Field Axioms Completeness Axiom

Introduction to Real Analysis Real Numbers

Ibraheem Alolyan

King Saud University

Ibraheem Alolyan Real Analysis

Field Axioms Completeness Axiom

Table of Contents

æ

Field Axioms

 \mathbb{R} with two binary operations on \mathbb{R} addition "+ "and multiplication "." from $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ with the following properties

•
$$a + b = b + a$$
 $\forall a, b \in \mathbb{R}$
(commutative property of addition)

②
$$(a+b)+c = a + (b+c)$$
 ∀ $a, b, c \in \mathbb{R}$
(associative property for addition)

③
$$\exists 0 \in \mathbb{R}$$
: $a + 0 = 0 + a$ $\forall a \in \mathbb{R}$ (zero element)

●
$$\forall a \in \mathbb{R} \quad \exists -a \in \mathbb{R} : a + (-a) = (-a) + a = 0$$

(additive inverse)

< (17) > <

Field Axioms

$$a.b = b.a \quad \forall a, b \in \mathbb{R}$$

(commutative property of multiplication)

●
$$\exists 1 \neq 0 \in \mathbb{R} : a.1 = 1.a \quad \forall a \in \mathbb{R}$$

(unit element)

●
$$\forall a \neq 0 \in \mathbb{R}$$
 $\exists a^{-1} \in \mathbb{R} : a.a^{-1} = a^{-1}.a = 1$
(multipicative inverse)

≣ । ह

Order Axioms

Assume there is a subset $P \subset \mathbb{R}$ with the following properties

•
$$\forall a \in \mathbb{R}$$
 either $a \in P$ or $a = 0$ or $-a \in P$

2 If $a, b \in P$ then $a + b \in P$ and $a.b \in P$

Triangle Inequality

Theorem

.

æ

イロト イヨト イヨト イヨト

Bounded Sets

Definition

- ${\rm If}\ A\subset \mathbb{R}$
 - **1** If there is $u \in \mathbb{R}$ such that

$$a \le u \qquad \forall a \in A$$

the \boldsymbol{u} is an upper bound of $\boldsymbol{A},$ and \boldsymbol{A} is bounded Above.

2 If there is $l \in \mathbb{R}$ such that

$$l \le a \qquad \forall a \in A$$

the l is a lower bound of A, and A is bounded below.

 \bigcirc A is bounded if it is bounded above and below.

Examples

Find an upper bound and a lower bound for the sets

1
$$\{1, 2, 5\}$$

2 $[2, 5)$
3 \mathbb{Q}
4 $\{\frac{1}{n} : n \in \mathbb{N}\}$

}

æ

≣⇒

< <p>Image: Image: Imag

Supremum and Infimum

Definition

If $A \subset \mathbb{R}$, then an element $\beta \in \mathbb{R}$ is a least upper bound (supremum) if

$$\bullet \ \beta \text{ is an upper bound of } A$$

$$a \leq \beta \qquad \forall a \in A$$

 $\ensuremath{ @ 0.5ex} \ensuremath{ @ 0.5ex} \ensuremath{ = 0 \ensuremath{ @ 0.5ex} \ensuremath{ = 0 \ensuremath{ & 0 \ensur$

$$\beta \leq u$$

We use the notation

$$\beta = \sup A$$

Supremum and Infimum

Definition

If $A \subset \mathbb{R}$, then an element $\alpha \in \mathbb{R}$ is a greatest lower bound (infimum) if

- $\textcircled{0} \alpha \text{ is a lower bound of } A$
- **2** If there is a lower bound $l \in \mathbb{R}$ of A then

$$\alpha \ge l$$

We use the notation

$$\alpha = \inf A$$

Examples

Find $\sup A$, $\inf A$ **1** $A = \{-1, -2, 5, 9\}$ **2** A = [-1, 3)

æ

イロト イヨト イヨト イヨト

Maximum and Minimum

- If $\sup A \in A$ then $\sup A = \max A$
- If $\inf A \in A$ then $\inf A = \min A$

Examples

Find $\sup A$, $\inf A$, $\max A$, $\min A$

$$\begin{array}{l} \bullet \quad A = \{1,2,5\} \\ \bullet \quad A = [2,5) \\ \bullet \quad A = \mathbb{Q} \\ \bullet \quad A = \{\frac{1}{n} : n \in \mathbb{N}\} \\ \bullet \quad A = \{1 - \frac{1}{n}, n \in \mathbb{N}\} \end{array}$$

æ

Examples

If A is any of the intervals (a,b),(a,b],[a,b),[a,b] then

 $\sup A = b$ $\inf A = a$

▲ (日) ▶ ▲

문 문 문

Completeness Axiom

Completeness Axiom

- $\begin{tabular}{ll} \bullet & f \end{tabular} \phi \neq A \subset \mathbb{R} \end{tabular} \e$
- ② If $\phi \neq A \subset \mathbb{R}$ is bounded below then it has a greatest lower bound in \mathbb{R}

▲ (日) ▶ ▲

Completeness Axiom

Completeness Axiom

If we define $-A=\{-a:a\in A\}$ then A is bounded below iff -A is bounded above and we have

$$\inf A = -\sup(-A)$$

Theorem

There is no rational number x such that $x^2 = 2$

æ

《口》《聞》《臣》《臣》

Theorem

.

The set \mathbb{N} is not bounded above.

イロン イヨン イヨン ・

æ

Archimedean Property

Archimedean Property

.

For every x > 0 there is $n \in \mathbb{N}$ such that $x > \frac{1}{n}$

≣ । ह

Corollary

٠

for every $x \geq 0$ there is an $n \in \mathbb{N}$ such that $n-1 \leq x < n$

・ロト ・回 ト ・ ヨト ・ ヨト …

æ

Field Axioms Completeness Axiom

Example

1 lt	$x \in \mathbb{R}, x \leq \frac{1}{n} \forall n \in \mathbb{N}$
then	10
if	$x\in [0,\infty), x\leq rac{1}{n} \forall n\in \mathbb{N}$
then	
₃ if	$x\in \mathbb{R}^+, x\leq \frac{1}{n} \forall n\in \mathbb{N}$
then	

・ロト ・四ト ・ヨト ・ヨト

æ

Density of $\ensuremath{\mathbb{Q}}$

Theorem

Each open interval in \mathbb{R} has a rational number. If $x, y \in \mathbb{R}, \ x < y$ there exist $r \in \mathbb{Q}$ such that x < r < y

< (17) > <

Density of \mathbb{Q}^c

Theorem

Each open interval in \mathbb{R} has an irrational number. If $x, y \in \mathbb{R}, \ x < y$ there exist $t \in \mathbb{Q}^c$ such taht x < t < y

▲ (日) ▶ ▲

Exercises

1 Determine $\sup A$, $\inf A$, $\max A$, $\min A$ where they exist;

•
$$A = \left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$$

• $A = \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N} \right\}$
• $A = \left\{ x \in \mathbb{R} : x^2 - 4 < 0 \right\}$

- If the sets A and B are bounded above and A ⊆ B, prove that sup A ≤ sup B
- $\textcircled{9} Let A and B be bounded subsets of <math>\mathbb{R}$, and define

$$A + B = \{a + b : a \in A, b \in B\}$$

Prove that $\sup(A+B) = \sup A + \sup B$