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STAT 333 

 --- Section 2.1:  Basic Inference 

 

Basic Definitions 

 
Population: The collection of all the individuals of interest.   

• This collection may be _large_ or even infinite. 
 

Sample:  A collection of elements of the population. 
 

• Suppose our population consists of a finite number (say, N) of 

elements.   

 
Random Sample:  A sample of size n from a finite population 

such that each of the possible samples of size n was equally likely 

to have been obtained . 

 

Another definition: 

 
Random Sample:  A sample of size n forming a sequence of   

n independent and identically distributed (iid) random variables  

X1,X2,……..,Xn 

 
•Note these definitions are equivalent only if the elements are 

drawn with replacement  from the population. 

 

• If the population size is very large, whether the sampling was 

done with or without replacement makes little practical difference. 
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Multivariate Data 

 
• Sometimes each individual may have more than one variable 

measured on it. 

 
• Each observation is then a multivariate random variable (or 

random vector ) 

                                   Xi = (yi1 , yi2 , ……. , yik ) 

 

Example:  If the weight and height of a sample of 8 people are 

measured, our multivariate data are: 

     X1 = (y11 , y12 ) 

     X2 = (y21 , y22 ) 

     X3 = (y31 , y32 )                 where, yi1 : weight , yi2: height 

     X4 = (y41 , y42 )                              i=1,2,……8 

     X5 = (y51 , y52 ) 

     X6 = (y61 , y62 ) 

     X7 = (y71 , y72 ) 

     X8 = (y81 , y82 ) 

 

• If the sample is random, then the components Yi1 and Yi2 might 

not be independent, but the vectors X1, X2, …, X8 will still be 

independent and identically distributed. 

 
• That is, knowledge of the value of X1, say, does not alter the 

probability distribution of X2. 
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Measurement Scales 

Nominal Scale: 

If a variable simply places an individual into one of several 

(unordered) categories, the variable is measured on a nominal 

scale. 

 

Examples: 

    Hair color ,Gender , Nationality, Major 

 

Ordinal Scale: 

If the variable is categorical but the categories have a meaningful 

ordering, the variable is on the ordinal scale. 

 
Examples:  

    Grades of students, Rating of movies, Education level , 

Likerty-Type scale (Strongly agree, agree ,….) 

 

Interval Scale: 

If the variable is numerical and the value of zero is arbitrary rather 

than meaningful, then the variable is on the interval scale. 

 
Examples:  

         Temperature in Cᵒ       

         Temperature in Fᵒ                   

 
Note: For interval data, the interval (difference) between two 

values is meaningful, but ratios between two values are not 

meaningful. 

 

 

 



4 | S t a t 3 3 3  

 

Ratio Scale: 

If the variable is numerical and there is a meaningful zero, the 

variable is on the  ratio scale. 

 
Examples: 

            Height  , Speed ,Age, Weight loss ,height 

• With ratio measurements, the ratio between two values has 

meaning. 

 
Weaker  ------------------------------------→  Stronger 

     Nominal         ordinal       interval               ratio 

 
Note: 

• Most classical parametric methods require the scale of 

measurement of the data to be interval (or stronger). 

• Some nonparametric methods require ordinal (or stronger) data; 

others can work for data on any scale. 

• A parameter is a characteristic of a population. 

 

Examples of parameter : 

        Population mean (µ) 

        Population standard deviation ( ) 

        Population proportion ( P) 

        Population median  

 
• Typically a parameter cannot be calculated from sample data. 

 
• A statistic is a function of random variables. 

 
• Given the data, we can calculate the value of a statistic. 
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Examples of statistic :  

        Sample mean  

        Sample standard deviation (S ) 

        Sample proportion ( p) 

        Sample median 

 

Order Statistics 

 
• The k-th order statistic for a sample X1, X2, …, Xn is denoted X(k) 

and is the k-th smallest value in the sample. 

 

• The values X(1) ≤ X(2) ≤ … ≤ X(n) are called the ordered random 

sample. 

 
Example:  

 If our sample is:  14, 7, 9, 2, 16, 18 

then X(3) = 

 

                         X(5) =  
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Section 2.2:  Estimation 

 
• Often we use a statistic to estimate some aspect of a population 

of interest. 

 

• A statistic used to estimate is called an estimator. 

 

Familiar Examples: 

 
• The sample mean:  

 

 

 
• The sample variance: 

 

 
• The sample standard deviation: 

 

 

 
• These are point estimates (single numbers).   

 

• An interval estimate (confidence interval) is an interval of 

numbers that is designed to contain the parameter value. 

 

• A 95% confidence interval is constructed via a formula that has 

0.95 probability (over repeated samples) of containing the true 

parameter value. 

 

Familiar large-sample formula for CI for µ: 
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Some Less Familiar Estimators 

 
• The cumulative distribution function (c.d.f.) of a random 

variable is denoted by F(x): 

 

F(x) = P(X < x) 

• This is 
−

x

dttf )(  when X is a continuous r.v. 

Example:   

If X is a normal variable with mean 100, its c.d.f. F(x) should look 

like: 

   

 
 

 

 
• Sometimes we do not know the distribution of our variable of 

interest. 
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• The empirical distribution function (e.d.f.) is an estimator of 

the true c.d.f. – it can be calculated from the sample data. 

 

Example:  Suppose heights of adult females have normal 

distribution with mean 65 inches and standard deviation 2.5 inches.  

The c.d.f. of this distribution is: 
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• Now suppose we do NOT know the true height distribution.   

We randomly sample 5 females and measure their heights as: 69.3, 

66.3, 62.6, 62.9, 67.4 

 

e.d.f.: 
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• The survival function is defined as 1 – F(x), which is the 

probability that the random variable takes a value greater than x. 

• This is useful in reliability/survival analysis, when it is the 

probability of the item surviving past time x. 

 

• The Kaplan-Meier estimator (p. 89-91) is a way to estimate the 

survival function when the survival time is observed for only some 

of the data values. 

 
The Bootstrap 

 

• The nonparametric bootstrap is a method of estimating 

characteristics (like expected values and standard errors) of 

summary statistics. 

 

• This is especially useful when the true population distribution is 

unknown. 

 

• The nonparametric bootstrap is based on the e.d.f. rather than 

the true (and perhaps unknown) c.d.f. 

 

Method:  Resample data (randomly select n values from the 

original sample, with replacement) m times.  

 

• These “bootstrap samples” together mimic the population. 
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• For each of the m bootstrap samples, calculate the statistic of 

interest. 

 

• These m values will approximate the sampling distribution. 

 

• From these bootstrap samples, we can estimate the:  

 

(1) expected value of the statistic 

(2) standard error of the statistic 

(3) confidence interval of a corresponding parameter 

 

Example:  We wish to estimate the 85th percentile of the 

population of BMI measurements of SC high schoolers.  

 

• We take a random sample of 20 SC high school students and 

measure their BMI. 

 

• See code on course web page for bootstrap computations: 

 

Estimated standard error of sample 85th percentile is 1.65 

 

A 95% bootstrap CI for the population 85th percentile is : 

 

                  (26.6 , 30.65 ) 


