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Partition

We assume 𝑓 ∶ [𝑎, 𝑏] ⟶ ℝ is bounded.

Definition
A finite order set of points 𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛} is called a
partition of [𝑎, 𝑏] if

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < … < 𝑥𝑛 = 𝑏

For 0 ≤ 𝑖 ≤ 𝑛 − 1, let

𝑀𝑖 = sup{𝑓(𝑥) ∶ 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]}

𝑚𝑖 = inf{𝑓(𝑥) ∶ 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]}
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Partition

𝑀𝑖 = sup{𝑓(𝑥) ∶ 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]}
𝑚𝑖 = inf{𝑓(𝑥) ∶ 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]}
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Upper and Lower sums

Definition
The upper sum 𝑈(𝑓, 𝑃 ) and the lower sum 𝐿(𝑓, 𝑃 ) of 𝑓 with
respect to 𝑃 are defined as

𝑈(𝑓, 𝑃 ) =
𝑛−1
∑
𝑖=0

𝑀𝑖(𝑥𝑖+1 − 𝑥𝑖)

𝐿(𝑓, 𝑃 ) =
𝑛−1
∑
𝑖=0

𝑚𝑖(𝑥𝑖+1 − 𝑥𝑖)
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Upper and Lower sums

𝑈(𝑓, 𝑃 ) =
𝑛−1
∑
𝑖=0

𝑀𝑖(𝑥𝑖+1 − 𝑥𝑖)

𝐿(𝑓, 𝑃 ) =
𝑛−1
∑
𝑖=0

𝑚𝑖(𝑥𝑖+1 − 𝑥𝑖)
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Upper and Lower sums

Note
1

𝐿(𝑓, 𝑃 ) ≤ 𝑈(𝑓, 𝑃 )
2 If 𝑓 ≥ 0 then

𝐿(𝑓, 𝑃 ) ≤ area under 𝑓 ≤ 𝑈(𝑓, 𝑃 )
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Partition

Definition
We say a partition 𝑄 is finer than 𝑃 if 𝑃 ⊂ 𝑄

Examples
1

𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛}
𝑄 = {𝑥0, 𝑥1, 𝑢, 𝑥2, … , 𝑥𝑛}

2 𝑃 ∪ 𝑄 is finer than both 𝑃 and 𝑄.
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Lemma
If 𝑄 is finer than 𝑃 then

𝑈(𝑓, 𝑄)....𝑈(𝑓, 𝑃 )

𝐿(𝑓, 𝑄)....𝐿(𝑓, 𝑃 )

𝑈(𝑓, 𝑄) ≤ 𝑈(𝑓, 𝑃 )
𝐿(𝑓, 𝑄) ≥ 𝐿(𝑓, 𝑃 )
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Lemma
If 𝑄 is finer than 𝑃 then

𝑈(𝑓, 𝑄)....𝑈(𝑓, 𝑃 )

𝐿(𝑓, 𝑄)....𝐿(𝑓, 𝑃 )

𝑈(𝑓, 𝑄) ≤ 𝑈(𝑓, 𝑃 )
𝐿(𝑓, 𝑄) ≥ 𝐿(𝑓, 𝑃 )
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Lemma
For any partitions 𝑃 and 𝑄 of [𝑎, 𝑏], we have

𝑈(𝑓, 𝑃 )....𝐿(𝑓, 𝑄)

𝑈(𝑓, 𝑃 ) ≥ 𝐿(𝑓, 𝑄)

Proof
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Upper and Lower sums
Lemma
For any partitions 𝑃 and 𝑄 of [𝑎, 𝑏], we have

𝑈(𝑓, 𝑃 )....𝐿(𝑓, 𝑄)

𝑈(𝑓, 𝑃 ) ≥ 𝐿(𝑓, 𝑄)

Proof
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Denote the class of all partioins of [𝑎, 𝑏] by 𝒫(𝑎, 𝑏)
If

𝐴 = {𝑈(𝑓, 𝑃 ) ∶ 𝑃 ∈ 𝒫(𝑎, 𝑏)}
𝐵 = {𝐿(𝑓, 𝑃 ) ∶ 𝑃 ∈ 𝒫(𝑎, 𝑏)}

Then 𝐴 is bounded below by 𝐿(𝑓, 𝑃0) for any 𝑃0 ∈ 𝒫(𝑎, 𝑏)
therefore, inf 𝐴 exists.
Similarly sup 𝐵 exists.
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Upper and Lower integral

Definition
The upper integral 𝑈(𝑓) and the lower integral 𝐿(𝑓) of 𝑓 over
[𝑎, 𝑏] are defined

𝑈(𝑓) = inf 𝐴 = inf{𝑈(𝑓, 𝑃 ) ∶ 𝑃 ∈ 𝒫(𝑎, 𝑏)}

𝐿(𝑓) = sup 𝐵 = sup{𝐿(𝑓, 𝑃 ) ∶ 𝑃 ∈ 𝒫(𝑎, 𝑏)}

Note that
𝐿(𝑓) ≤ 𝑈(𝑓)
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Riemann integrable

Definition
Let 𝑓 ∶ [𝑎, 𝑏] ⟶ ℝ be bounded. We say that 𝑓 is Riemann
integrable over [𝑎, 𝑏] if 𝐿(𝑓) = 𝑈(𝑓).
In this case, the Riemann integral of 𝑓 over [𝑎, 𝑏] is

∫
𝑏

𝑎
𝑓 = 𝐼(𝑓) = 𝑈(𝑓) = 𝐿(𝑓)

The class of functions that are Riemann Integrable over [𝑎, 𝑏] are
denoted by ℛ(𝑎, 𝑏)

∫
𝑏

𝑎
𝑓 = ∫

𝑏

𝑎
𝑓(𝑥)𝑑𝑥

Ibraheem Alolyan Real Analysis



Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Riemann integrable
Examples
𝑓 ∶ [𝑎, 𝑏] ⟶ ℝ

𝑓(𝑥) = 𝑐

.
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Dirichlet fucntion
Examples
𝑓 ∶ [𝑎, 𝑏] ⟶ ℝ

𝑓(𝑥) = { 1 𝑥 ∈ ℚ ∩ [𝑎, 𝑏]
0 𝑥 ∈ ℚ𝑐 ∩ [𝑎, 𝑏]

.
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Theorem
The following statements are equivalent

1 𝑓 ∈ ℛ(𝑎, 𝑏)
2 For all 𝜀 > 0, there is a partition 𝑃 ∈ 𝒫(𝑎, 𝑏) such that

𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) < 𝜀
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Corollary
𝑓 ∈ ℛ(𝑎, 𝑏) iff there exists a sequence (𝑃𝑛) in 𝒫(𝑎, 𝑏) such that

𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛) ⟶ 0

In this case,

∫
𝑏

𝑎
𝑓 = lim

𝑛→∞
𝑈(𝑓, 𝑃𝑛) = lim

𝑛→∞
𝐿(𝑓, 𝑃𝑛)
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Examples
𝑓 ∶ [𝑎, 𝑏] ⟶ ℝ

𝑓(𝑥) = 𝑥

.
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Norm of Partition

Definition
The norm of the partition 𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛} is

||𝑃 || = max{𝑥𝑖+1 − 𝑥𝑖 ∶ 𝑖 = 0, 1, … , 𝑛 − 1}

That is ||𝑃 || is the length of the longest subinterval of 𝑃 .
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Theorem
1 If 𝑓 is monotonic on [𝑎, 𝑏], then 𝑓 ∈ ℛ(𝑎, 𝑏)
2 If 𝑓 is continous on [𝑎, 𝑏], then 𝑓 ∈ ℛ(𝑎, 𝑏)
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Darboux’s Theorem
Darboux’s Theorem
Let 𝑓 ∶ [𝑎, 𝑏] ⟶ ℝ be bounded. Given 𝜀 > 0, there is a 𝛿 > 0 such
that
If 𝑃 is any partition of [𝑎, 𝑏] satisfies ||𝑃 || < 𝛿 then

𝑈(𝑓, 𝑃 ) − 𝑈(𝑓) < 𝜀

and
𝐿(𝑓) − 𝐿(𝑓, 𝑃 ) < 𝜀

i.e.,
lim

||𝑃 ||→0
𝑈(𝑓, 𝑃 ) = 𝑈(𝑓)

lim
||𝑃 ||→0

𝐿(𝑓, 𝑃 ) = 𝐿(𝑓)
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Riemann Sum

Definition
Let 𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛} be a partition of [𝑎, 𝑏]. We say that 𝛼
= (𝛼0, 𝛼1, … , 𝛼𝑛−1) is a mark on 𝑃 if 𝛼𝑖 ∈ [𝑥𝑖, 𝑥𝑖+1] for all
𝑖 ∈ {0, 1, … , 𝑛 − 1}, then the sum

𝑆(𝑓, 𝑃 , 𝛼) =
𝑛−1
∑
𝑖=0

𝑓(𝛼𝑖)(𝑥𝑖+1 − 𝑥𝑖)

is the Riemann sum of 𝑓 on 𝑃 with mark 𝛼.

𝐿(𝑓, 𝑃 ) ≤ 𝑆(𝑓, 𝑃 , 𝛼) ≤ 𝑈(𝑓, 𝑃 )
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Riemann Sum

Theorem
The following statements are equivalent

1 𝑓 ∈ ℛ(𝑎, 𝑏) with integral equals 𝐴
2 For any 𝜀 > 0, there is a 𝛿 > 0 such that, it 𝑃 is any partition

satisfies ||𝑃 || < 𝛿 and 𝛼 is any mark on 𝑃 then

|𝑆(𝑓, 𝑃 , 𝛼) − 𝐴| < 𝜀

i.e.,
lim

||𝑃 ||→0
𝑆(𝑓, 𝑃 , 𝛼) = 𝐴
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Corollary
If 𝑓 ∈ ℛ(𝑎, 𝑏) and (𝑃𝑛) is a sequence of partitions such that
||𝑃𝑛|| → 0, then for any choice of marks 𝛼𝑛 on 𝑃𝑛, we have

∫
𝑏

𝑎
𝑓 = lim

𝑛→∞
𝑆(𝑓, 𝑃𝑛, 𝛼)
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Riemann Sum
Examples
Evaluate

∫
1

0
(𝑥 − 𝑥2)𝑑𝑥

.
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Theorem
If 𝑓, 𝑔 ∈ ℛ(𝑎, 𝑏) and 𝑐, 𝑑 ∈ ℝ then

1

∫
𝑏

𝑎
𝑐𝑓 + 𝑑𝑔 = 𝑐 ∫

𝑏

𝑎
𝑓 + 𝑑 ∫

𝑏

𝑎
𝑔

2 If 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏] then

∫
𝑏

𝑎
𝑓 ≥ 0

3 If 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏] then then

∫
𝑏

𝑎
𝑓 ≤ ∫

𝑏

𝑎
𝑔
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Theorem
If 𝑓 ∈ ℛ(𝑎, 𝑏) and 𝑐 ∈ (𝑎, 𝑏) then

1

∫
𝑏

𝑎
𝑓 = ∫

𝑐

𝑎
𝑓 + ∫

𝑏

𝑐
𝑓

2 If 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏] and 𝑓 is continuous, then
∫𝑏
𝑎 𝑓 = 0 iff 𝑓(𝑥) = 0 for all 𝑥 ∈ [𝑎, 𝑏]

3

∫
𝑏

𝑎
𝑓 = − ∫

𝑎

𝑏
𝑓

4

∫
𝑎

𝑎
𝑓 = 0
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The Mean Value Theorem
Theorem
If 𝑓 is continuous on [𝑎, 𝑏] then there exists 𝑐 ∈ (𝑎, 𝑏) such that

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝑓(𝑐)(𝑏 − 𝑎)

.
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Properties of Integral

Theorem
1 If 𝑓 ∶ [𝑎, 𝑏] → [𝑐, 𝑑] is Riemann integrable, and 𝑔 ∶ [𝑐, 𝑑] → ℝ is

continuous then 𝑔 ∘ 𝑓 is Riemann integrable on [𝑎, 𝑏].
2 If 𝑓 ∈ ℛ(𝑎, 𝑏) then |𝑓| ∈ ℛ(𝑎, 𝑏) and

∣∫
𝑏

𝑎
𝑓∣ = ∫

𝑏

𝑎
|𝑓|

3 If 𝑓 ∈ ℛ(𝑎, 𝑏) then 𝑓𝑛 ∈ ℛ(𝑎, 𝑏) for all 𝑛 ∈ ℕ
4 If 𝑓, 𝑔 ∈ ℛ(𝑎, 𝑏) then 𝑓𝑔 ∈ ℛ(𝑎, 𝑏).
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The Fundamental Theorem of Calculus

Theorem
If 𝑓 ∈ ℛ(𝑎, 𝑏) and let 𝐹 ∶ [𝑎, 𝑏] → ℝ be defined by

𝐹(𝑥) = ∫
𝑥

𝑎
𝑓(𝑡)𝑑𝑡

then
1 𝐹 is continuous on [𝑎, 𝑏]
2 If 𝑓 is continuous, then 𝐹 is differentiable and

𝐹 ′ = 𝑓
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The Fundamental Theorem of Calculus

Theorem
If 𝐹 is differentiable on [𝑎, 𝑏] and 𝐹 ′ ∈ ℛ(𝑎, 𝑏) then

∫
𝑏

𝑎
𝐹 ′(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)

Ibraheem Alolyan Real Analysis



Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Substitution Rule

Theorem
Suppose 𝜑 is differentiable on [𝑎, 𝑏] and 𝜑′ is continuous.
If 𝑓 is continuous on the range of 𝜑, then

∫
𝑏

𝑎
𝑓(𝜑(𝑡))𝜑′(𝑡)𝑑𝑡 = ∫

𝜑(𝑏)

𝜑(𝑎)
𝑓(𝑥)𝑑𝑥
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Substitution Rule
Examples

∫
2

1
𝑡√𝑡2 + 1 𝑑𝑡

.
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Substitution Rule

Theorem
Suppose 𝜑 is differentiable on [𝑎, 𝑏] and 𝜑′ is continuous and
𝜑(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏).
If 𝑓 is continuous on the range of 𝜑, and 𝜓 is the inverse of 𝜑 then

∫
𝑏

𝑎
𝑓(𝜑(𝑡))𝑑𝑡 = ∫

𝜑(𝑏)

𝜑(𝑎)
𝑓(𝑥)𝜓′(𝑥)𝑑𝑥
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Substitution Rule
Examples

∫
4

1

1
(1 +

√
𝑡)2 𝑑𝑡

.

Ibraheem Alolyan Real Analysis



Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Integration by parts

Theorem
Let 𝑓, 𝑔; [𝑎, 𝑏] → ℝ be differentiable. If 𝑓 ′, 𝑔′ ∈ ℛ(𝑎, 𝑏) then

∫
𝑏

𝑎
𝑓(𝑥)𝑔′(𝑥)𝑑𝑥 = 𝑓(𝑏)𝑔(𝑏) − 𝑓(𝑎)𝑔(𝑎) − ∫

𝑏

𝑎
𝑓 ′(𝑥)𝑔(𝑥)𝑑𝑥
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Improper Integral
Definition
If 𝑓 is defined on [𝑎, 𝑏] and lim𝑥→𝑎+ 𝑓(𝑥) = ∞ or −∞ and
𝑓 ∈ ℛ(𝑐, 𝑏) for all 𝑐 ∈ (𝑎, 𝑏), then the improper integral

∫
𝑏

𝑎+
𝑓

is defined by

lim
𝑐→𝑎+

∫
𝑏

𝑐
𝑓

If the limit exists, then it represents the value of the proper
integral.

∫
𝑏

𝑎+
𝑓 = ∫

𝑏

𝑎
𝑓
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Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Improper Integral
Examples
𝑓 ∶ (0, 1] → ℝ, 𝑓(𝑥) = 1√𝑥

.
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Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Improper Integral
Examples
𝑓 ∶ (0, 1] → ℝ, 𝑓(𝑥) = 1

𝑥3

.
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Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Improper Integral

Definition
If lim𝑥→𝑏− 𝑓(𝑥) = ∞ or −∞ and 𝑓 ∈ ℛ(𝑎, 𝑐) for all 𝑐 ∈ (𝑎, 𝑏) then

∫
𝑏−

𝑎
𝑓 = lim

𝑐→𝑏−
∫

𝑐

𝑎
𝑓

If the limit exists
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Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Improper Integral

Definition
If 𝑐 ∈ (𝑎, 𝑏) and 𝑓 is unbounded in the neighborhood of 𝑐 then

∫
𝑏

𝑎
𝑓 = ∫

𝑐−

𝑎
𝑓 + ∫

𝑏

𝑐+
𝑓

If both integrals exist.
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Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Improper Integral

Definition
If 𝑓 ∶ [𝑎, ∞) → ℝ is Riemann integrable on [𝑎, 𝑐] for all 𝑐 > 𝑎 and

lim
𝑐→∞

∫
𝑐

𝑎
𝑓

exists then the improper integral

∫
∞

𝑎
𝑓 = lim

𝑐→∞
∫

𝑐

𝑎
𝑓
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Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Improper Integral

Definition
Similarly

∫
𝑎

−∞
𝑓 = lim

𝑐→−∞
∫

𝑎

𝑐
𝑓

if the limit exists

Definition

∫
∞

−∞
𝑓 = ∫

𝑎

−∞
𝑓 + ∫

∞

𝑎
𝑓

if both integrals exist if the limit exists
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Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Improper Integral
Examples

∫
∞

1

1
𝑥2 𝑑𝑥

.
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Riemann Integrability
Darboux’s Theorem and Riemann Sums

Properties of Integral
The Fundamental Theorem of Calculus

Improper Integral

Improper Integral
Examples

∫
∞

−∞
𝑥𝑑𝑥

.
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