose we do NOT know the true height distribution. We randomly sample 5 females and measure their heights as: 69.3, 66.3, 62.6, 62.9, 67.4

e.d.f.:



• The <u>survival function</u> is defined as 1 - F(x), which is the probability that the random variable takes a value greater than x.

• This is useful in reliability/survival analysis, when it is the probability of the item surviving past time *x*.

• The **Kaplan-Meier estimator** (p. 89-91) is a way to estimate the survival function when the survival time is observed for only some of the data values.

## The Bootstrap

• The **nonparametric bootstrap** is a method of estimating characteristics (like expected values and standard errors) of summary statistics.

• This is especially useful when the true population distribution is unknown.

• The **nonparametric bootstrap is based on the e.d.f**. rather than the true (and perhaps unknown) c.d.f.

<u>Method</u>: Resample data (randomly select *n* values from the original sample, with replacement) *m* times.

• These "bootstrap samples" together mimic the population.

• For each of the *m* bootstrap samples, calculate the statistic of interest.

- These *m* values will approximate the sampling distribution.
- From these bootstrap samples, we can estimate the:
  - (1) expected value of the statistic
  - (2) standard error of the statistic
  - (3) confidence interval of a corresponding parameter

**Example:** We wish to estimate the 85<sup>th</sup> percentile of the population of BMI measurements of SC high schoolers.

• We take a random sample of 20 SC high school students and measure their BMI.

• See code on course web page for bootstrap computations:

Estimated standard error of sample 85<sup>th</sup> percentile is 1.65

A 95% bootstrap CI for the population 85<sup>th</sup> percentile is :

(26.6, 30.65)