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Lecture 1: Partitions

Definition (Partition)

Let [a, b] be a closed interval with a < b.
A partition of [a, b] is a finite ordered set

P = {x0, x1, . . . , xn} such that a = x0 < x1 < · · · < xn = b.

Subintervals

The partition P divides [a, b] into the subintervals

[xk−1, xk], k = 1, 2, . . . , n.

These subintervals:

• are disjoint in their interiors,

• together cover the entire interval [a, b].

A partition Q is called a refinement of a partition P if every point of P also
belongs to Q.

A refinement is obtained by adding more points, making the partition finer.

Example

Consider the interval
[0, 6].

Let
P = {0, 2, 5, 6}.

This is a partition of [0, 6], and it divides the interval into the subintervals

[0, 2], [2, 5], [5, 6].

Now insert the points
1 ∈ (0, 2), 3 ∈ (2, 5).

The resulting set is
Q = {0, 1, 2, 3, 5, 6}.

The partition Q is a refinement of P because it contains all the points of P and
subdivides each subinterval into smaller ones.
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Lower and Upper Sums

Let f : [a, b]→ R be a bounded function and let

P = {x0, x1, . . . , xn}, a = x0 < x1 < · · · < xn = b,

be a partition of [a, b].
For each subinterval [xk−1, xk], define

mk = inf{f(x) | x ∈ [xk−1, xk]}, Mk = sup{f(x) | x ∈ [xk−1, xk]}.

The lower sum and upper sum of f with respect to P are defined by

L(f, P ) =
n∑
k=1

mk

(
xk − xk−1

)
, U(f, P ) =

n∑
k=1

Mk

(
xk − xk−1

)
.

Each term mk(xk − xk−1) represents the area of a rectangle lying below the graph
of f , while Mk(xk − xk−1) represents the area of a rectangle lying above the graph
of f .

x

y

xk−1 xk

mk

Mk

Thus, for every partition P , the lower sum underestimates and the upper sum
overestimates the area under the curve:

L(f, P ) ≤ U(f, P ).

Property 1: Lower Sum is Always Below Upper Sum

For every partition P of [a, b],

L(f, P ) ≤ U(f, P ).
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Proof

Let P = {x0, x1, . . . , xn} be a partition of [a, b]. For each subinterval [xk−1, xk],
define

mk = inf{f(x) | x ∈ [xk−1, xk]}, Mk = sup{f(x) | x ∈ [xk−1, xk]}.

By definition of infimum and supremum,

mk ≤Mk for all k.

Since xk − xk−1 > 0, multiplying preserves the inequality:

mk(xk − xk−1) ≤Mk(xk − xk−1).

Summing over k = 1, . . . , n gives

L(f, P ) =
n∑
k=1

mk(xk − xk−1) ≤
n∑
k=1

Mk(xk − xk−1) = U(f, P ).

Property 2: Effect of Refinement

If Q is a refinement of a partition P , then

L(f, P ) ≤ L(f,Q), U(f,Q) ≤ U(f, P ).
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Proof

Assume Q is a refinement of P . This means that each subinterval of P is divided
into smaller subintervals in Q.
Consider a subinterval I = [xk−1, xk] of P and let

m = inf{f(x) | x ∈ I}.

Suppose Q divides I into smaller subintervals I1, . . . , Ir. For each Ij, let

mj = inf{f(x) | x ∈ Ij}.

Since Ij ⊆ I, the set of values of f on Ij is smaller, so

m ≤ mj for all j.

Multiplying by lengths and summing,

m(xk − xk−1) ≤
r∑
j=1

mj|Ij|.

Repeating this argument over all subintervals of P yields

L(f, P ) ≤ L(f,Q).

A similar argument applies to the upper sums. If

M = sup{f(x) | x ∈ I}, Mj = sup{f(x) | x ∈ Ij},

then Mj ≤M for all j, which implies

U(f,Q) ≤ U(f, P ).

Property 3: Lower Sum vs Upper Sum for Different Partitions

For any two partitions P1 and P2 of [a, b],

L(f, P1) ≤ U(f, P2).
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Proof

Let
R = P1 ∪ P2.

Then R is a refinement of both P1 and P2.
By Property 2,

L(f, P1) ≤ L(f,R) and U(f,R) ≤ U(f, P2).

By Property 1 applied to R,

L(f,R) ≤ U(f,R).

Combining these inequalities gives

L(f, P1) ≤ U(f, P2).

• Lower sums are always below upper sums.

• Refining partitions improves approximation: lower sums increase, upper sums
decrease.

• When lower and upper sums approach the same value, that value is the
Riemann integral.
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Lecture 2: Riemann integrability

Completeness Axiom of R

Every nonempty subset of R that is bounded above has a least upper bound
(supremum), and every nonempty subset of R that is bounded below has a greatest
lower bound (infimum).

This fundamental axiom is the key ingredient in the definition of the Riemann integral.

Lower and Upper Sums as Sets

Let f : [a, b]→ R be a bounded function.
We associate to f two sets of real numbers:

L := {L(f, P ) | P is a partition of [a, b] },
U := {U(f, P ) | P is a partition of [a, b] }.

The set L contains all possible lower sums of f , while U contains all possible upper
sums.

We now verify that these sets are suitable for taking a supremum and an infimum.

Non-emptiness

Both sets L and U are nonempty.

Indeed, at least one partition of [a, b] always exists, for example

P0 = {a, b}.

Therefore,
L(f, P0) ∈ L and U(f, P0) ∈ U .

Boundedness

Since f is bounded, there exist real numbers m and M such that

m ≤ f(x) ≤M for all x ∈ [a, b].

For any partition P = {x0, . . . , xn}, the corresponding lower and upper sums satisfy

m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).

Consequently:

• the set L is bounded above,

• the set U is bounded below.
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Definition: Lower and Upper Integrals

By the completeness axiom, the following quantities exist:

Lower integral

L(f) := supL = sup{L(f, P ) | P partition of [a, b] }.

Upper integral

U(f) := inf U = inf{U(f, P ) | P partition of [a, b] }.

Moreover, since L(f, P ) ≤ U(f, P ) for every partition P , we always have

L(f) ≤ U(f).

Riemann Integrability

The function f is called Riemann integrable on [a, b] if

L(f) = U(f).

In this case, the common value is called the Riemann integral of f over [a, b]
and is denoted by ∫ b

a

f(x) dx.

• L(f) is the best possible lower approximation of the area under the graph of
f .

• U(f) is the best possible upper approximation.

• Integrability means that no gap remains between these two quantities.
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Lecture 3: The ε-Criterion for Riemann Integrability

The ε–Criterion (Characterization of Integrability)

Let f : [a, b]→ R be a bounded function.

The function f is Riemann integrable on [a, b] if and only if for every ε > 0,
there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

In words: by choosing the partition fine enough, upper and lower sums can be made
arbitrarily close.

Proof

(⇒) Assume f is integrable.
Let

I =

∫ b

a

f(x) dx = L(f) = U(f).

Given ε > 0, by the definitions of supremum and infimum, we can find partitions
P1 and P2 such that

L(f, P1) > I − ε

2
, U(f, P2) < I +

ε

2
.

Let P be a common refinement of P1 and P2. Refinement increases lower sums and
decreases upper sums, so

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1) < ε.

(⇐) Assume the ε–condition holds.
For every ε > 0, there exists a partition P such that

U(f, P )− L(f, P ) < ε.

Since
L(f) ≥ L(f, P ), U(f) ≤ U(f, P ),

we obtain
0 ≤ U(f)− L(f) < ε.

Letting ε→ 0 gives U(f) = L(f), hence f is Riemann integrable.
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Example 1: Constant Function

Let f(x) = c on [a, b], where c ∈ R.

On every subinterval of any partition P ,

mk = Mk = c.

Thus,
L(f, P ) = U(f, P ) = c(b− a).

Therefore,
U(f, P )− L(f, P ) = 0 < ε for all ε > 0.

Hence f is Riemann integrable and∫ b

a

f(x) dx = c(b− a).

Example 2: f(x) = x2

Let f(x) = x2 on [0, 1].

Consider the uniform partition

Pn =

{
0,

1

n
,

2

n
, . . . , 1

}
.

Since x2 is increasing on [0, 1], on each subinterval

mk =

(
k − 1

n

)2

, Mk =

(
k

n

)2

.

The difference between upper and lower sums satisfies

U(f, Pn)− L(f, Pn) −→ 0 as n→∞.

Thus, for every ε > 0, there exists n such that

U(f, Pn)− L(f, Pn) < ε.

By the ε-criterion, f is Riemann integrable and∫ 1

0

x2 dx =
1

3
.

Theorem: Monotone Functions Are Integrable

Every monotone function f : [a, b]→ R is Riemann integrable.
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Proof

Assume f is monotone increasing on [a, b]. Then f is bounded:

f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b].

Let ε > 0 be given. Choose

δ > 0 such that δ
(
f(b)− f(a)

)
< ε.

Let P = {x0, x1, . . . , xn} be a partition of [a, b] satisfying

xk − xk−1 < δ for all k.

Since f is increasing, on each subinterval [xk−1, xk],

mk = f(xk−1), Mk = f(xk).

Therefore,

U(f, P )− L(f, P ) =
n∑
k=1

(
Mk −mk

)
(xk − xk−1)

=
n∑
k=1

(
f(xk)− f(xk−1)

)
(xk − xk−1)

≤ δ
n∑
k=1

(
f(xk)− f(xk−1)

)
= δ
(
f(b)− f(a)

)
< ε.

By the ε–criterion, f is Riemann integrable.

Theorem: Continuous Functions Are Integrable

Every continuous function f : [a, b]→ R is Riemann integrable.
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Proof

Since f is continuous on the compact interval [a, b], the Extreme Value Theorem
implies that f is bounded.
Moreover, by the Uniform Continuity Theorem, for every ε > 0 there exists
δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε

b− a
.

Let P = {x0, x1, . . . , xn} be a partition with

xk − xk−1 < δ for all k.

On each subinterval [xk−1, xk], continuity guarantees the existence of

mk = min f, Mk = max f,

and uniform continuity gives

Mk −mk <
ε

b− a
.

Hence,

U(f, P )− L(f, P ) =
n∑
k=1

(Mk −mk)(xk − xk−1)

<
ε

b− a

n∑
k=1

(xk − xk−1)

= ε.

By the εcriterion, f is Riemann integrable.

Generalization: Finite Discontinuities

Let f : [a, b]→ R be bounded and have only finitely many points of disconti-
nuity. Then f is Riemann integrable.

Interpretation

Continuity everywhere is sufficient but not necessary for Riemann integrability.

A bounded function can fail to be continuous at finitely many points and still have
upper and lower sums that can be made arbitrarily close.
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Example (Dirichlet Function).

Define the function f : [0, 1]→ R by

f(x) =

{
1, x ∈ Q,
0, x ∈ R \Q.

This function is known as the Dirichlet function and is discontinuous at every point
in [0, 1].
On every subinterval of any partition P of [0, 1], we have

inf f = 0, sup f = 1.

Hence,
L(f, P ) = 0, U(f, P ) = 1 for all P.

Therefore,
U(f, P )− L(f, P ) = 1 6→ 0,

and f is not Riemann integrable.

Theorem: Additivity over Subintervals

Let f : [a, b]→ R be bounded and let c ∈ (a, b). Then f is Riemann integrable on
[a, b] if and only if f is Riemann integrable on both [a, c] and [c, b].
In that case, ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Proof

(⇒) Assume f is integrable on [a, b]. Restricting any partition of [a, b] to [a, c] and
[c, b], and using monotonicity of upper and lower sums, shows that f is integrable
on each subinterval.
(⇐) Assume f is integrable on both [a, c] and [c, b]. Let ε > 0. Choose partitions
P1 of [a, c] and P2 of [c, b] such that

U(f, P1)− L(f, P1) <
ε

2
, U(f, P2)− L(f, P2) <

ε

2
.

Let P = P1 ∪ P2, a partition of [a, b]. Then

U(f, P )− L(f, P ) =
[
U(f, P1)− L(f, P1)

]
+
[
U(f, P2)− L(f, P2)

]
< ε.

By the ε–criterion, f is integrable on [a, b], and the equality of integrals follows
from the definition of sums.
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Conventions for Orientation

If f is integrable on [a, b], we define∫ a

b

f := −
∫ b

a

f,

∫ c

c

f := 0.

With these conventions, for any a, b, c,∫ c

a

f +

∫ b

c

f =

∫ b

a

f.

Theorem: Linearity, Order, and Absolute Value

Let f, g be Riemann integrable on [a, b] and let k ∈ R.

1. f + g is integrable and ∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

2. kf is integrable and ∫ b

a

kf = k

∫ b

a

f.

3. If f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f ≤
∫ b

a

g.

4. |f | is integrable and ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.
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Proof of (1): Linearity

Let P = {x0, . . . , xn} be any partition. For each subinterval, define infima and
suprema for f , g, and f + g.
From properties of infima and suprema,

mf
k +mg

k ≤ mf+g
k , M f+g

k ≤M f
k +M g

k .

Multiplying by ∆xk and summing yields

L(f, P ) + L(g, P ) ≤ L(f + g, P ), U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Using integrability of f and g, choose a common refinement P so that both upper-
lower differences are arbitrarily small. Passing to limits gives∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

Proof of (4): Absolute Value Inequality

Since f is integrable, it is bounded. For every partition P ,

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ).

Hence, |f | is integrable.
Moreover, for all x ∈ [a, b],

−|f(x)| ≤ f(x) ≤ |f(x)|.

Applying the order property and integrating yields

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f |.

This implies ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.



16 CHAPTER 1. THE RIEMANN INTEGRAL

Lecture 4: Riemann Sum

Let f : [a, b] → R be a bounded function. A partition of the interval [a, b] is a finite
set of points

P = {x0, x1, . . . , xn} with a = x0 < x1 < · · · < xn = b.

For each subinterval [xk−1, xk], choose a point ξk ∈ [xk−1, xk]. The vector ξ =
(ξ1, . . . , ξn) is called a tag (or mark) associated with the partition P .

Riemann sum Given a bounded function f , a partition P , and a choice of tags ξ, the
Riemann sum of f with respect to (P, ξ) is defined by

S(f, P, ξ) :=
n∑
k=1

f(ξk) (xk − xk−1).

Norm of a partition The norm (or mesh) of a partition P = {x0, x1, . . . , xn} is

‖P‖ := max
1≤k≤n

(xk − xk−1).

It measures the size of the largest subinterval in the partition.

Theorem (Convergence of tagged Riemann sums). Let f : [a, b] → R be
Riemann integrable. Then for every ε > 0 there exists δ > 0 such that for every
partition P with ‖P‖ ≤ δ and for every choice of tags ξ, one has∣∣∣∣S(f, P, ξ)−

∫ b

a

f(x) dx

∣∣∣∣ < ε.

Equivalently,

lim
‖P‖→0

S(f, P, ξ) =

∫ b

a

f(x) dx,

and the convergence is uniform with respect to the choice of tags ξ.

Proof. For any partition P and any choice of tags ξ, the Riemann sum satisfies the
inequalities

L(f, P ) ≤ S(f, P, ξ) ≤ U(f, P ),

where L(f, P ) and U(f, P ) denote the lower and upper sums of f corresponding to the
partition P .
Since f is Riemann integrable, for every ε > 0 there exists δ > 0 such that

‖P‖ < δ =⇒ U(f, P )− L(f, P ) < ε.

Combining the above inequalities yields∣∣∣∣S(f, P, ξ)−
∫ b

a

f(x) dx

∣∣∣∣ ≤ U(f, P )− L(f, P ) < ε,

which proves the result. �
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Exercise. Let f ∈ R[a, b]. Prove that

lim
n→∞

b− a
n

n∑
k=1

f

(
a+

k(b− a)

n

)
=

∫ b

a

f(x) dx.

Solution. Let f ∈ R[a, b]. For each n ∈ N, define the uniform partition

Pn : a = x0 < x1 < · · · < xn = b, xk := a+ k∆n, ∆n :=
b− a
n

.

The norm (mesh) of the partition is

‖Pn‖ = max
1≤k≤n

(xk − xk−1) = ∆n =
b− a
n
−−−→
n→∞

0.

Choose the right-endpoint tags

ξk := xk ∈ [xk−1, xk], k = 1, . . . , n.

The corresponding Riemann sum is

S(f, Pn, ξ) =
n∑
k=1

f(ξk) (xk − xk−1) =
n∑
k=1

f(xk) ∆n.

Substituting the expressions for xk and ∆n yields

S(f, Pn, ξ) =
b− a
n

n∑
k=1

f

(
a+

k(b− a)

n

)
.

Since f is Riemann integrable and ‖Pn‖ → 0, the convergence theorem for tagged
Riemann sums implies

lim
n→∞

S(f, Pn, ξ) =

∫ b

a

f(x) dx.

Therefore,

lim
n→∞

b− a
n

n∑
k=1

f

(
a+

k(b− a)

n

)
=

∫ b

a

f(x) dx.

�
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Lecture 5: The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus (FTC) explains the deep connection
between the two central operations of calculus:

differentiation ←→ integration.

It shows that, under suitable assumptions, these operations are inverse to each
other.

Fundamental Theorem of Calculus

Let a < b. The theorem has two complementary parts.

(FTCI: Evaluation of integrals).
Let f : [a, b] → R be Riemann integrable and let F : [a, b] → R be differentiable
with

F ′(x) = f(x) for all x ∈ [a, b].

Then ∫ b

a

f(x) dx = F (b)− F (a).

(FTCII: Differentiation of integrals).
Let g : [a, b]→ R be Riemann integrable and define

G(x) :=

∫ x

a

g(t) dt, x ∈ [a, b].

Then:

• G is continuous on [a, b];

• if g is continuous at c ∈ [a, b], then G is differentiable at c and

G′(c) = g(c).

Terminology

• In FTCI, the function F is called an antiderivative (or primitive) of f .

• In FTCII, the function G is called the indefinite integral of g.
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Proof of FTCI

Let P = {x0, x1, . . . , xn} be any partition of [a, b]. By the Mean Value Theorem,
for each subinterval [xk−1, xk] there exists tk ∈ (xk−1, xk) such that

F (xk)− F (xk−1) = F ′(tk)(xk − xk−1) = f(tk)(xk − xk−1).

Let mk and Mk be the infimum and supremum of f on [xk−1, xk]. Then

mk ≤ f(tk) ≤Mk,

and hence

L(f, P ) ≤
n∑
k=1

f(tk)(xk − xk−1) ≤ U(f, P ).

Summing the telescoping differences gives

n∑
k=1

f(tk)(xk − xk−1) =
n∑
k=1

[
F (xk)− F (xk−1)

]
= F (b)− F (a).

Since this holds for every partition P , it follows that∫ b

a

f(x) dx = F (b)− F (a).

Proof of FTCII

Since g is integrable, it is bounded:

|g(x)| ≤M for all x ∈ [a, b].

Continuity of G. For any x, y ∈ [a, b],

|G(x)−G(y)| =
∣∣∣∣∫ x

y

g(t) dt

∣∣∣∣ ≤ ∫ x

y

|g(t)| dt ≤M |x− y|.

Thus G is Lipschitz continuous, hence continuous on [a, b].

Differentiability at points of continuity. Assume g is continuous at c ∈ [a, b].
For x 6= c,

G(x)−G(c)

x− c
=

1

x− c

∫ x

c

g(t) dt.

Given ε > 0, continuity of g at c provides δ > 0 such that |g(t)−g(c)| < ε whenever
|t− c| < δ. Then for 0 < |x− c| < δ,∣∣∣∣G(x)−G(c)

x− c
− g(c)

∣∣∣∣ =

∣∣∣∣ 1

x− c

∫ x

c

(g(t)− g(c)) dt

∣∣∣∣ ≤ ε.

Hence G′(c) = g(c).
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Remarks

• Not every derivative is continuous, but every continuous function is the
derivative of some function.

• The FTC allows us to compute definite integrals without limits or sums, using
antiderivatives.

Consequences of the Fundamental Theorem of Calcu-

lus

Mean Value Theorem for Integrals

If g : [a, b]→ R is continuous, then there exists c ∈ (a, b) such that∫ b

a

g(x) dx = (b− a)g(c).

Proof

Define G(x) =
∫ x
a
g(t) dt. By the FTC, G is differentiable and G′(x) = g(x).

Applying the Mean Value Theorem to G on [a, b] yields

G′(c) =
G(b)−G(a)

b− a
=

1

b− a

∫ b

a

g(x) dx.

Rearranging gives the result.

Substitution Theorem (Change of Variables)

Let f : [a, b] → R be continuous. Let ϕ : [α, β] → [a, b] be continuously differen-
tiable.
Then ∫ β

α

f(ϕ(t))ϕ′(t) dt =

∫ ϕ(β)

ϕ(α)

f(x) dx.

Proof

Let F be an antiderivative of f , so F ′ = f . By the Chain Rule,

d

dt

(
F (ϕ(t))

)
= f(ϕ(t))ϕ′(t).

Applying the Fundamental Theorem of Calculus gives∫ β

α

f(ϕ(t))ϕ′(t) dt = F (ϕ(β))− F (ϕ(α)) =

∫ ϕ(β)

ϕ(α)

f(x) dx.
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Integration by Parts

Let u, v : [a, b]→ R be differentiable, with continuous derivatives. Then∫ b

a

u′(x)v(x) dx =
[
u(x)v(x)

]b
a
−
∫ b

a

u(x)v′(x) dx.

Proof

By the Product Rule,
(uv)′ = u′v + uv′.

Integrating both sides on [a, b] and applying the FTC yields∫ b

a

u′(x)v(x) dx+

∫ b

a

u(x)v′(x) dx = u(b)v(b)− u(a)v(a).

Rearranging gives the formula.

∫
u′ v = uv −

∫
u v′

This is the integral version of the Product Rule.
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Lecture 6:Improper Integrals

Improper integrals arise when the usual definition of the Riemann integral does not
apply directly. This occurs in two main situations:

• one (or both) of the limits of integration is infinite;

• the integrand becomes unbounded at one or more points of the interval.

We study each case separately and then present general criteria for convergence.

Case 1: Integration over an Infinite Interval

Definition. Let f : [a,∞)→ R be Riemann integrable on every finite interval [a,R],
R > a. If the limit

lim
R→∞

∫ R

a

f(x) dx

exists and is finite, then the improper integral is said to converge, and we define∫ ∞
a

f(x) dx := lim
R→∞

∫ R

a

f(x) dx.

Similarly, if f : (−∞, a]→ R, we define∫ a

−∞
f(x) dx := lim

R→−∞

∫ a

R

f(x) dx,

provided the limit exists.

Example

Consider ∫ ∞
1

1

xs
dx.

For R > 1, ∫ R

1

1

xs
dx =


1

s− 1

(
1− 1

Rs−1

)
, s 6= 1,

logR, s = 1.

Taking the limit as R→∞, we obtain

∫ ∞
1

1

xs
dx =


1

s− 1
, s > 1,

diverges, s ≤ 1.
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Case 2: Unbounded Integrand at an Endpoint

Definition. Let f : (a, b]→ R be Riemann integrable on [a+ ε, b] for all ε > 0. If the
limit

lim
ε↘0

∫ b

a+ε

f(x) dx

exists and is finite, then we define∫ b

a

f(x) dx := lim
ε↘0

∫ b

a+ε

f(x) dx.

Example

Consider ∫ 1

0

1

xs
dx.

For ε > 0 and s 6= 1, ∫ 1

ε

1

xs
dx =

1

1− s
(
1− ε 1−s).

Letting ε→ 0+ yields ∫ 1

0

1

xs
dx =


1

1− s
, s < 1,

diverges, s ≥ 1.

General Definition. Let f : (a, b)→ R, where a ∈ R ∪ {−∞} and b ∈ R ∪ {∞}, be
Riemann integrable on every compact subinterval of (a, b). Let c ∈ (a, b). If both∫ c

a

f(x) dx and

∫ b

c

f(x) dx

converge, then the improper integral over (a, b) is defined by∫ b

a

f(x) dx :=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

This definition is independent of the choice of c.
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Comparison Test

Let I = [a,∞) and let f, g : I → R be continuous functions such that 0 ≤ f(x) ≤ g(x)
for all x ∈ I.

1. If

∫ ∞
a

g(x) dx converges, then

∫ ∞
a

f(x) dx converges.

2. If

∫ ∞
a

f(x) dx diverges, then

∫ ∞
a

g(x) dx diverges.

Definition (Absolute convergence). Let f : [a,∞) → R be integrable on every

[a,R]. We say that the improper integral

∫ ∞
a

f(x) dx is absolutely convergent if

∫ ∞
a

|f(x)| dx converges (as a finite real number).

Theorem (Absolute convergence ⇒ convergence). If

∫ ∞
a

|f(x)| dx converges,

then

∫ ∞
a

f(x) dx converges. Moreover, for every R > a,

∣∣∣∣∫ R

a

f(x) dx

∣∣∣∣ ≤ ∫ R

a

|f(x)| dx,

and in particular (when the limits exist),∣∣∣∣∫ ∞
a

f(x) dx

∣∣∣∣ ≤ ∫ ∞
a

|f(x)| dx.
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Proof. Define F (t) =
∫ t
a
f(x) dx for t > a. To show that

∫∞
a
f converges, it is enough

(Cauchy criterion) to show that for every ε > 0 there exists N > a such that for all
b, c > N , ∣∣∣∣∫ c

b

f(x) dx

∣∣∣∣ < ε.

Assume
∫∞
a
|f(x)| dx converges. Then its tails go to 0, i.e., there exists N > a such

that for all b, c > N , ∫ max{b,c}

min{b,c}
|f(x)| dx < ε.

Using the triangle inequality for integrals, we get∣∣∣∣∫ c

b

f(x) dx

∣∣∣∣ ≤ ∫ c

b

|f(x)| dx =

∫ max{b,c}

min{b,c}
|f(x)| dx < ε.

Hence F (t) is Cauchy as t→∞, so limt→∞ F (t) exists and
∫∞
a
f(x) dx converges. The

inequalities
∣∣∣∫ Ra f

∣∣∣ ≤ ∫ Ra |f | (and the limit version) follow from the same estimate. �
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