

(Specimen)

King Saud University
College of Sciences
Department of Mathematics
Semester 432 / MATH-244 / Quiz-II

Max. Marks: 10

Max. Time: 30 Min.

Question 1 [Marks: 1.5]:

Show that $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 0\}$ is a *vector subspace* of *Euclidean space* \mathbb{R}^2 .

Question 2 [Marks: 2.5]:

Let $B = \{(\mathbf{1}, \mathbf{0}, \mathbf{0}), (\mathbf{0}, \mathbf{1}, \mathbf{0}), (\mathbf{0}, \mathbf{0}, \mathbf{1})\}$ and $C = \{(\mathbf{1}, \mathbf{0}, \mathbf{0}), (\mathbf{0}, \mathbf{1}, \mathbf{0}), (\mathbf{0}, \mathbf{0}, \mathbf{1})\}$ be bases of *Euclidean space* \mathbb{R}^3 and $\mathbf{u} = (3, 2, 1)$. Find the *transition matrix* ${}_C P_B$ and the *coordinate vector* $[\mathbf{u}]_C$.

Question 3 [Marks: 2]:

Let A be 4×3 matrix with $\text{rank}(A) = 3$. Find $\text{nullity}(A^T)$.

Question 4 [Marks: 2]:

Explain! why the function $\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = 2x_1y_1 + y_2 + 2z_1z_2$ is not an *inner product* on \mathbb{R}^3 .

Question 5 [Marks: 2]:

Which one of the following vectors in *Euclidean space* \mathbb{R}^3 :

$\mathbf{u}_1 = (\mathbf{0}, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, $\mathbf{u}_2 = (\mathbf{0}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, $\mathbf{u}_3 = (\mathbf{0}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}})$ and $\mathbf{u}_4 = (\mathbf{0}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$
is *orthogonal* to both vectors $\mathbf{v}_1 = (\mathbf{1}, -\mathbf{1}, \mathbf{1})$ and $\mathbf{v}_2 = (\mathbf{1}, \mathbf{0}, \mathbf{0})$?

====...====

KSU / Semester 432 / MATH-244 / Quiz-II

SOLUTION KEY:

Question 1:

Question 2:

Question 3:

Question 4:

Question 5:
