Rules

- The number of items in a group $\mathrm{k}=\mathrm{N} / \mathrm{n}$
- Range $=X_{\text {largest }}-X_{\text {smallest }}$
- Class interval (width) $=\frac{\text { Range }}{\text { class number }}$
- Relative Frequency = Frequency / Total
- Cumulative Frequency $=($ Frequency $/$ Total $) * 100$
- Cumulative Percentage $=$ Cumulative Frequency *100
- Median position $=\frac{n+1}{2}$ in the ordered data
- Median Value $=\left\{\begin{array}{c}\frac{n+1}{2} \text { in the odd } \\ \frac{n}{2}, \frac{n}{2}+1 \text { in the oven }\end{array}\right.$
- Sample Mean $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$
- Population Mean, $\mu=\frac{\sum_{i=1}^{N} X_{i}}{N}=\frac{X_{1}+X_{2}+\cdots+X_{N}}{N}$
- Sample Variance $S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$
- Sample Standard deviation, $S=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}$
- Population Variance, $\sigma^{2}=\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}$
- Population Standard deviation, $\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}}$
- Coefficient of variation $\mathrm{CV}=\left(\frac{S}{\bar{X}}\right) \cdot 100 \%$
- Z-score, $Z=\frac{X-\bar{X}}{S}$
- First quartile position: $\mathbf{Q}_{\mathbf{1}}=(\mathbf{n}+\mathbf{1}) / \mathbf{4}$ ranked value.
- Second quartile position: $\mathbf{Q}_{2}=(\mathbf{n}+\mathbf{1}) / \mathbf{2}$ ranked value.
- Third quartile position: $\mathbf{Q}_{\mathbf{3}}=\mathbf{3}(\mathbf{n}+\mathbf{1}) / 4$ ranked value.
- \quad QRR is Q3 -Q1

- Empirical Rule

- One standard deviation $(\mu \pm \sigma)$
- Two standard deviations $(\mu \pm 2 \sigma)$
- Three standard deviations ($\mu \pm 3 \sigma$)
- The sample covariance, $\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n-1}$
- Sample coefficient of correlation, $r=\frac{\operatorname{cov}(X, Y)}{s_{X} s_{Y}}$
where, $S_{X}=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}$ and $S_{Y}=\sqrt{\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{n-1}}$
- probability of occurrence $=\frac{X}{T} \quad=\frac{\text { number of ways in which the event occurs }}{\text { total number of possible outcomes }}$
$P(A$ and $B)=\frac{\text { number of outcomes satisfying } A \text { and } B}{\text { total number of outcomes }}$
- A marginal probability
$P(A)=P\left(A\right.$ and $\left.B_{1}\right)+P\left(A\right.$ and $\left.B_{2}\right)+\cdots+P\left(A\right.$ and $\left.B_{k}\right)$
- General addition rule $\mathbf{P}(\mathbf{A}$ or $\mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{A}$ and $\mathbf{B})$
- Addition rule for mutually exclusive events

$$
\circ \mathbf{P}(\mathbf{A} \text { or } \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})
$$

- A conditional probability

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}, P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
$$

- A conditional probability for independent events $P(A \mid B)=P(A)$
- The General Multiplication Rule $\mathbf{P (A \text { and } B) = \mathbf { P } (\mathbf { A } | \mathbf { B }) \mathbf { P } (\mathbf { B })}$
- Multiplication Rule for independent event

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})
$$

- Marginal probability for event A:

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{2}\right) \mathrm{P}\left(\mathrm{~B}_{2}\right)+\cdots+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{~B}_{\mathrm{k}}\right)
$$

- Bayes' Theorem

$$
\mathrm{P}\left(\mathrm{~B}_{\mathrm{i}} \mid \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{i}\right) \mathrm{P}\left(\mathrm{~B}_{i}\right)}{\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{2}\right) \mathrm{P}\left(\mathrm{~B}_{2}\right)+\cdots+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{~B}_{\mathrm{k}}\right)}
$$

- Counting rule 1: -The number of possible outcomes is equal to K^{n}
- Counting Rule 2: -The number of possible outcomes is equal to $\left(k_{1}\right)\left(k_{2}\right)\left(k_{3}\right)$
- Counting Rule 3: -The number of possible outcomes is

$$
n!=(n)(n-1) \cdots(1)
$$

- Counting Rule 4 (Permutations): -The number of possible outcomes is $n P_{x}=\frac{\mathrm{n}!}{(n-X)!}$
- Counting Rule 5 (Combination): -The number of possible outcomes is $n C_{x}=\frac{\mathrm{n}!}{\mathrm{X}!(n-X)!}$
- Expected Value (or mean) of a discrete variable

$$
\mu=\mathrm{E}(X)=\sum_{i=1}^{N} x_{i} P\left(X=x_{i}\right)
$$

- Variance of a discrete variable, $\sigma^{2}=\sum_{i=1}^{N}\left[x_{i}-E(X)\right]^{2} P\left(X=x_{i}\right)$
- Standard Deviation of a discrete variable.

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum_{i=1}^{N}\left[x_{i}-E(X)\right]^{2} P\left(X=x_{i}\right)}
$$

- Binomial Distribution Formula $\mathrm{P}(\mathrm{X}=\mathrm{x} \mid \mathrm{n}, \pi)=\frac{n!}{x!(n-x)!} \boldsymbol{\pi}^{x}(\mathbf{1}-\boldsymbol{\pi})^{\boldsymbol{n - x}}$
- Binomial Mean: $\mu=E(X)=n \pi$
- Binomial Variance and Standard Deviation: $\sigma^{2}=n \pi(1-\pi), \sigma=\sqrt{n \pi(1-\pi)}$
- Poisson Distribution Formula, $P(X=x \mid \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!}$
- Poisson Mean: $\mu=\lambda$
- Poisson Variance and Standard Deviation: $\sigma^{2}=\lambda, \sigma=\sqrt{\lambda}$
- Convert to X units to z, $\quad X=\mu+Z \sigma$

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

6	0.00	0.01	0.02	0.03	0.04	0.05	06	0.0	. 08	. 09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.68	44	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.70	0.7088	723	57	0.7190	0.7224
0.6	7257	0.7	0.7324	0.7	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.761	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	52
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.826	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.84	0.85	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	77
1.4	0.9192	0.9207	0.9222	0.923	0.92	0.92	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.967	0.9678	0.9686	0.9693	0.9699	706
1.9	0.9713	0.9719	0.9726	0.973	0.973	0.974	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	. 9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.999	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998

