

(Specimen)

**King Saud University
College of Sciences
Department of Mathematics
Semester 432 / MATH-244 / Quiz-I**

Max. Marks: 10

Max. Time: 40 Min.

Question 1 [Marks: 1.5]:

Find the value/s of m so that $\det(A) = 10$, where $A = \begin{bmatrix} 2 & m & 1 \\ 0 & 1 & 1 \\ 4 & 3 & 1 \end{bmatrix}$.

Question 2 [Marks: 1.5]:

Let A and B be 3×3 matrices, where A is invertible and $B = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 5 & 1 \\ 1 & 2 & 6 \end{bmatrix}$. **If**
 $2A - BA + I = \mathbf{0}$ then **find** A^{-1} .

Question 3 [Marks: 2]:

Find the reduced row equivalent form (RREF) of the matrix $A = \begin{bmatrix} 1 & -2 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix}$
and **then use** the RREF to **determine** the existence or non-existence of A^{-1} .

Question 4 [Marks: 1.5]:

Evaluate the determinant without expansion:
$$\begin{vmatrix} 1 & z & y+x \\ 1 & x & y+z \\ 1 & y & z+x \end{vmatrix}$$

Question 5 [Marks: 1.5]:

Find the values of a and b so that $x = 1, y = 0, z = -1$ is a solution of the linear system:

$$\begin{aligned} ax - y + 3bz &= -5 \\ 2ax + 5y - bz &= 4. \end{aligned}$$

Question 6 [Marks: 2]:

Find the values of λ such that the following linear system has a unique solution:

$$\begin{aligned} x + 2y + 3z &= 1 \\ x + y + z &= 1 \\ \lambda x + 3y + 4z &= 0. \end{aligned}$$

====...

KSU / Semester 432 / MATH-244 / Quiz-I

SOLUTION KEY:

Question 1: $m = 9/2$

Question 2: $A^{-1} = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$.

Question 3: The RREF of the matrix $A = I_3$; hence, A^{-1} exists.

Question 4: 0.

Question 5: $a = 1, b = 2$.

Question 6: $\lambda \in \mathbb{R} - \{2\}$.
