
Functional Analysis Exercise Class

Week November 30 – Dec 4:

Deadline to hand in the homework: your exercise class on week December 7 – 11

Exercises with solutions

Recall that every normed space X can be isometrically embedded into its bidual by the map
(Jx)(ϕ) := ϕ(x), x ∈ X, ϕ ∈ X∗, and X is called reflexive if J is a bijection.

(1) Show that lp := lp(N,K) is reflexive for every p ∈ (1,+∞).

Solution: Note that J is injective, and hence we only have to show surjectivity.

Recall (from the previous classes) that for every ϕ ∈ l∗p, there exists a unique yϕ ∈ lq, where
1
p

+ 1
q

= 1, such that ‖yϕ‖q = ‖ϕ‖, and∑
n∈N

yϕ(n)x(n) = ϕ(x) = (Jx)(ϕ), x ∈ lp.

Now let f ∈ l∗∗p . Since l∗p ∼= lq, we have l∗∗p ∼= l∗q , and we can consider f to be a bounded
linear functional on lq. Hence, by the above, there exists a unique zf ∈ lp such that

f(yϕ) =
∑
n∈N

zf (n)yϕ(n) = ϕ(zf ) = (Jzf )(yϕ).

Since every y ∈ lq is equal to yϕ for some ϕ ∈ l∗p, this shows that Jzf = f . That is, every
f ∈ l∗∗p can be obtained in the form f = Jx for some x ∈ lp, and hence J is surjective.

(2) Let X be a normed space. Prove that

a) If X is finite-dimensional then it is reflexive.

b) If X is reflexive and separable then X∗ is separable.

c) If X is reflexive then X∗ is reflexive.

d) If X is a Banach space and X∗ is reflexive then X is reflexive.

Solution:

a) We know that the canonical embedding J : X → X∗∗ is injective. If X is finite-
dimensional then dimX = dimX∗ = dimX∗∗, and hence an injective map from X to
X∗∗ is also surjective. Therefore J is also surjective, proving that X is reflexive.

b) If X is reflexive then X∗∗ is isometrically isomorphic to X under the canonical embed-
ding J . Hence, if D is a countable dense set in X then J(D) is a countable dense set in
X∗∗, and therefore if X is separable then so is X∗∗. We have seen in the lecture that if
the dual space of a normed space is separable then so is the space itself. Since X∗∗ is
the dual of X∗, the assertion follows from the above observations.
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c) Let JX : X → X∗∗ and JX∗ : X∗ → (X∗)∗∗ = X∗∗∗ be the canoncial embeddings of X
and X∗ into their biduals, respectively. We have to show that if F ∈ X∗∗∗ then there
exists an fF ∈ X∗ such that JX∗fF = F .
SinceX is reflexive, for every ϕ ∈ X∗∗ there exists a unique xϕ ∈ X such that ϕ = JXxϕ.
For the above F and ϕ ∈ X∗∗, we have

F (ϕ) = F (JXxϕ) = (F ◦ JX)(xf ). (0.1)

Note that F ◦ JX ∈ X∗, and we have, for any ϕ ∈ X∗∗,

JX∗(F ◦ JX)ϕ = ϕ(F ◦ JX) = (JXxϕ)(F ◦ JX) = (F ◦ JX)(xϕ) = F (ϕ),

where in the last step we used (0.1). Hence, F = JX∗(F ◦ Jx), as required.
d) Assume, on the contrary, that X∗ is reflexive but X is not. That means that there exists

a ϕ ∈ X∗∗ \JX(X). Since X is a Banach space, and JX is an isometric isometry, JX(X)
is also a Banach space, and therefore it is closed. Hence, by the spanning criterion (see
the lecture), there exists an F ∈ X∗∗∗ such that F |JX(X) = 0 and F (ϕ) 6= 0. Since X∗ is
reflexive, there exists a (unique) f ∈ X∗ such that F = JX∗f . Hence, for every x ∈ X,

0 = F (JXx) = (JX∗f)(JXx) = (JXx)(f) = f(x),

and therefore f = 0. However, this implies F = 0, which contradicts F (ϕ) 6= o.

(3) Let X, Y be normed spaces and T : X → Y a linear operator. Show that the following are
equivalent.

(i) The graph Γ(T ) of T is closed.
(ii) If (xn)n∈N is a sequence inX such that xn → 0 and (Txn)n∈N converges, then limn→+∞ Txn =

0.

Solution: (i)⇒(ii): We have Γ(T ) 3 (xn, Txn) → (0, y). Since Γ(T ) is closed, we have
(0, y) ∈ Γ(T ), i.e., y = T (0). Since T is linear, we have y = T (0) = 0.
(ii)⇒(i): Γ(T ) is closed if and only if every convergent sequence in Γ(T ) has its limit in
Γ(T ). Let Γ(T ) 3 (xn, Txn)→ (x, y) as n→ +∞. We have to show that (x, y) ∈ Γ(T ).
We have Γ(T ) 3 (xn− x, T (xn− x))→ (0, y− T (x)). By assumption (ii), y− T (x) = 0, and
hence (x, y) ∈ Γ(T ), as required.

(4) Let X, Y be Banach spaces, and Tn ∈ B(X, Y ), n ∈ N, be a sequence of bounded operators
that is pointwise convergent, i.e., for every x ∈ X, (Tn(x))n∈N is convergent. Show that
Tx := limn→+∞ Tnx, x ∈ X, defines a bounded linear operator.
(Hint: Use the uniform boundedness theorem.)
Solution: It is clear from the definition that T is linear. By assumption, for every x ∈
X, limn→+∞ ‖Tnx‖ = ‖Tx‖; in particular, supn∈N ‖Tnx‖ < +∞. Hence, by the uniform
boundedness theorem, M := supn∈N ‖Tn‖ < +∞. Thus,

‖Tx‖ = lim
n→+∞

‖Tnx‖ ≤ ‖x‖ sup
n∈N
‖Tn‖ = M ‖x‖ , x ∈ X,

and therefore T is bounded with ‖T‖ ≤ supn∈N ‖Tn‖.
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(5) By definition, the weak topology σ(X,X∗) on a normed space X is the weakest topology
on X such that all elements of X∗ are continuous w.r.t it. Show that the weak topology is
generated by the sets

Uf,c,ε := f−1 (Dε(c)) = {x ∈ X : |f(x)− c| < ε}, c ∈ K, ε > 0, f ∈ X∗,

where Dε(c) := {d ∈ K : |d− c| < ε} is the open ball of radius ε > 0 around c in K.

Solution: Since Dε(c) is open and f is continuous w.r.t. the weak topology, Uf,c,ε ∈ σ(X,X∗)
for every c ∈ K, ε > 0, f ∈ X∗. Hence, the topology τ generated by these sets satisfies
τ ⊆ σ(X,X∗). On the other hand, every open set U ⊆ K can be written as U = ∪c∈UDεc(c)
with some εc > 0, c ∈ U , and hence

f−1(U) =
⋃
c∈U

f−1(Dεc(c)) =
⋃
c∈U

Uf,c,ε.

Thus f−1(U) ∈ τ for any open set U ⊆ K and thus f is continuous w.r.t. τ . Hence τ ⊇
σ(X,X∗).

(6) Let X be a normed space, and let Pf (X∗) denote the finite subsets of X∗. For every
F ∈ Pf (X∗), let

|x|F := sup
f∈F
|f(x)|.

a) Show that for every F ∈ Pf (X∗), | |F is a seminorm, i.e., for every x, y ∈ X, λ ∈ C, (i)
|x|F ≥ 0; (ii) |λx|F = |λ||x|F ; (iii) |x+ y|F ≤ |x|F + |y|F .

b) Show that U ⊂ X is open in the weak topology σ(X,X∗) if and only if
(P) for every x ∈ U there exists an F ∈ Pf (X∗) and ε > 0 such that

BF(x, ε) := {y ∈ X : |y − x|F < ε} ⊆ U.

c) Show that the weak topology makes X a topological vector space, i.e., the addition
+ : X ×X → X and the scalar multiplication · : K ×X → X are continuous, where
on product spaces we use the product topology.

Solution:

a) Properties (i) and (ii) are trivial from the definition. For x, y ∈ X, we have

|x+ y|F = sup
f∈F
|f(x+ y)| ≤ sup

f∈F
{|f(x)|+ |f(y)|} ≤ sup

f,g∈F
{|f(x)|+ |g(y)|}

= sup
f∈F
|f(x)|+ sup

g∈F
|g(y)| = |x|F + |y|F .

b) We have

BF(x, ε) :=
⋂
f∈F

f−1 ({c ∈ K : |f(x)− c| < ε}) =
⋂
f∈F

f−1 (Dε(f(x))) .
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Since every f ∈ F is continuous w.r.t. weak topology, BF(x, ε) is the finite intersection
of w-open sets, and therefore is itself w-open. Thus, if U is a set with property (P)
then every point of U is a w-interior point, and hence U is w-open.
Let τ be the collection of all sets with the (P) property. It is easy to see that τ
is a topology, and by the above, τ ⊆ σ(X,X∗). On the other hand, τ contains
f−1 ({d : |d− c| < ε}) for every c ∈ K and ε > 0. Since σ(X,X∗) is a topology gen-
erated by these sets, according to Exercise (5), we get τ ⊇ σ(X,X∗). Therefore, U is
w-open if and only if U has property (P).

c) Let x, y ∈ X. By the previous point, continuity of the addition at (x, y) is equivalent to
the following: For every F ∈ Pf (X∗) and every ε > 0 there exist F1,F2 ∈ Pf (X∗) and
δ1, δ2 > 0 such that for all x′ ∈ BF1(x, δ1), y

′ ∈ BF2(y, δ2), we have x′+y′ ∈ BF(x+y, ε).
Choosing F1 := F2 := F and δ1 := δ2 := ε/2, we get

|(x′ + y′)− (x+ y)|F ≤ |x′ − x|F + |y′ − y|F < ε/2 + ε/2 = ε.

Continuity of the scalar multiplication follows by a similar argument.

(7) Show that on any finite-dimensional normed space the weak topology coincides with the
topology generated by any norm.

Solution: Let X be a finite-dimensional vector space, let e1, . . . , ed be a basis in X, and let
f1, . . . , fd be its dual basis, defined by fi(ej) := δi,j. Then ‖x‖∞ := max1≤i≤d |fi(x)| is a norm
on X, and, since X is finite-dimensional, all linear functionals on X are also continuous.

We know that on a finite-dimensional vector space any two norms are equivalent, so it is
enough to compare the weak topology to the topology τ induced by ‖ ‖∞. It is clear that
τ ⊇ σ(X,X∗). On the other hand,

|x|{f1,...,fd} = sup
1≤i≤d

|fi(x)| = ‖x‖∞ , x ∈ X,

and hence the open ‖ ‖∞-balls around any point and with any radius are open in the weak
topology, according to Exercise (6). Hence, τ ⊆ σ(X,X∗).

(8) Let X be an inifinite-dimensional normed space and SX := {x ∈ X : ‖x‖ = 1} be the unit
sphere of X. Show the following (maybe) surprising fact: The closure of the unit sphere in
the weak topology is the whole closed unit ball, i.e.,

{x ∈ X : ‖x‖ = 1}
σ(X,X∗)

= {x ∈ X : ‖x‖ ≤ 1}.

Conclude that the weak topology and the norm topology are different on any inifinite-
dimensional normed space.

(Hint: Use the following fact, proved in the lecture: if x is in the weak interior of a set U
then there is a non-zero vector z ∈ X such that x+ cz ∈ U for every c ∈ K.)

Solution: Let ‖x‖ > 1. By the Hahn-Banach theorem, there exists an f ∈ X∗ such that
‖f‖ = 1 and f(x) = ‖x‖. Hence, {y ∈ X : |f(y)| > (1 + ‖x‖)/2} is a w-open set that
contains x but is disjoint from the unit sphere (since |f(z)| ≤ ‖z‖ ≤ 1, z ∈ SX), and hence
x is not in the weak closure of SX .
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On the other hand, let ‖x‖ < 1, and let U ∈ σ(X,X∗) be a w-open set that contains x. By
the statement in the Hint, there exists a non-zero vector z ∈ X such that x+cz ∈ U for every
c ∈ K. Let g(t) := ‖x+ tz‖ , t ∈ R. Then g is continuous, g(0) < 1, and by the triangle
inequality, g(t) ≥ |t| ‖z‖−‖x‖, thus limt→+∞ g(t) = +∞. Hence, by the Bolzano-Weierstrass
theorem, there exists a t ∈ R such that x+ tz ∈ U and ‖x+ tz‖ = 1, i.e., x+ tz ∈ U ∩ SX .
This shows that every open neighbourhood of x intersects SX , and thus x is in the closure
of SX .

Since SX is closed in the norm topology, but not in the weak topology, as we have seen
above, the two topologies have to be different.

(9) a) Show that every weakly convergent sequence in l1 := l1(N,K) is norm convergent.

b) Decide whether the following statement is true or false: A set M is closed in the weak
topology of l1 if and only if every convergent sequence in M has its limit point in M .

Solution:

a) Suppose for contradiction that (xn)n∈N ∈ (l1)N is weakly convergent but not norm con-
vergent. We can assume without loss of generality that (w) limn→+∞ x

n = 0 (otherwise
consider the sequence (xn − x) instead). The fact that the sequence is not conver-
gence is equivalent to a positive δ > 0 and the existence of a subsequence xk(n) such
that

∥∥xk(n)∥∥
1
≥ δ, n ∈ N. By restricting to this subsequence, we can assume that∥∥xk(n)∥∥

1
≥ δ holds for every n ∈ N.

By the definition of the weak convergence, we have f(xn) → 0 for any f ∈ (l1)
∗.

Thus, also for each coordinate function fk : l1 → C defined as fk(x) = xk (which is
clearly bounded) we have fk(xn) → 0 as n → ∞, i.e. xnk → 0 for every k ∈ N. As
x1 ∈ l1 we can choose K1 ∈ N with

∑∞
k=K1+1 |x1k| <

δ
5
. As

∑K1

k=1 x
n
k → 0 for n → ∞

there exists an n2 ∈ N with
∑K1

k=1 |x
n2
k | < δ

5
. Now we may again choose K2 ∈ N such

that
∑∞

k=K2+1 |x
n2
k | < δ

5
and continue the construction from above. Repeating this

argument leads to a subsequence (xnj)j∈N and a sequence (Kj)j∈N of integers such that∑Kj−1

k=1 |x
nj

k | < δ
5
and

∑∞
k=Kj+1 |x

nj

k | < δ
5
.

Now define

yk =

1 if xnj

k = 0
|x

nj
k |
x
nj
k

if xnj

k 6= 0
.

for Kj−1 < k ≤ Kj.
We have y ∈ l∞ as |yk| = 1 for all k ∈ N and therefore we can define an f ∈ X∗ via
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f(x) =
∑∞

k=1 ykxk. For this functional we have:

|f(xnj)| =

∣∣∣∣∣
∞∑
k=1

ykx
nj

k

∣∣∣∣∣ ≥
∣∣∣∣∣∣

Kj∑
k=Kj−1+1

ykx
nj

k

∣∣∣∣∣∣−
∣∣∣∣∣∣
Kj−1∑
k=1

ykx
nj

k

∣∣∣∣∣∣−
∣∣∣∣∣∣
∞∑

k=Kj+1

ykx
nj

k

∣∣∣∣∣∣
≥

Kj∑
k=Kj−1+1

|xnj

k | −
Kj−1∑
k=1

|xnj

k | −
∞∑

k=Kj+1

|xnj

k |

=
∞∑
k=1

|xnj

k | − 2

Kj−1∑
k=1

|xnj

k | − 2
∞∑

k=Kj+1

|xnj

k |

> ‖xnj‖1 −
4δ

5
≥ δ

5
.

Thus, we have f(xnj) 9 0 as j → ∞, contradicting the weak convergence of (xn)n∈N
to 0.

b) By the previous point, every weakly convergent sequence in l1 is norm convergent, and
the converse is true in any normed space. Hence, if the statement was true that would
mean that a set is weakly closed if and only if it is normed closed, i.e., the weak topology
and the norm topology coincide on l1. However, this is not true, as we have seen in
Exercise (8).
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Homework with solutions

(1) Let (xn)n∈N be a sequence in the normed vector space (X, ‖ · ‖) and let x ∈ X. Show that
the following are equivalent.

(i) xn weakly converges to x.

(ii) The sequence (‖xn‖)n∈N is bounded and there exists a dense subset D ⊂ X∗ such that
limn→∞ f(xn) = f(x) for all f ∈ D.

Solution: (i)=⇒(ii): We have seen in the lecture that xn → x weakly implies that (‖xn‖)n∈N
is bounded. Moreover, xn → x weakly is equivalent to f(xn) → f(x) for all f ∈ X∗; in
particular it holds also for all f ∈ D for any dense set D ⊆ X∗.

(ii)=⇒(i): We have to show that f(xn)→ f(x) for every f ∈ X∗. Let f ∈ X∗, and for every
ε > 0, let fε ∈ D be such that ‖f − fε‖ < ε. Then

|f(xn)− f(x)| = |f(xn)− fε(xn) + fε(xn)− fε(x) + fε(x)− f(x)|
≤ |f(xn)− fε(xn)|+ |fε(xn)− fε(x)|+ |fε(x)− f(x)|
≤ ‖f − fε‖ (M + ‖x‖) + |fε(xn)− fε(x)|,

where M := supn∈N ‖xn‖, and hence

lim sup
n→+∞

|f(xn)− f(x)| ≤ ε(M + ‖x‖) + lim sup
n→+∞

|fε(xn)− fε(x)| = ε(M + ‖x‖).

Since this holds for every ε > 0, we get f(xn)→ f(x) as n→ +∞.

(2) Let X1 and X2 be Banach spaces, and let T : X1 → X2 be a linear transformation. Prove
that if T is continuous relative to the weak topologies of X1 and X2, then T is bounded.

(Hint: Use the closed graph theorem.)

Solution: By the closed graph theorem, boundedness of T is equivalent to its graph Γ(T )
being closed. Thus, let (xn, Txn) ∈ Γ(T ), n ∈ N, be a sequence converging to some (x, y) ∈
X1 × X2; we have to show that (x, y) ∈ Γ(T ), i.e., y = Tx. Since the weak topologies are
at most as strong as the norm topologies, we see that xn tends to x weakly, and Txn tends
to y weakly. However, by assumption, T is continuous relative to the weak topologies, and
thus xn → x weakly implies Txn → Tx weakly. Since the weak topology is Hausdorff, this
implies that Tx = y.

(3) Consider the differentiation operator D : C1([0, 1])→ C([0, 1]), Df = f ′.

a) Prove that D has a closed graph if we equip both C1([0, 1]) and C([0, 1]) with the ‖ ·‖∞
norm.

b) Conclude that (C1([0, 1]), ‖ · ‖∞) is not a Banach space using the closed graph theorem.

Solution:
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a) Let (fn)n∈N be a sequence in C1([0, 1]) that converges to f ∈ C1([0, 1]) such that Dfn
converges to some g ∈ C([0, 1]). We have to prove that Df = g. To this end, note that

fn(x) = fn(0) +

∫ x

0

fn(t) dt, and let f̃(x) = f(0) +

∫ x

0

g(t) dt,

for every x ∈ [0, 1] and n ∈ N. Then∥∥∥fn − f̃∥∥∥
∞

= sup
x∈[0,1]

∣∣∣∣fn(0)− f(0) +

∫ x

0

(f ′n(t)− g(t)) dt

∣∣∣∣
≤ |fn(0)− f(0)|+ sup

x∈[0,1]

∫ x

0

|f ′n(t)− g(t)| dt

≤ ‖fn − f‖∞ + ‖f ′n − g‖∞ −−−−→n→+∞
0.

By the uniqueness of the limit, f = f̃ , and, since g is continuous, f̃ is continuously
differentiable with Df̃ = f̃ ′ = g. Hence, g ∈ C1([0, 1]), and Df = g.

b) We know (C([0, 1]), ‖ · ‖∞) is a Banach space. Assuming (C1([0, 1]), ‖ · ‖∞) is a Banach
space, the closed graph theorem would imply that D is continuous, a contradiction. In-
deed, let fn(x) := sinnx so that ‖fn‖∞ = 1, n ∈ N, but ‖Dfn‖ = supx∈[0,1] |n cosnx| =
n, hence D is not bounded when both C1([0, 1]) and C([0, 1]) are equipped with the
maximum norm.
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