STAT 333 Section 4.4 <u>Measures of Dependence for Contingency Tables</u>

• We have seen measures of dependence for two numerical variables: for example, <u>Pearson's</u> and <u>spearman's</u> and <u>Kendall's tau</u> correlation coefficient.

• For categorical data summarized in a contingency table, we have seen how to <u>test</u> for dependence between rows and columns.

• Suppose we wish to measure the <u>degree</u> (or perhaps <u>nature</u>) of the dependence?

• The size of the chi-square test statistic T tells us something about the degree of dependence, but it is only meaningful relative to the <u>degree of freedom</u>.

Cramér's Contingency Coefficient

• A more easily interpretable measure of dependence than T is obtained by dividing T by its maximum possible value (for a given r and c).

• This **maximum** is N(q-1)

where q = the smaller of r or c

• The square root of this ratio is called Cramér's coefficient:

$$V = \sqrt{\frac{T}{N(q-1)}}$$

<u>Interpretations</u>: Cramér's coefficient takes values between $\underline{0}$ and $\underline{1}$.

• A value **near 0** indicates <u>little association between row and column</u> <u>variables.</u>

• A value **near 1** indicates <u>strong dependence between row and column</u> <u>variables.</u>

Cramér's coefficient is <u>scale-invariant</u>: If the scope of the study were increased such that every cell in the table were multiplied by some constant, Cramér's coefficient remains the same.

		Score					
	Low	Marginal	Good	Excellent			
Private	6	14	17	9			
Public	30	32	17	3			
					N=128		
<u>T was =17.29 N was =128</u>			q is =	2 (smaller c	=4 ,r=2)		

Example 1, from Sec. 4.2:

Cramér's coefficient =

$$V = \sqrt{\frac{T}{N(q-1)}} = \sqrt{\frac{17.29}{128(2-1)}} = \sqrt{\frac{17.29}{128(1)}} = 0.368$$

- We conclude there is moderate association between school type and score category.
- We can easily verify that Cramér's coefficient is unchanged if every cell count were multiplied by 10 (or any number).

Example 2, From Sec. 4.2:

		Snoring Pattern			
		Never	Occasionally	≈Every Night	
Heart	Yes	24	35	51	
Disease	No	1355	603	416	
					N=2484
T was = 71.75		N wa	as = 2484	q is =2 (smaller	r c=3,r=2)

Cramér's coefficient =

$$V = \sqrt{\frac{T}{N(q-1)}} = \sqrt{\frac{71.75}{2484(2-1)}} = \sqrt{\frac{71.75}{2484(1)}} = 0.17$$

-We conclude a mild association between heart disease and snoring pattern.

The Phi Coefficient

• While Cramér's coefficient measures the <u>degree</u> of association, it cannot reveal the <u>type</u> of association (positive or negative).

• The type of association is only meaningful when the two variables have corresponding categories.

• The table must be set up so that the row category ordering "matches" the column category ordering.

• Phi is calculated as the <u>Pearson</u> correlation coefficient between the row variable and the column variable, if the categories are coded as numbers.

• For a 2 × 2 table, phi = $\frac{ad-bc}{\sqrt{r_1r_2c_1c_2}}$

Using

		Column		
		1	2	
Row	1	а	b	\mathbf{r}_1
	2	c	d	\mathbf{r}_2
		\mathbf{c}_1	c ₂	

Interpretations: The phi coefficient takes values between -1 and 1.

• A value **near 0** indicates :little association between row and column variable.

• A value **near** +1 indicates :a strong tendency for observation to fall in "a like" categories for both rows and columns.

• A value **near** –1 indicates : a strong tendency for observation to fall in "un like" categories for both rows and columns.

Example 3 (Page 110 data tables):

<u>Table A</u>: Phi = $\frac{ad-bc}{\sqrt{r_1 r_2 c_1 c_2}} = \frac{28x7 - 0x5}{\sqrt{28x12x33x7}} = 0.7035$

(strong tendency for mothers and fathers to have "alike" hair color)

Phi = $\frac{ad-bc}{\sqrt{r_1 r_2 c_1 c_2}} = \frac{21x0-7x12}{\sqrt{28x12x33x7}} = -0.3015$

(moderate tendency for mothers and fathers to have "unlike" hair colors.

Table C:

Table B:

Phi = $\frac{ad-bc}{\sqrt{r_1 r_2 c_1 c_2}} = \frac{23x2-5x10}{\sqrt{28x12x33x7}} = -0.0144$

(little association between mothers and fathers' to have "unlike" hair colors)

		Fat		
		Dark	Light	Total
Mother	Dark	28	0	28
	Light	5	7	12
	Total	33	7	40

		Father		
		Dark	Light	Total
Mother	Dark	21	7	28
	Light	12	0	12
	Total	33	7	40

		Fat		
		Dark	Light	Total
Mother	Dark	23	5	28
	Light	10	2	12
	Total	33	7	40

Example 4: Hair Color / Eye Color:

Phi = 0.341

(Moderate tendency for people with light eyes to have "like" light hair, and dark eyes to have "like" dark hair)

Proof that :

• For a 2×2 table, Phi equals Cramér's coefficient V times the sign of (ad-bc)

<u>Proof:</u>

For r = c = 2, the χ^2 test statistic can be written as

q=2, q-1=2-1=1

$$T = \frac{N(ad - bc)^2}{r_1 r_2 c_1 c_2}$$

So,

$$V = \sqrt{\frac{T}{N(q-1)}} = \sqrt{\frac{\frac{N(ad-bc)^2}{r_1 r_2 c_1 c_2}}{N(q-1)}}$$

Since

$$V = \sqrt{\frac{(ad-bc)^2}{r_1 r_2 c_1 c_2}} = \frac{\sqrt{(ad-bc)^2}}{\sqrt{r_1 r_2 c_1 c_2}} = \frac{ad-bc}{\sqrt{r_1 r_2 c_1 c_2}} = phi$$