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Chapter 1:

Getting Acquainted with Biostatistics
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1.1 Introduction 

1.2 Some Basic Concept 

1.3 Sampling and Statistical Inference

August 2024Chapter 1: Getting Acquainted with Biostatistics 4



Introduction

1) How to organize, summarize, and describe data.

 (Descriptive Statistics)

2) How to reach decisions about a large body of data by examine only a small 
part of the data.

 (Inferential Statistics)
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Some Basic Concepts

Data:

1) Quantitative data (numbers: weights, ages, …).

2) Qualitative data (words: nationalities, occupations, …).

Statistics:
1) Collection, organization, summarization, and analysis of data (Descriptive 

Statistics).

2) Drawing of inferences and conclusions about a body of data (population) 
when only a part of the data (sample) is observed (Inferential Statistics).
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Biostatistics:

When the data is obtained from the biological sciences and medicine, we use 
the term "biostatistics".

Sources of Data:
1) Routinely kept records.

2) Surveys.

3) Experiments.

4) External sources (published reports, data bank, …).
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Population:

- A population is the largest collection of entities (elements or individuals) in which we 

are interested at a particular time and about which we want to draw some conclusions.

- When we take a measurement of some variable on each of the entities in a population, 

we generate a population of values of that variable.

Population Size (N):

The number of elements in the population is called the population size and is denoted by 
N.

  

Example: 

We randomly select 50 students in KSU. The population consists of the weights of all these 
students, and our variable of interest is the weight.
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Sample:
- A sample is a part of a population.

- From the population, we select various elements on which we collect our data. This 
part of the population on which we collect data is called the sample.

Example: 

We randomly select 50 students in KSU. The weights of these 50 students forms a 
sample.

Sample Size (n):

The number of elements in the sample is called the sample size and is denoted by n.

August 2024Chapter 1: Getting Acquainted with Biostatistics 9



Variables:

The characteristic to be measured on the elements is called variable. The value 
of the variable varies from element to element.

Example of Variables:
1) No. of patients 

2) Height

3) Sex 

4) Educational Level

Types of Variables:
1) Quantitative Variables.

2) Qualitative Variables.
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1) Quantitative Variables:

A quantitative variable is a characteristic that can be measured. The values of a 
quantitative variable are numbers indicating how much or how many of something.

     (a) Discrete Variables:  

          There are jumps or gaps between the values.
- Family size (x = 1, 2, 3, … )

- Number of patients (x = 0, 1, 2, 3, … )

     (b) Continuous Variables: 

           There are no gaps between the values. A continuous variable can have any value 
           within a certain interval of values.

- Height (140 < x < 190)

- Blood sugar level (10 < x < 15)
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2) Qualitative Variables.

The values of a qualitative variable are words or attributes indicating to which category 
an element belong.

   (a) Nominal Qualitative Variables:

     A nominal variable classifies the observations into various mutually exclusive and
    collectively non-ranked categories.

- Blood type (O, AB, A, B)

- Nationality (Saudi, Egyptian, British, …)

- Sex (male, female)
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(b) Ordinal Qualitative Variables:

       An ordinal variable classifies the observations into various mutually
      exclusive and collectively ranked categories. The values of an ordinal variable
       are categories that can be

- Educational level (elementary, intermediate, …)

- Students grade (A, B, C, D, F)

- Military rank
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Variables

Quantitative Variables

Discrete

Family Size

No. Patients

Continuous

Age

Height

Qualitative Variables

Nominal

Blood type

Sex

Ordinal

Student grade

Military rank
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Sampling and Statistical Inference

(1) Simple Random Sampling:

If a sample of size (n) is selected from a population of size (N) in such a way that 
each element in the population has the same chance to be selected, the sample 
is called a simple random sample.

(2) Stratified Random Sampling:

In this type of sampling, the elements of the population are classified into 
several homogenous groups (strata). From each group, an independent simple 
random sample is drawn. The sample resulting from combining these samples is 
called a stratified random Sample.
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Chapter 2:

    Strategies for Understanding the Meaning of Data
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2.1 Introduction

2.2 The Ordered Array

2.3 Grouped Data: The Frequency Distribution

2.4 Descriptive Statistics: Measures of Central Tendency

2.5 Descriptive Statistics: Measures of Dispersion (Measures of Variation)
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Introduction

In this chapter, we learn several techniques for organizing and summarizing data 
so that we may more easily determine what information they contain.

Summarization techniques involve:
- Frequency distributions

- Descriptive measures

August 2024Chapter 2: Strategies for Understanding the Meaning of Data 18



The Ordered Array

A first step in organizing data is the preparation of an ordered array.

An ordered array is a listing of the values in order of magnitude from the 
smallest to the largest value.

Example:

Ages of subjects who participate in a study on diabetic:

The ordered array is:
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55 46 58 54 52 69 40  65  53 58

40 46 52 53 54 55 58  58  65 69



Grouped Data: The Frequency Distribution

To group a set of observations, we select a suitable set of contiguous, non 
overlapping intervals such that each value in the set of observations can be 
placed in one, and only one, of the intervals. These intervals are called "class 
intervals".

Example:

Study of the hemoglobin level (g/dl) of a sample of 50 men. 
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17.0 17.7  15.9  15.2  16.2  17.1  15.7  17.3  13.5  16.3

14.6  15.8  15.3  16.4  13.7  16.2  16.4  16.1  17.0  15.9 

14.0  16.2  16.4  14.9  17.8  16.1  15.5  18.3  15.8  16.7

15.9  15.3  13.9  16.8  15.9  16.3  17.4  15.0  17.5  16.1

14.2  16.1  15.7  15.1  17.4  16.5  14.4  16.3  17.3  15.8



Class intervals:

13.0 − 13.9,  14.0 − 14.9,  15.0 − 15.9,

16.0 − 16.9,  17.0 − 17.9,  18.0 − 18.9.

Variable = X = hemoglobin level (continuous, quantitative).

Sample size = n = 50.

Min = 13.5

Max = 18.3
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The grouped frequency distribution for the hemoglobin level of the 50 men is:
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Class Interval 
(Hemoglobin level)

Frequency 
(No. of men)

13.0 − 13.9 3

14.0 − 14.9 5

15.0 − 15.9 15

16.0 − 16.9 16

17.0 − 17.9 10

18.0 − 18.9 1

Total n = 50

Notes:

1. Minimum value ∈ first interval.

2. Maximum value ∈ last interval.

3. The intervals are not overlapped.

4. Each value belongs to one, and only one, interval. 

5. Total of the frequencies = the sample size = n.



Mid-Points of Class Intervals:

Mid−point =
upper limit+lower limit

2

True Class Intervals:
• d is the gap between class intervals

• d = lower limit – upper limit of the preceding class intervals

• True upper limit = upper limit + Τ𝑑
2

• True lower limit = lower limit − Τ𝑑
2
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Example:

- Mid-point of the 1st interval = Τ(13.0 + 13.9) 2 = 13.45

- Mid-point of the last interval = Τ(18.0 + 18.9) 2 = 18.45

Class Interval True Class Interval Mid-point Frequency

13.0 − 13.9 12.95 − 13.95 13.45 3

14.0 − 14.9 13.95 − 14.95 14.45 5

15.0 − 15.9 14.95 − 15.95 15.45 15

16.0 − 16.9 15.95 − 16.95 16.45 16

17.0 − 17.9 16.95 − 17.95 17.45 10

18.0 − 18.9 17.95 − 18.95 18.45 1



Note:

1. Mid-point of a class interval is considered as a typical value for all values in 
the class interval. 

For example: 

Approximately we may say that: There are 5 observations with the value of 
14.45.

2. There are no gaps between true class intervals. 

The true upper limit of each true class interval equals to the true lower limit of 
the following true class interval.
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Cumulative frequency:
- Cumulative frequency of the 1st  class interval = Frequency.

- Cumulative frequency of a class interval = Frequency + Cumulative frequency of the 
preceding class interval. 

Relative frequency and Percentage frequency:
- Relative frequency = ΤFrequency 𝑛.

- Percentage frequency =Relative frequency × 100%.

August 2024
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Class Interval Frequency Cumulative 
Frequency

Relative 
Frequency 

Cumulative 
Relative 
Frequency

Percentage 
Frequency

Cumulative 
Percentage 
Frequency 

13.0 − 13.9 3 3 0.06 0.06 6% 6%

14.0 − 14.9 5 8 0.10 0.16 10% 16%

15.0 − 15.9 15 23 0.30 0.46 30% 46%

16.0 − 16.9 16 39 0.32 0.78 32% 78%

17.0 − 17.9 10 49 0.20 0.98 20% 98%

18.0 − 18.9 1 50 0.02 1.00 2% 100%
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➢ From frequencies:

The number of people whose hemoglobin levels are between 17.0 and 17.9 = 10.

➢ From cumulative frequencies:

The number of people whose hemoglobin levels are less than or equal to 15.9 = 23.

➢ From percentage frequencies:

The percentage of people whose hemoglobin levels are between 17.0 and 17.9 = 20%.

➢ From cumulative percentage frequencies:

The percentage of people whose hemoglobin levels are less than or equal to = 14.9 = 16%.
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Displaying Grouped Frequency Distributions: 

For representing frequencies, we may use one of the following graphs:
- The Histogram 

- The Frequency Polygon 
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Example:

Frequency distribution of the ages of 100 women.

Width of the interval = true upper limit − true lower limit = 19.5 − 14.5 = 5

August 2024Chapter 2: Strategies for Understanding the Meaning of Data 30

True Class Interval 
(Age)

Frequency
 (No. of women)

Cumulative 
Frequency

Mid-point

14.5 − 19.5 8 8 17

19.5 − 24.5 16 24 22

24.5 − 29.5 32 56 27

29.5 − 34.5 28 84 32

34.5 − 39.5 12 96 37

39.5 − 44.5 4 100 42

Total 𝑛 = 100



(1) Histogram: Organizing and Displaying Data using Histogram:
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frequency
or      

Percentage 
frequency 

or
Relative 

frequency



(2) Frequency Polygon: Organizing and Displaying Data using Polygon

Frequency Polygon(open)                                    Frequency Polygon(closed) 
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Frequency Polygon(closed) 



Descriptive Statistics:

 Measures of Central Tendency (or location) 
 Mean ; Mode ; Median 

Measures of Dispersion (or Variation) 

 Range ; Variance ; Standard Deviation ; Coefficient of Variation 
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We introduce the concept of summarization of the data by mean s of a single 
number called "a descriptive measure".

- A descriptive measure computed from the values of a sample is called a 
"statistic".

- A descriptive measure computed from the values of a population is called a 
"parameter". 
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For the variable of interest there are: 

- Population values "N".

Let 𝑋1, 𝑋2, … , 𝑋𝑁 be the population values of the variable of interest 

(in general, they are unknown). 

The population size = N.

- Sample of values "n".

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be the sample values of the variable of interest (these values are known). 

The sample size = n.
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- A parameter is a measure (or number) obtained from the population values: 𝑋1, 𝑋2, … , 𝑋𝑁.

•  Values of the parameters are unknown in general.

•  We are interested to know true values of the parameters.

- A statistic is a measure (or number) obtained from the sample values: 𝑥1, 𝑥2, … , 𝑥𝑛.

• Values of statistic are known in general.

• Since parameters are unknown, statistics are used to approximate (estimate) parameters.
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Measures of Central Tendency: (or measures of location):

The commonly used measures of central tendency are: 

- The mean

- The median 

- The mode.

•The values of a variable often tend to be concentrated around the center of the 
data.

•The center of the data can be determined by the measures of central tendency.

•A measure of central tendency is a typical (or a representative) value of the set of 
data.
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Mean

The Population mean (𝜇):

If 𝑋1, 𝑋2, … , 𝑋𝑁 are the population values, then the population mean is:

𝜇 =
𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁

𝑁
=

σ𝑖=1
𝑁 𝑋𝑖

𝑁
 (unit)

• The population mean 𝜇 is a parameter  (it is usually unknown, and we are 
interested to know its value)
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The Sample mean ( ҧ𝑥):

If 𝑥1, 𝑥2, … , 𝑥𝑛 are the sample values, then the sample mean is:

ҧ𝑥 =
𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

𝑛
=

σ𝑖=1
𝑛 𝑥𝑖

𝑛
 (unit)

• The sample mean ҧ𝑥 is a statistic (it is known – we can calculate it from the sample).

• The sample mean ҧ𝑥 is used to approximate (estimate) the population mean 𝜇.

August 2024
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Example

Suppose that we have a population of 5 population values: 
𝑋1 = 41, 𝑋2 = 30, 𝑋3 = 35,  𝑋4 = 22, 𝑋5 = 27. (𝑁 = 5) 

Suppose that we randomly select a sample of size 3, and the sample values we 
obtained are:

𝑥1 = 30, 𝑥2 = 35, 𝑥3 = 27. (𝑛 = 3) 

• Calculate the population mean.  

• Calculate the sample mean. 
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Solution

The population mean is:

𝜇 =
41 + 30 + 35 + 22 + 27

5
=

155

5
= 31 (unit)

The sample mean is:

ҧ𝑥 =
30 + 35 + 27

3
=

92

3
= 30.67 (unit)

 

• Notice that ҧ𝑥 = 30.67 is approximately equals to 𝜇 = 31.

• Note: The unit of the mean is the same as the unit of the data.
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Advantages and disadvantages of the mean:

Advantages:
• Simplicity: The mean is easily understood and easy to compute.

• Uniqueness: There is one and only one mean for a given set of data.

• The mean considers all values of the data.

Disadvantages:
• Extreme values have an influence on the mean. Therefore, the mean may be 
distorted by extreme values.

For example: 

• The mean can only be found for quantitative variables.
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Sample Data Mean

A 2   4   5   7   7   10 5.83

B 2   4   5   7   7   100 20.83



Median

The median of a finite set of numbers is that value which divides the ordered 
array into two equal parts. The numbers in the first part are less than or equal to 
the median and the numbers in the second part are greater than or equal to the 
median.

Notice that:

50% (or less) of the data is ≤ Median

50% (or less) of the data is ≥ Median
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Calculating the Median

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be the sample values. The sample size (𝑛) can be odd or even.

• First we order the sample to obtain the ordered array.

• Suppose that the ordered array is: 𝑦1, 𝑦2, … , 𝑦𝑛.

• We compute the rank of the middle value (s):

𝑟𝑎𝑛𝑘 =
𝑛 + 1

2

• If the sample size (𝑛) is an odd number, there is only one value in the middle, 
and the rank will be an integer:

 𝑟𝑎𝑛𝑘 =
𝑛 + 1

2
= 𝑚 (m is integer)

The median is the middle value of the ordered observations, which is:
Median =  𝑦𝑚
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𝑦1 𝑦2 … 𝑦𝑚 … 𝑦𝑛

1 2 … 𝑚 … n
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Ordered set (smallest to largest)

Rank (or order)

Middle value

• If the sample size (𝑛) is an even number, there are two values in the middle, and the 
rank will be an integer plus 0.5:

 𝑟𝑎𝑛𝑘 =
𝑛 + 1

2
= 𝑚 

Therefore, the ranks of the middle values are (𝑚) and (𝑚 + 1). 



The median is the mean (average) of the two middle values of the ordered 
observations:

𝑀𝑒𝑑𝑖𝑎𝑛 =
𝑦𝑚 + 𝑦𝑚+1

2
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𝑦1 𝑦2 … 𝑦𝑚 𝑦𝑚+1 … 𝑦𝑛

1 2 … 𝑚 𝑚 + 1 … n

Middle value Middle value

Ordered set 

Rank (or order)



Example (odd number):

Find the median for the sample values: 10, 54, 21, 38, 53.

Solution:

𝑛 = 5 odd number .

There is only one value in the middle.

The rank of the middle value is:

 𝑟𝑎𝑛𝑘 =
𝑛 + 1

2
=

5 + 1

2
= 3. (𝑚 = 3)

The median =38  (unit)
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10 21 38 53 54

1 2 3 (𝑚) 4 5

Middle value

Ordered set 

Rank (or order) 



Example (even number):

Find the median for the sample values: 10, 35, 41, 16, 20, 32.

Solution:

𝑛 = 6 odd number .

There are two values in the middle.

The rank is:

 𝑟𝑎𝑛𝑘 =
𝑛 + 1

2
=

6 + 1

2
= 3.5 = 3 + 0.5 = 𝑚 + 0.5. (𝑚 = 3)
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Therefore, the ranks of the middle values are: 
𝑚 = 3 and 𝑚 + 1 = 4.

The middle values are 20 and 32.

The median =
20 + 32

2
=

52

2
= 26 unit .

Note: The unit of the median is the same as the unit of the data.

10 16 20 32 35 41

1 2 3 (𝑚) 4 (𝑚+1) 5 6

Ordered set 

Rank (or order)



Advantages of the median

Advantages:

• Simplicity: The median is easily understood and easy to compute.

• Uniqueness: There is only one median for a given set of data.

• The median is not as drastically affected by extreme values as is the 
mean. (i.e., the median is not affected too much by extreme values).

For example: 
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Sample Data Median

A 9   4   5   9   2   10 7

B 9   4   5   9   2   100 7



Disadvantages of the median

Disadvantages:

• The median does not consider all values of the sample.• The mean 
can only be found for quantitative variables.

• In general, the median can only be found for quantitative variables.

 However, in some cases, the median can be found for ordinal 
qualitative variables.
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Mode

The mode of a set of values is that value which occurs most frequently (i.e., with 
the highest frequency).

• If all values are different or have the same frequencies, there will be no mode.

• A set of data may have more than one mode.
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Example

Data set Type Mode(s)

26,  25,  25,  34 Quantitative 25

3,  7,  12,  6,  19 Quantitative No mode

3,  3,  7,  7,  12,  12,  6,  6,  19,  19 Quantitative No mode

3,  3,  12,  6,  8,  8 Quantitative 3 and 8

B  C  A  B  B  B  C  B  B Qualitative B

B  C  A  B  A  B  C  A  C Qualitative No mode

B  C  A  B  B  C  B  C  C Qualitative B and C
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Note: The unit of the mode is the same as the unit of the 
data.



Advantages of the mode

Advantages:

• Simplicity: The mode is easily understood and easy to compute.

• The mode is not as drastically affected by extreme values as is the mean. (i.e., 
the mode is not affected too much by extreme values).

For example: 

• The mode may be found for both quantitative and qualitative variables.
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Sample Data Median

A 7   4   5   7   2   10 7

B 7   4   5   7   2   100 7



Disadvantages of the mode

Disadvantages: 

• The mode is not a “good” measure of location, because it depends on a few 
values of the data.

• The mode does not consider all values of the sample.

• There might be no mode for a data set.

• There might be more than one mode for a data set. 
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Measures of Dispersion (Measures of Variation): 

The dispersion (variation) of a set of observations refers to the variety that they 
exhibit. A measure of dispersion conveys information regarding the amount of 
variability present in a set of data. There are several measures of dispersion, 
some of which are: Range, Variance, Standard Deviation, and Coefficient of 
Variation.

The variation or dispersion in a set of values refers to how spread out the values 
is from each other.

• The dispersion (variation) is small when the values are close together.

• There is no dispersion (no variation) if the values are the same.
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The Range

The Range is the difference between the largest value (Max) and the smallest value (Min).

Range R = Max − Min

Notes:
1. The unit of the range is the same as the unit of the data.

2. The usefulness of the range is limited. The range is a poor measure of the dispersion 
because it only considers two of the values; however, it plays a significant role in many 
applications.
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Example

Find the range for the sample values:  26, 25, 35, 27, 29, 29.

Solution:

  Max = 35.

 Min = 25.

 Range R = 35 − 25 = 10 (unit).
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The Variance

The variance is one of the most important measures of dispersion.

The variance is a measure that uses the mean as a point of reference.

• The variance of the data is small when the observations are close to the mean.

• The variance of the data is large when the observations are spread out from the 
mean.

• The variance of the data is zero (no variation) when all observations have the same 
value (concentrated at the mean).
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Deviations of sample values from the sample 
mean:

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be the sample values, and ҧ𝑥 be the sample mean.

The deviation of the value   from the sample mean ҧ𝑥 is:

𝑥𝑖 − ҧ𝑥

The squared deviation is:
𝑥𝑖 − ҧ𝑥 2

The sum of squared deviations is:

෍

𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 2
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The following graph shows the squared deviations of the values from their 
mean:
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𝑥2𝑥1 𝑥𝑛

𝑥1 − ҧ𝑥 2

ҧ𝑥

𝑥2 − ҧ𝑥 2 𝑥𝑛 − ҧ𝑥 2



The Population Variance 𝜎2:

(Variance computed from the population)

Let 𝑋1, 𝑋2, … , 𝑋𝑁 be the population values. The population variance (𝜎2) is 
defined by:

𝜎2 =
σ𝑖=1

𝑁 𝑋𝑖 − 𝜇 2

𝑁
=

𝑋1 − 𝜇 2 + 𝑋2 − 𝜇 2 + ⋯ + 𝑋𝑁 − 𝜇 2

𝑁
 (𝑢𝑛𝑖𝑡)2

where, μ =
σ𝑖=1

𝑁 𝑋𝑖

𝑁
= is the population mean, and (𝑁)  is the population size.

  Notes:

• 𝜎2 is a parameter because it is obtained from the population values (it is 
unknown in general).

• 𝜎2 ≥ 0  
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The Sample Variance 𝑆2:

(Variance computed from the sample)

Let 𝑥1, 𝑥2, … , 𝑥𝑁 be the population values. The population variance (𝑆2) is 
defined by:

𝑆2 =
σ𝑖=1

𝑛 𝑥𝑖 − ҧ𝑥 2

𝑛 − 1
=

𝑥1 − ҧ𝑥 2 + 𝑥2 − ҧ𝑥 2 + ⋯ + 𝑥𝑛 − ҧ𝑥 2

𝑛 − 1
 (𝑢𝑛𝑖𝑡)2

where, ҧ𝑥 =
σ𝑖=1

𝑛 𝑥𝑖

𝑛
 is the population mean, and (n)  is the population size.
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  Notes:

• 𝑆2 is a statistic because it is obtained from the sample values (it is known).

• 𝑆2 is used to approximate (estimate) 𝜎2. 

• 𝑆2 ≥ 0 

• 𝑆2 = 0 ቊ
all observation have the same value

there is no disperation (no variation)
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Example

We want to compute the sample variance of the following sample values: 10, 21, 
33, 53, 54. 

Solution:

𝑛 = 5

ҧ𝑥 =
σ𝑖=1

5 𝑥𝑖

5
=

10+21+33+53+54

5
=

171

5
= 34.2

𝑆2 =
σ𝑖=1

5 𝑥𝑖− ҧ𝑥 2

5−1
=

10−34.2 2+ 21−34.2 2+ 33−34.2 2+ 53−34.2 2+ 54−34.2 2

4

=
1506.8

4
= 376.7 (unit)2
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Another Method for calculating sample variance:
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𝑥𝑖 𝑥𝑖 − ҧ𝑥 = (𝑥𝑖−34.2) 𝑥𝑖 − ҧ𝑥 2 = 𝑥𝑖 − 34.2 2

10 -24.2 585.64

21 -13.2 174.24

33 -1.2 1.44

53 18.8 353.44

54 19.8 392.04

෍

𝑖=1

5

𝑥𝑖 = 171 ෍

𝑖=1

5

𝑥𝑖 − ҧ𝑥 = 0 ෍

𝑖=1

5

𝑥𝑖 − ҧ𝑥 2 = 1506.8

ҧ𝑥 =
σ𝑖=1

5 𝑥𝑖

5
=

171

5
= 34.2 and 𝑆2 =

1506.8

4
= 376.7



Standard Deviation

The variance represents squared units, therefore, is not appropriate measure of 
dispersion when we wish to express the concept of dispersion in terms of the 
original unit.

• The standard deviation is another measure of dispersion.

• The standard deviation is the square root of the variance.

• The standard deviation is expressed in the original unit of the data.

(1) Population standard deviation is: 𝜎 = 𝜎2 (unit)

(2) Sample standard deviation is: 𝑆 = 𝑆2 =
σ𝑖=1

𝑛 𝑥𝑖− ҧ𝑥 2

𝑛−1
 (unit)
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Example

For the previous example, the sample standard deviation is:

𝑆 = 𝑆2 = 376.7 = 19.41
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Coefficient of Variation (C.V.)
• The variance and the standard deviation are useful as measures of variation of the 
values of a single variable for a single population.

• If we want to compare the variation of two variables, we cannot use the variance 
or the standard deviation because:
1. The variables might have different units.

2. The variables might have different means.

• We need a measure of the relative variation that will not depend on either the 
units or on how large the values are. This measure is the coefficient of variation 
(C.V.).

• The coefficient of variation is defined by:  

C. V. =
𝑆

𝑥
× 100%  

• The C.V. is free of unit (unit-less).
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• To compare the variability of two sets of data (i.e., to determine which set is more 
variable), we need to calculate the following quantities:

• The data set with the larger value of CV has larger variation.

• The relative variability of the 1st data set is larger than the relative variability of 
the 2nd data set if C. V1 > C. V2(and vice versa).
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Mean Standard Deviation C.V.

1st data set ҧ𝑥1 𝑆1 C. V1 =
𝑆1

ҧ𝑥1
100%

2nd data set ҧ𝑥2 𝑆2 𝐶. 𝑉2 =
𝑆2

ҧ𝑥2
100%



Example
Suppose we have two data sets:

Since C. V2 > C. V1, the relative variability of the 2nd data set is larger than the relative 
variability of the 1st data set.

If we use the standard deviation to compare the variability of the two data sets, we will 
wrongly conclude that the two data sets have the same variability because the standard 
deviation of both sets is 4.5 kg. 
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Mean Standard Deviation C.V.

1st data set ҧ𝑥1 = 66 kg 𝑆1 = 4.5 kg
C. V1 =

4.5

66
100% = 6.8%

2nd data set ҧ𝑥2 = 36 kg 𝑆2 = 4.5 kg
C. V2 =

4.5

36
100% = 12.5%



Chapter 3:

Probability the Basis of Statistical Inference
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3.1 Introduction

3.2 Probability

3.3 Elementary Properties of Probability

3.4 Calculating the Probability of an Event
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General Definitions and Concepts

Probability: 

Probability is a measure (or number) used to measure the chance of the 
occurrence of some event. This number is between 0 and 1.

An Experiment: 

An experiment is some procedure (or process) that we do.

Sample Space:

The sample space of an experiment is the set of all possible outcomes of an 
experiment. Also, it is called the universal set, and is denoted by Ω.  
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An Event: 

Any subset of the sample space Ω is called an event.

• ∅ ⊆ Ω is an event (impossible event).

• Ω ⊆ Ω is an event (sure event).
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Example

Experiment: Selecting a ball from a box containing 6 balls numbered from 1 to 6 
and observing the number on the selected ball. This experiment has 6 possible 
outcomes.

The sample space is: Ω = {1, 2, 3, 4, 5, 6}.

Consider the following events:

𝐸1 = getting an even number = {2, 4, 6} ⊆ Ω.

𝐸2 = getting a number less than 4 = {1, 2, 3} ⊆ Ω.

𝐸3 = getting 1 or 3 = {1, 3} ⊆ Ω.

𝐸4 = getting an odd number = {1, 3, 5} ⊆ Ω.

𝐸5 = getting a negative number =  = ∅ ⊆ Ω.

𝐸6 = getting a number less than 10 = 1, 2, 3, 4, 5, 6 = Ω ⊆ Ω.
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Notation:

𝑛 Ω = no. of outcomes elements  in Ω. 

𝑛 𝐸 = no. of outcomes elements  in 𝐸. 
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Equally Likely Outcomes: 

The outcomes of an experiment are equally likely if the outcomes have the same 
chance of occurrence.

Probability of An Event:

If the experiment has 𝑛 Ω equally likely outcomes, then the probability of the 
event 𝐸 is denoted by 𝑃 𝐸  and is defined by:

𝑃 𝐸 =
𝑛(𝐸)

𝑛(Ω)
=

no. of outcomes in 𝐸

no. of outcomes in Ω
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Example

In the ball experiment in the previous example, suppose the ball is selected at 

random. Determine the probabilities of the following events:

𝐸1 = getting an even number

𝐸2 = getting a number less than 4

𝐸3 = getting 1 or 3
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Solution

Ω = 1, 2, 3, 4, 5, 6  ;  𝑛 Ω = 6.

𝐸1 = 2, 4, 6  ;  𝑛 𝐸1 = 3

𝐸2 = 1, 2, 3  ;  𝑛 𝐸2 = 3

𝐸3 = 1, 3  ;  𝑛 𝐸3 = 2

The outcomes are equally likely.

∴  𝑃(𝐸1) =
3

6
,  𝑃(𝐸2) =

3

6
, 𝑃(𝐸3 ) =

2

6
. 
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Some Operations on Events

Let A and B be two events defined on the sample space Ω.

Union of two events: A ∪ B  or A + B

The event A ∪ B consists of all outcomes in A or in B or in both A and B. The 
event A ∪ B occurs if A occurs, or B occurs, or both A and B occur.
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A ∪ B

A 𝐵



Union of two events: A ∩ B  

The event A ∩ B consists of all outcomes in both A and B. The event A ∩ B occurs if 
both A and B occur.
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A ∩ B

A 𝐵



Complement of an Event:  ഥA  or AC  or (A′)

The complement of the event A is denoted by ഥA. The event ഥA consists of all 
outcomes of Ω but are not in A. The event ഥA occurs if  A does not.
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A

ഥA



Example

Experiment: Selecting a ball from a box containing 6 balls numbered 1, 2, 3, 4, 5, 
and 6 randomly.

Define the following events:

𝐸1 = {2, 4, 6} = getting an even number.

𝐸2 = {1, 2, 3} = getting a number less than 4.

𝐸4 = 1, 3, 5 = getting an odd number.
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4
6

𝐸1

𝐸4

𝐸2

1 3
5



(1) 𝐸1 ∪ 𝐸2 = getting an even number or a number less than 4. 

 = {1, 2, 3, 4, 6}

𝑃(𝐸1 ∪ 𝐸2) =
𝑛 𝐸1∪𝐸2

𝑛 Ω
=

5

6
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6

𝐸1

𝐸2

1 3
5



(2) 𝐸1 ∪ 𝐸4 = getting an even number or an odd number. 

 = {1, 2, 3, 4, 5, 6}

𝑃(𝐸1 ∪ 𝐸4) =
𝑛 𝐸1∪𝐸4

𝑛 Ω
=

6

6

Note: 𝐸1 ∪ 𝐸4 = Ω.

𝐸1 and 𝐸4 are called exhaustive events. 

The union of these events gives the whole sample space.
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2

4
6

𝐸1

𝐸4
1 3

5



(3) 𝐸1 ∩ 𝐸2 = getting an even number and a number less than 4. 

 = {2}

𝑃(𝐸1 ∩ 𝐸2) =
𝑛 𝐸1∩ 𝐸2

𝑛 Ω
=

1

6
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𝐸1

𝐸2
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(4) 𝐸1 ∩ 𝐸4 = getting an even number and an odd number. 

 = {∅}

𝑃(𝐸1 ∩ 𝐸4) =
𝑛 𝐸1∩𝐸4

𝑛 Ω
=

𝑛 ∅

6
=

0

6
= 0

Note: 𝐸1 ∩ 𝐸4 = ∅.

𝐸1 and 𝐸4 are called disjoint (or mutually exclusive) events. 

These kinds of events can not occur simultaneously 

(together at the same time). 
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(5) The complement of 𝐸1

 𝐸1  = not getting an even number = {2, 4, 6} = 1, 3, 5

 = not getting an odd number

 = 𝐸4
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Mutually exclusive (disjoint) events:

The events A and B are disjoint (or mutually exclusive) if:
𝐴 ∩ 𝐵 = ∅

For this case, it is impossible that both events occur simultaneously (i.e., 

together in the same time). In this case:

  (i) P(𝐴 ∩ 𝐵) = 0

  (ii) P 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃(𝐵)

   

If 𝐴 ∩ 𝐵 ≠ ∅, then A and B are not mutually exclusive (not disjoint).
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A

A 𝐵

𝐵

𝐴 ∩ 𝐵 ≠ ∅

A and B are not mutually exclusive 
(it is possible that both events 
occur in the same time)

𝐴 ∩ 𝐵 = ∅

A and B are mutually exclusive 
(it is impossible that both events 
occur in the same time)



Exhaustive Events:

The events 𝐴1, 𝐴2, … , 𝐴𝑛 are exhaustive events if:
𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛 = Ω

For this case, 𝑃(𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛) = 𝑃(Ω) = 1

Note:

1) 𝐴 ∪ ҧ𝐴 = Ω (𝐴 and ҧ𝐴 are exhaustive events).

2) 𝐴 ∩ ҧ𝐴 = ∅ (𝐴 and ҧ𝐴 are mutually exclusive (disjoint) events).

3) 𝑛 ҧ𝐴 = 𝑛 Ω − 𝑛 𝐴

4) P ҧ𝐴 = 1 − 𝑃 𝐴
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General Probability Rules:

1) 0 ≤ 𝑃 𝐴 ≤ 1

2) P Ω = 1

3) P ∅ = 0

4) P ҧ𝐴 = 1 − 𝑃 𝐴

The Addition Rule:

For any two events A and B:

P 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − P 𝐴 ∩ 𝐵
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Special Cases:

1) For mutually exclusive (disjoint) events A and B:
P 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵

 2) For mutually exclusive (disjoint) events 𝐸1, 𝐸2, … , 𝐸𝑛:
𝑃(𝐸1 ∪ 𝐸2 ∪ ⋯ ∪ 𝐸𝑛) = 𝑃(𝐸1) + 𝑃(𝐸2) + ⋯ + 𝑃(𝐸𝑛)

Note:

If the events 𝐴1, 𝐴2, … , 𝐴𝑛 are exhaustive and mutually exclusive

(disjoint) events, then:
𝑃(𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛) = 𝑃(𝐴1) + 𝑃(𝐴2) + ⋯ + 𝑃(𝐴𝑛)
 = 𝑃(Ω) = 1
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𝐸2

𝐸4
𝐸5

𝐸3



Marginal Probability

Given some variable that can be broken down into (m) categories designated by 
𝐴1, 𝐴2, … , 𝐴𝑚 and another jointly occurring variable that is broken down into (n) 
categories designated by 𝐵1, 𝐵2, … , 𝐵𝑛.

( This table contains the number of elements in each event)
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𝐵1 𝐵𝟐 ⋯ 𝐵𝒏 Total

𝐴1 𝑛(𝐴1 ∩ 𝐵1) 𝑛(𝐴1 ∩ 𝐵2) ⋯ 𝑛(𝐴1 ∩ 𝐵𝑛) 𝑛(𝐴1)

𝐴2 𝑛(𝐴2 ∩ 𝐵1) 𝑛(𝐴2 ∩ 𝐵2) ⋯ 𝑛(𝐴2 ∩ 𝐵𝑛) 𝑛(𝐴2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐴𝑚 𝑛(𝐴𝑚 ∩ 𝐵1) 𝑛(𝐴𝑚 ∩ 𝐵2) ⋯ 𝑛(𝐴𝑚 ∩ 𝐵𝑛) 𝑛(𝐴𝑚)

Total 𝑛(𝐵1) 𝑛(𝐵2) ⋯ 𝑛(𝐵𝑛) 𝑛(Ω)



( This table contains the probability of each event)
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𝐵1 𝐵𝟐 ⋯ 𝐵𝒏 Marginal 
Probability

𝐴1 P(𝐴1 ∩ 𝐵1) P(𝐴1 ∩ 𝐵2) ⋯ P(𝐴1 ∩ 𝐵𝑛) P(𝐴1)

𝐴2 P(𝐴2 ∩ 𝐵1) P(𝐴2 ∩ 𝐵2) ⋯ P(𝐴2 ∩ 𝐵𝑛) P(𝐴2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐴𝑚 P(𝐴𝑚 ∩ 𝐵1) P(𝐴𝑚 ∩ 𝐵2) ⋯ P(𝐴𝑚 ∩ 𝐵𝑛) P(𝐴𝑚)

Marginal 
Probability

P(𝐵1) P(𝐵2) ⋯ P(𝐵𝑛) 1.00



The marginal probability of 𝐴𝑖, P(𝐴𝑖), is equal to the sum of the joint probabilities 
of 𝐴𝑖  with all categories of 𝐵. That is:

P 𝐴𝑖 = P(𝐴𝑖 ∩ 𝐵1)+P(𝐴𝑖 ∩ 𝐵2) + ⋯ + P(𝐴𝑖 ∩ 𝐵𝑛)

= ෍

𝑗=1

𝑛

P(𝐴𝑖 ∩ 𝐵𝑗)

For example,

P 𝐴2 = P(𝐴2 ∩ 𝐵1)+P(𝐴2 ∩ 𝐵2) + ⋯ + P(𝐴2 ∩ 𝐵𝑛)

= ෍

𝑗=1

𝑛

P(𝐴2 ∩ 𝐵𝑗)

We define the marginal probability of 𝐵𝑗, P(𝐵𝑗)in a similar way.
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Example
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𝐵1 𝐵𝟐 𝐵𝟑 Total

𝐴1 50 30 70 150

𝐴2 20 70 10 100

𝐴3 30 100 120 250

Total 100 200 200 500

Table of number of elements in each event:

𝐵1 𝐵𝟐 𝐵𝟑 Marginal 
Probability

𝐴1 0.1 0.06 0.14 0.3

𝐴2 0.04 0.14 0.02 0.2

𝐴3 0.06 0.2 0.24 0.5

Marginal 
Probability

0.2 0.4 0.4 1

Table of probability of each event:

P 𝐴2 = P 𝐴2 ∩ 𝐵1 +P 𝐴2 ∩ 𝐵2 + P 𝐴2 ∩ 𝐵3

                                    = 0.04 + 0.14 + 0.02
                                    = 0.02



Example 

630 patients are classified as follows:

Experiment: Selecting a patient at random and observe his/her blood type.

This experiment has 630 equally likely outcomes 𝑛 Ω = 630.
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Blood Type O (𝐸1) A (𝐸2) B (𝐸3) AB (𝐸4) Total

No. of 
patients

284 258 63 25 630



Define the events:        

𝐸1 = The blood type of the selected patient is "O"  

𝐸2 = The blood type of the selected patient is "A" 

 𝐸3 = The blood type of the selected patient is "B" 

 𝐸4 = The blood type of the selected patient is "AB" 

Number of elements in each event:

𝑛 𝐸1 = 284,  𝑛 𝐸2 = 258,  𝑛 𝐸3 = 63,  𝑛 𝐸1 = 25. 

Number of elements in each event:

𝑃 𝐸1 =
284

630
= 0.4508, 𝑃 𝐸2 =

258

630
= 0.4095

𝑃 𝐸3 =
63

630
= 0.1, 𝑃 𝐸1 =

25

630
= 0.0397.
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Some Operations on the Events

1) 𝐸2 ∩ 𝐸4 = The blood type of the selected patients is "A" and "AB".

𝐸2 ∩ 𝐸4 = ∅ (disjoint event/mutually exclusive events)

𝑃(𝐸2 ∩ 𝐸4) = 𝑃(∅) = 0

2) 𝐸2 ∪ 𝐸4 = The blood type of the selected patients is "A" or "AB".

𝑃(𝐸2 ∪ 𝐸4) =

𝑛(𝐸2∪𝐸4)

𝑛(Ω)
=

258+25

630
=

283

630
= 0.4492

𝑜𝑟

𝑃(𝐸2) + P 𝐸4 =
258

630
+

25

630
=

283

630
= 0.4492
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3) ത𝐸1 = The blood type of the selected patients 𝐢𝐬 𝐧𝐨𝐭 "O“.

𝑛 ത𝐸1 = 𝑛 Ω − 𝑛 ത𝐸1 = 630 − 284 = 346

𝑃 ത𝐸1 =
𝑛 ത𝐸1

𝑛 Ω
=

346

630
= 0.5492. 

Another solute

𝑃 ത𝐸1 = 1 − 𝑃 𝐸1 = 1 − 0.4508 = 0.5492.

Notes:

1) 𝐸1, 𝐸2, 𝐸3, 𝐸4 are mutually disjoint, 𝐸𝑖 ∩ 𝐸𝑗 = ∅ 𝑖 ≠ 𝑗 .

2) 𝐸1, 𝐸2, 𝐸3, 𝐸4 are exhaustive events, 𝐸1 ∪ 𝐸2 ∪ 𝐸3∪ 𝐸4= Ω 
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Example

339 physicians are classified based on their ages and smoking habits as follows:

Experiment: Selecting a physician at random. 

The number of elements of the sample space is 𝑛 Ω = 339.

The outcomes of the experiment are equally likely.  
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Smoking Habit

Age Daily (𝐵1) Occasionly 
(𝐵2)

Not at all 
(𝐵3)

Total

20 − 29 (𝐴1) 31 9 7 47

20 − 29 (𝐴2) 110 30 49 189

20 − 29 (𝐴3) 29 21 29 79

20 − 29 (𝐴4) 6 0 18 24

Total 176 60 103 339



Some Events

• 𝐴3 = the selected physician is aged 40 − 49.

𝑃(𝐴3) =
𝑛(𝐴3)

𝑛 Ω
=

79

339
= 0.2330

• 𝐵2 = the selected physician smokes occasionally.

𝑃(𝐵2) =
𝑛(𝐵2)

𝑛 Ω
=

60

339
= 0.1770

• 𝐴3∩ 𝐵2 = the selected physician is aged 40 − 49 and smokes occasionally.

𝑃(𝐴3 ∩ 𝐵2) =
𝑛(𝐴3 ∩ 𝐵2)

𝑛 Ω
=

21

339
= 0.06195
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Some Events

• 𝐴3 = the selected physician is aged 40 − 49.

𝑃(𝐴3) =
𝑛(𝐴3)

𝑛 Ω
=

79

339
= 0.2330

• 𝐵2 = the selected physician smokes occasionally.

𝑃(𝐵2) =
𝑛(𝐵2)

𝑛 Ω
=

60

339
= 0.1770

• 𝐴3∩ 𝐵2 = the selected physician is aged 40 − 49 and smokes occasionally.

𝑃(𝐴3 ∩ 𝐵2) =
𝑛(𝐴3 ∩ 𝐵2)

𝑛 Ω
=

21

339
= 0.06195
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Some Events

• 𝐴3∪ 𝐵2 = the selected physician is aged 40 − 49 or smokes occasionally (or both)

𝑃(𝐴3 ∪ 𝐵2) = 𝑃(𝐴3) + 𝑃(𝐵2) − 𝑃(𝐴3 ∩ 𝐵2)

=
79

339
+

60

339
−

21

339
 = 0.233 + 0.177 − 0.06195

= 0.3481 

• ҧ𝐴4 = the selected physician is not 50 years or older.

 = 𝐴1∪ 𝐴2 ∪ 𝐴3 

𝑃( ҧ𝐴4) = 1 − 𝑃 𝐴4 = 1 −
𝑛 𝐴4

𝑛 Ω
= 1 −

24

339
= 0.9292
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Some Events

• 𝐴2∪ 𝐴3 = the selected physician is aged 30 − 39 or is aged 40 − 49 

 = the selected physician is aged 30 − 49 

Since 𝐴2 ∩ 𝐴3 = ∅

𝑃 𝐴2 ∪ 𝐴3 =
𝑛 𝐴2 ∪ 𝐴3

𝑛 Ω
=

189 + 79

339
=

268

339
= 0.7906

Or

𝑃 𝐴2 ∪ 𝐴3 = P 𝐴2 + 𝑃 𝐴3 =
189

339
+

79

339
= 0.7906
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Some Events

• What is the probability that the selected physician is not 40 − 49 years old and 
smokes occasionally?

𝑃( ҧ𝐴3 ∩ 𝐵2) = 𝑃(𝐴1 ∩ 𝐵2) + 𝑃(𝐴2 ∩ 𝐵2) + 𝑃(𝐴4 ∩ 𝐵2)

=
9

339
+

30

339
+

0

339
=

39

339
 

= 0.11504 

• What is the probability that the selected physician is 30 − 39 years old and is 
not a daily smoker?

𝑃(𝐴2 ∩ ത𝐵1) = 𝑃(𝐴2 ∩ 𝐵2) + 𝑃 𝐴2 ∩ 𝐵3

 =
30

339
+

49

339
=

79

339
 

= 0.2330
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Example

Suppose that there is a population of pregnant women with:

• 10% of the pregnant women delivered prematurely.

• 25% of the pregnant women used some sort of medication.

• 5% of the pregnant women delivered prematurely and used some sort of 
medication.

Experiment: Selecting a women randomly from this population. 

August 2024Chapter 3: Probability the Basis of Statistical Inference 111



Define the events:

• 𝐷 = The selected women delivered prematurely. 

• M = The selected women used medication. 

• 𝐷 ∩ 𝑀 = The selected women delivered prematurely and used some sort of medication.

The complement events:

• ഥ𝐷 = The selected women did not deliver prematurely. 

• ഥ𝑀 = The selected women did not use medication. 

The probabilities of the given events are:

𝑃 𝐷 = 0.1,  𝑃 𝑀 = 0.25,  𝑃 𝐷 ∩ 𝑀 = 0.05
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A Two-way Table: 
(Percentage given by a two-way table):

𝑀 ഥ𝑀 Total

𝐷 5 ? 10

ഥ𝐷 ? ? ?

Total 25 ? 100
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𝑀 ഥ𝑀 Total

𝐷 5 5 10

ഥ𝐷 20 70 90

Total 25 75 100

⇒

Complete the table, then answer the questions:



Calculating probabilities of some events:

• 𝐷 ∪ 𝑀 = the selected women delivered prematurely or used medication. 
𝑃(𝐷 ∪ 𝑀) = 𝑃(𝐷) + 𝑃(𝑀) − 𝑃(𝐷 ∩ 𝑀)

 = 0.1 + 0.25 − 0.05

= 0.3 

• ഥ𝑀 = The selected women did not use medication. 

𝑃 ഥ𝑀 = 1 − 𝑃 𝑀 = 1 − 0.25 = 0.75 (By the rule)

𝑃 ഥ𝑀 =
75

100
= 0.75 (From the table)
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Calculating probabilities of some events:

• ഥ𝐷 = The selected women did not deliver prematurely. 

𝑃 ഥ𝐷 = 1 − 𝑃 𝐷 = 1 − 0.10 = 0.90 (By the rule)

𝑃 ഥ𝐷 =
90

100
= 0.9 (From the table)

• ഥ𝐷 ∩  ഥ𝑀 = The selected women did not deliver prematurely and did not use medication 

𝑃 ഥ𝐷 ∩  ഥ𝑀 =
70

100
= 0.70 (From the table)
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• ഥ𝐷 ∩ 𝑀 = The selected women did not deliver prematurely and used medication 

𝑃 ഥ𝐷 ∩ 𝑀 =
20

100
= 0.20 (From the table)

• 𝐷 ∩ ഥ𝑀 = The selected women did not deliver prematurely and used medication 

𝑃(𝐷 ∩ ഥ𝑀) =
5

100
= 0.05 (From the table)

• 𝐷 ∪ ഥ𝑀 = The selected women did not deliver prematurely and used medication  

𝑃 𝐷 ∪ ഥ𝑀 = 𝑃 𝐷 + 𝑃 ഥ𝑀 − 𝑃 𝐷 ∩ ഥ𝑀

 = 0.1 + 0.75 − 0.05 = 0.8 (By the rule)
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• ഥ𝐷 ∪ 𝑀 = The selected women did not deliver prematurely or used medication  

𝑃 ഥ𝐷 ∪ 𝑀 = 𝑃 ഥ𝐷 + 𝑃(𝑀) − 𝑃 ഥ𝐷 ∩ 𝑀

 = 0.9 + 0.25 − 0.20 = 0.95 By the rule

•ഥ𝐷 ∪ ഥ𝑀 = The selected women did not deliver prematurely or did not use medication 

𝑃 ഥ𝐷 ∪ ഥ𝑀 = 𝑃 ഥ𝐷 + 𝑃( ഥ𝑀) − 𝑃 ഥ𝐷 ∩ ഥ𝑀

 = 0.9 + 0.75 − 0.70 = 0.95 By the rule
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Conditional Probability:

The conditional probability of the event 𝐴 when we know that the event 𝐵 has 
already occurred is defined by:

𝑃 𝐴ȁ𝐵 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 ; 𝑃(𝐵) ≠ 0

• 𝑃 𝐴ȁ𝐵 = The conditional probability of 𝐴 given 𝐵.
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Given / Known

A ∩ B

𝐴 𝐵



Notes: For calculating 𝑃 𝐴ȁ𝐵 , we may use any one of the following:

1)  𝑃 𝐴ȁ𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=

𝑛(𝐴∩𝐵)/𝑛(Ω)

𝑃(𝐵)/𝑛(Ω)

2) 𝑃 𝐴ȁ𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=

𝑛(𝐴∩𝐵)

𝑃(𝐵)

3) Using the restricted table directly. 

Multiplication Rules of Probability:

For any two events A and B, we have:

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 𝑃 𝐴ȁ𝐵

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃 𝐵ȁ𝐴
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Example

339 physicians are classified based on their ages and smoking habits as follows:

Experiment: Selecting a physician at random. 

The number of elements of the sample space is 𝑛 Ω = 339.

The outcomes of the experiment are equally likely.  
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Smoking Habit

Age Daily (𝐵1) Occasionly 
(𝐵2)

Not at all 
(𝐵3)

Total

20 − 29 (𝐴1) 31 9 7 47

20 − 29 (𝐴2) 110 30 49 189

20 − 29 (𝐴3) 29 21 29 79

20 − 29 (𝐴4) 6 0 18 24

Total 176 60 103 339



Consider the event 𝑃 𝐵1ห𝐴2  = the selected physician smokes daily known/given that 

his age is between 30 and 39. 

• 𝑃(𝐵1) =
𝑛(𝐵1)

𝑛 Ω
=

176

339
= 0.519

•𝑃 𝐵1ห𝐴2 =
𝑃(𝐵1∩ 𝐴2)

𝑃(𝐴2)
=

0.324484

0.557522
= 0.5820

𝑃 𝐵1 ∩  𝐴2 =
𝑛 𝐵1 ∩  𝐴2

𝑛 Ω
=

110

339
= 0.324484

𝑃(𝐴2) =
𝑛(𝐴2)

𝑛 Ω
=

189

339
= 0.557522 

Another solution: 

𝑃 𝐵1ห𝐴2 =
𝑛 𝐵1 ∩  𝐴2

𝑛(𝐴2)
=

110

189
= 0.5820
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Notice that:

𝑃(𝐵1) = 0.519

𝑃 𝐵1ห𝐴2 = 0.5820

• 𝑃 𝐵1ห𝐴2 > 𝑃(𝐵1),  𝑃(𝐵1) ≠ 𝑃 𝐵1ห𝐴2 .

What does this mean?

We will answer this question after talking about the concept of independent 
events. 
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Example (Multiplication Rule of Probability)

If we have 𝑃 𝐴 = 0.9, 𝑃 𝐵ȁ𝐴 = 0.8. Find 𝑃 𝐴 ∩ 𝐵 : 

  

Solution:

𝑃 𝐵ȁ𝐴 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)

0.8 =
𝑃(𝐴 ∩ 𝐵)

0.9
⇒ 𝑃 𝐴 ∩ 𝐵 = 0.8 × 0.9 = 0.72
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Independent Events

Two events A and B are independent if one of the following conditions is 
satisfied:

1)  𝑃 𝐴ȁ𝐵 = 𝑃 𝐴

2)  𝑃 𝐵ȁ𝐴 = 𝑃 𝐵

3)  𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃(𝐵)

Note: The third condition is the multiplication rule of independent events. 

August 2024Chapter 3: Probability the Basis of Statistical Inference 124



Example

Suppose that A and B are two events such that:

 𝑃 𝐴 = 0.9, 𝑃 𝐵ȁ𝐴 = 0.8, 𝑃 𝐴 ∩ 𝐵 = 0.2.

These two events are not independent (they are dependent) because:

 𝑃 𝐴 𝑃 𝐵 = 0.5 × 0.6 = 0.3 ≠ 𝑃 𝐴 ∩ 𝐵

 𝑃 𝐵ȁ𝐴 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
=

0.2

0.6
= 0.3333 ≠ 𝑃 𝐴

𝑃 𝐵ȁ𝐴 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
=

0.2

0.5
= 0.4 ≠ 𝑃 𝐵

For this example, we may calculate probabilities of all events. We can use a two-
way table of the probabilities. 
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A Two-way Table:

𝐵 ത𝐵 Total

𝐴 0.2 ? 0.5

ҧ𝐴 ? ? ?

Total 0.6 ? 1.00
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𝐵 ത𝐵 Total

𝐴 0.2 0.3 0.5

ҧ𝐴 0.4 0.1 0.5

Total 0.6 0.4 1.00

⇒

Complete the table, then answer the questions:

Q1: Are A and B independent events?
Q2: Are A and B disjoint events?
Q3: Are A and B exhaustive events?



𝑃 ҧ𝐴 = 0.5

𝑃 ത𝐵 = 0.4 

𝑃 𝐴 ∩ ത𝐵 = 0.3

𝑃 ҧ𝐴 ∩ 𝐵 = 0.4

𝑃 ҧ𝐴 ∩ ത𝐵 = 0.1

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵 = 0.5 + 0.6 − 0.2 = 0.9

𝑃 𝐴 ∪ ത𝐵 = 𝑃 𝐴 + 𝑃 ത𝐵 − 𝑃 𝐴 ∩ ത𝐵 = 0.5 + 0.4 − 0.3 = 0.6

𝑃 ҧ𝐴 ∪ 𝐵 = 𝑒𝑥𝑒𝑟𝑠𝑖𝑐𝑒

𝑃 ҧ𝐴 ∪ ത𝐵 = 𝑒𝑥𝑒𝑟𝑠𝑖𝑐𝑒
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Q1: Are A and B independent events?

𝑃 𝐴ȁ𝐵 = P A
𝑃 𝐵ȁ𝐴 = P(B)

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃 𝐵
0.2 ≠ (0.5)(0.6)

0.2 ≠ 0.3

So A and B are not independent. 
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Q2: Are A and B disjoint events?

𝑃 𝐴 ∪ 𝐵 = P A + P B  or 𝑃 𝐴 ∩ 𝐵 = 0

𝑃 𝐴 ∩ 𝐵 = 0.2 ≠ 0

So, A and B are not disjoint. 
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Are A and B exhaustive events?

𝑃 𝐴 ∪ 𝐵 = P Ω = 1

𝑃 𝐴 ∪ 𝐵 = 0.9 ≠ 1

So, A and B are not exhaustive. 
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Example: (Reading Assignment)

Suppose that a dental clinic has 12 nurses classified as follows:

The experiment is to randomly choose one of these nurses. Consider the 
following events:

C = The chosen nurse has children.

         N = The chosen nurse works night shift.
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Nurse 1 2 3 4 5 6 7 8 9 10 11 12

Has children Yes No No No No Yes No No Yes No No No

Works at night No No Yes Yes Yes Yes No No Yes Yes Yes Yes



a) Find the probabilities of the following events:

  1. The chosen nurse has children. 

  2. The chosen nurse works night shift.

  3. The chosen nurse has children and works night shift. 

  4. The chosen nurse has children and does not work night shift.

b) Find the probability of choosing a nurse who works at night given that she has 
children. 

c) Are the events C and N independent? Why?

d) Are the events C and N disjoint? Why?

e) Sketch the events C and N with their probabilities using Venn diagram. 
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Solution

We can classify the nurses as follows:

a) The experiment has 𝑛 Ω = 12 equally likely outcomes.

  1. 𝑃 The chosen nurse has children = 𝑃 𝐶 =
𝑛(𝐶)

𝑛(Ω)
=

3

12
= 0.25

  2. 𝑃 The chosen nurse works night shift = 𝑃 𝑁 =
𝑛(𝑁)

𝑛(Ω)
=

8

12
= 0.6667
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𝑁 (Night shift) ഥ𝑁 (No night shift) Total

𝐶  (Has children) 2 1 3

ҧ𝐶 (No Children) 6 3 9

Total 8 4 12



 3. 𝑃 The chosen nurse has children and works night shift = 𝑃 𝐶 ∩ 𝑁

=
𝑛(𝐶 ∩ 𝑁)

𝑛(Ω)
=

2

12
= 0.16667

4. 𝑃 The chosen nurse children and does not work night shift = 𝑃 𝐶 ∩ ഥ𝑁

=
𝑛(𝐶 ∩ ഥ𝑁)

𝑛(Ω)
=

1

12
= 0.0833

b) The probability of choosing a nurse who works at night given that she has 
children. 

𝑃 𝑁 𝐶 =
𝑃(𝐶 ∩ 𝑁)

𝑃(𝐶)
=

ൗ2
12

0.25
= 0.6667

August 2024Chapter 3: Probability the Basis of Statistical Inference 134



c) The events C and N are independent because 𝑃 𝑁 𝐶 = 𝑃 𝑁 .

d) The events C and N are not disjoint because 𝑛 𝐶 ∩ 𝑁 ≠ ∅.   (Note: 𝑛 𝐶 ∩ 𝑁 = 2).

e) Venn diagram
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𝐶 ∩ 𝑁
= 0.0833

ҧ𝐶  ∩ 𝑁
= 0.0833

𝐶 ∩ ഥ𝑁
= 0.0833

𝐶 = 0.25

N= 0.6667

ҧ𝐶  ∩ ഥ𝑁
= 0.25



Bayes’ Theorem, Screening Tests, Sensitivity, 
Specificity, and Predictive Value Positive and Negative

There are two states regarding the disease and two state regarding the result of 
the screening test: 

State of the Disease:  
Present (𝐷)

 
Absent (ഥ𝐷)

Result of the Test:  
Positive (𝑇)

 
Negative ( ത𝑇)
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We define the following events of interest:

𝐷:  The individual has the disease presence of the disease .

ഥ𝐷:  The individual does not have the disease (absence of the disease).

𝑇:  The individual has a positive screening test result. 

ത𝑇:  The individual has a negative screening test result. 
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There are possible situations:
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True status of the disease

+ve (D: Present) −ve (ഥ𝐷: Absent)

Result of 
the test

+ve (𝑇) Correct diagnosing False positive result

−ve ( ത𝑇) False negative result Correct diagnosing



Definitions of False Results

There are two false results:

1. A false positive result: 

This result happens when a test indicates a positive status, when the true status 
is negative. 

𝑃 𝑇 ഥ𝐷 = 𝑃 positive result  absence of the disease)

2. A false negative result: 

This result happens when a test indicates a negative status, when the true status 
is positive. 

𝑃 ത𝑇 𝐷 = 𝑃 negative result  presence of the disease)
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Definitions of the Sensitivity and Specificity of the Test

1. The Sensitivity: 

The sensitivity of a test is the probability of a positive test result given the 
presence of the disease.

𝑃 𝑇 𝐷 = 𝑃 positive result of the test  Presence of the disease)

2. The Specificity: 

The specificity of a test is the probability of a negative test result given the 
absence of the disease.  

𝑃 ത𝑇 ഥ𝐷 = 𝑃 negative result of the test  absence of the disease)
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To clarify these concepts, suppose we have a sample of (𝑛) subjects who are 
cross-classified according to disease status and screening test result as follows:

For example, there are subjects who have the disease and whose screening test 
result was positive. 
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Disease 

Test Result Present (𝐷) Absent (ഥ𝐷) Total

Positive (𝑇) 𝑎 𝑏 𝑎 + 𝑏 = 𝑛(𝑇)

Negative ( ത𝑇) 𝑐 𝑑 𝑐 + 𝑑 = 𝑛( ത𝑇)

Total 𝑎 + 𝑐 = 𝑛(𝐷) 𝑏 + 𝑑 = 𝑛(ഥ𝐷) 𝑛



From this table we may compute the following conditional probabilities:

1. The probability of false positive result: 𝑃 𝑇 ഥ𝐷 =
𝑛(𝑇∩ ഥ𝐷)

𝑛( ഥ𝐷)
=

𝑏

𝑏+𝑑

2. The probability of false negative result: 𝑃 ത𝑇 𝐷 =
𝑛( ത𝑇∩𝐷)

𝑛(𝐷)
=

𝑐

𝑎+𝑐

3. The sensitivity of the screening test: 𝑃 𝑇 𝐷 =
𝑛(𝑇∩𝐷)

𝑛(𝐷)
=

𝑎

𝑎+𝑐

4. The specificity of false screening test: 𝑃 ത𝑇 ഥ𝐷 =
𝑛( ത𝑇∩ ഥ𝐷)

𝑛( ഥ𝐷)
=

𝑑

𝑏+𝑑
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Definitions of the Predictive Value Positive and 
Predictive Value Negative of a Screening Test:

1) The predictive value positive of a screening test:

The predictive value positive is the probability that a subject has the disease, 
given that the subject has a positive screening test result: 

𝑃 ȁ𝐷 𝑇 = 𝑃 the subject has the disease posiitve result

 = 𝑃 presence of the disease posiitve result

2) The predictive value negative of a screening test:

The predictive value negative is the probability that a subject does not have the 
disease, given that the subject has a negative screening test result: 

𝑃 ഥ𝐷 ത𝑇 = 𝑃 the subject does not have the disease negative result

= 𝑃 absence of the disease negative result  
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Calculating the Predictive Value Positive and
 Predictive Value Negative

How to calculate 𝑃 ȁ𝐷 𝑇  and 𝑃 ഥ𝐷 ത𝑇 :

We calculate these conditional probabilities using the knowledge if: 

1) The sensitivity of the test = 𝑃 𝑇 𝐷

2) The specificity of the test = 𝑃 ത𝑇 ഥ𝐷

3) The probability of the relevant disease in the general population, 𝑃(𝐷) . (It is 
usually obtained from another independent study).
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Calculating the Predictive Value Positive, 𝑃 ȁ𝐷 𝑇 : 

𝑃(𝐷ȁ𝑇) =
𝑃(𝑇 ∩ 𝐷)

𝑃(𝑇)

Therefore, we reach the following version of Bayes’ theorem:

𝑃 𝐷 𝑇 =
𝑃 𝑇 𝐷 𝑃 𝐷

𝑃 𝑇 𝐷 𝑃 𝐷 + 𝑃 𝑇 ഥ𝐷 𝑃 ഥ𝐷
 (1)

Note: 

𝑃 𝑇 𝐷 = sensitivity.

𝑃 𝑇 ഥ𝐷 = 1 − 𝑃 ത𝑇 ഥ𝐷 = 1 − specificity.

𝑃 𝐷 = The probability pf the relevant disease in the general population. 

𝑃 ഥ𝐷 = 1 − 𝑃(𝐷).
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Calculating the Predictive Value Negative, 𝑃 ഥ𝐷 ത𝑇 : 

To obtain the predictive value negative of a screening test, we use the 
following statement of Bays’ theorem:

𝑃 ഥ𝐷 ത𝑇 =
𝑃 ത𝑇 ഥ𝐷 𝑃 ഥ𝐷

𝑃 ത𝑇 ഥ𝐷 𝑃 ഥ𝐷 + 𝑃 ത𝑇 𝐷 𝑃(𝐷)
 (2)

Note: 

𝑃 ത𝑇 ഥ𝐷 = specificity. 

𝑃 ത𝑇 𝐷 = 1 − 𝑃 𝑇 𝐷 = 1 − sensitivity.
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Example
A medical research team wished to evaluate a proposed screening test for Alzheimer’s 
disease. The test was given to a random sample of 450 patients with Alzheimer’s 
disease and an independent random sample of 500 patients without symptoms of the 
disease. The two samples were drawn from populations of subjects who were 65 years 
of age or older. The result are as follows:

Based on another independent study, it is known that the percentage of patients with 
Alzheimer’s disease (the rate of prevalence of the disease) is 11.3% out of all subjects 
who were 65 years of age or older. 
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Alzheimer Disease

Test Result Present (𝐷) Absent ഥ𝐷 Total

Positive (𝑇) 436 5 441

Negative 
ത𝑇

14 495 509

Total 450 500 950



Solution: 

Using these data we estimate the following quantities:

1) The sensitivity of the test:

𝑃 𝑇 𝐷 =
𝑛(𝑇 ∩ 𝐷)

𝑛(𝐷)
=

436

450
= 0.9689

2) The specificity of the test:

𝑃 ത𝑇 ഥ𝐷 =
𝑛( ത𝑇 ∩ ഥ𝐷)

𝑛(ഥ𝐷)
=

495

500
= 0.99
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3) The probability of the disease in the general population, 𝑃(𝐷):

The rate of disease in the relevant general population, 𝑃(𝐷), cannot be 
computed from the sample data given in the table. However, it is given that the 
percentage of patients with Alzheimer’s disease is 11.3% out of all subjects who 
were 65 years of age or older. Therefore 𝑃(𝐷) can be computed to be: 

𝑃 𝐷 =
11.3%

100
= 0.113 
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4) The predictive value positive of the test:

We wish to estimate the probability that a subject who is positive on the test has 
Alzheimer disease. We use the Bayes’ formula of Equation (1):

𝑃 𝐷 𝑇 =
𝑃 𝑇 𝐷 𝑃 𝐷

𝑃 𝑇 𝐷 𝑃 𝐷 + 𝑃 𝑇 ഥ𝐷 𝑃 ഥ𝐷

From the tabulated data we compute: 

𝑃 𝑇 𝐷 =
436

450
= 0.9689 (From part no. 1)

𝑃 𝑇 ഥ𝐷 =
𝑛(𝑇∩ ഥ𝐷)

𝑛( ഥ𝐷)
=

5

500
= 0.01 = 1 − specificity = 1 − 0.99
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Substituting of these result into Equation (1), we get:

𝑃 𝐷 𝑇 =
(0.9689)𝑃 𝐷

(0.9689)𝑃 𝐷 + (0.01)𝑃 ഥ𝐷

 =
(0.9689)(0.113)

(0.9689)(0.113) + (0.01)(1 − 0.113)

As we see, in this case, the predictive value positive of the test is very high. 
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5) The predictive value negative of the test:

We wish to estimate the probability that a subject who is negative on the test 

does not have Alzheimer disease. We use the Bayes’ formula of Equation (2):

𝑃 ഥ𝐷 ത𝑇 =
𝑃 ത𝑇 ഥ𝐷 𝑃 ഥ𝐷

𝑃 ത𝑇 ഥ𝐷 𝑃 ഥ𝐷 + 𝑃 ത𝑇 𝐷 𝑃(𝐷)

To compute 𝑃 ഥ𝐷 ത𝑇 , we first compute the following probabilities: 

𝑃 ത𝑇 ഥ𝐷 =
495

500
= 0.99   (From part no. 2)

𝑃 ഥ𝐷 = 1 − 𝑃 𝐷 = 1 − 0.113 = 0.887

𝑃 ത𝑇 𝐷 =
𝑛( ത𝑇∩𝐷)

𝑛(𝐷)
=

14

45
= 0.0311 = 1 − sensitivity = 1 − 0.9689
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Substituting in Equation (2), gives:

𝑃 ഥ𝐷 ത𝑇 =
𝑃 ത𝑇 ഥ𝐷 𝑃 ഥ𝐷

𝑃 ത𝑇 ഥ𝐷 𝑃 ഥ𝐷 + 𝑃 ത𝑇 𝐷 𝑃(𝐷)

 =
(0.99)(0.887)

(0.99)(0.887) + (0.0311)(0.113)

 = 0.996 

As we see, the predictive value negative is also very high. 
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Bayes Theorem  pages(48-52)  

The result of the test Has the disease 𝐷
Does not have the disease 

ഥ𝐷
Total

Positive 𝑇

Correct decision
𝑛(𝑇 ∩ 𝐷)
Sensitivity

𝑃 𝑇 𝐷 =
𝑛(𝑇 ∩ 𝐷)

𝑛(𝐷)

False decision 
𝑛(𝑇 ∩ ഥ𝐷)

False positive result

𝑃 𝑇 ഥ𝐷 =
𝑛(𝑇 ∩ ഥ𝐷)

𝑛(ഥ𝐷)

𝑛(𝑇)

Negative ത𝑇

False decision 
𝑛( ത𝑇 ∩ 𝐷)

False negative result

𝑃 ത𝑇 𝐷 =
𝑛( ത𝑇 ∩ 𝐷)

𝑛(𝐷)

Correct decision
𝑛( ത𝑇 ∩ ഥ𝐷)
Specificity

𝑃 ത𝑇 ഥ𝐷 =
𝑛( ത𝑇 ∩ ഥ𝐷)

𝑛(ഥ𝐷)

𝑛( ത𝑇)

Total 𝑛(𝐷) 𝑛(ഥ𝐷) 𝑛(Ω)
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Note that from the table:

𝑃 ത𝑇 ∩ ഥ𝐷 + 𝑃 𝑇 𝐷 = 1, and  P ത𝑇 ∩ ഥ𝐷 + 𝑃 𝑇 ∩ ഥ𝐷 = 1.

i.e.  False negative + Sensitivity = 1,  and  Specificity + False Positive = 1.

The probability of the relevant disease in the general population, 𝑃 𝐷  

[or 𝑃 ഥ𝐷 = 1 − 𝑃 𝐷 ] which is obtained from another independent study. 
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Predictive Value Positive 

𝑃 𝐷 𝑇 =
𝑃 𝑇 𝐷 ∗ 𝑃 𝐷

البسط نفس + البسط نفس (𝐷 → ഥ𝐷)

 =
𝑃 𝑇 𝐷 ∗ 𝑃 𝐷

𝑃 𝑇 𝐷 ∗ 𝑃 𝐷 + 𝑃 𝑇 ഥ𝐷 ∗ 𝑃 ഥ𝐷

 =
Sensitivity ∗  𝑃 𝐷

Sensitivity ∗ 𝑃 𝐷 + 1 − Speicificity ∗ 𝑃 ഥ𝐷
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Predictive Value Negative 

𝑃 ഥ𝐷 ത𝑇 =
𝑃 ത𝑇 ഥ𝐷 ∗ 𝑃 ഥ𝐷

البسط نفس + البسط نفس (ഥ𝐷 → 𝐷)

 =
𝑃 ത𝑇 ഥ𝐷 ∗ 𝑃 ഥ𝐷

𝑃 ത𝑇 ഥ𝐷 ∗ 𝑃 ഥ𝐷 + 𝑃 ത𝑇 𝐷 ∗ 𝑃(𝐷)

 =
Specificity ∗ 𝑃 ഥ𝐷

Specificity ∗ 𝑃 ഥ𝐷 + 1 − Sensitivity ∗ 𝑃(𝐷)
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