Introduction to Real Analysis Real Numbers

Ibraheem Alolyan

King Saud University

Ibraheem Alolyan Real Analysis

Table of Contents

æ

Field Axioms

 \mathbb{R} with two binary operations on \mathbb{R} addition "+" and multiplication "." from $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ with the following properties

•
$$a + b = b + a \quad \forall a, b \in \mathbb{R}$$

(commutative property of addition)

②
$$(a+b) + c = a + (b+c)$$
 ∀a, b, c ∈ ℝ
(associative property for addition)

3
$$\exists 0 \in \mathbb{R}$$
: $a + 0 = 0 + a \quad \forall a \in \mathbb{R}$
(zero element)

●
$$\forall a \in \mathbb{R}$$
 $\exists -a \in \mathbb{R} : a + (-a) = (-a) + a = 0$
(additive inverse)

< A >

Field Axioms

$$a.b = b.a \quad \forall a, b \in \mathbb{R}$$

(commutative property of multiplication)

②
$$(a.b).c = a.(b.c)$$
 ∀ $a, b, c \in \mathbb{R}$
(associative property for multiplication)

●
$$\exists 1 \neq 0 \in \mathbb{R} : a.1 = 1.a \quad \forall a \in \mathbb{R}$$

(unit element)

●
$$\forall a \neq 0 \in \mathbb{R}$$
 $\exists a^{-1} \in \mathbb{R} : a.a^{-1} = a^{-1}.a = 1$
(multipicative inverse)

Image: A mathematical states and a mathem

≣ । ह

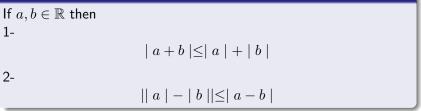
Order Axioms

Assume there is a subset $P \subset \mathbb{R}$ with the following properties

- $\forall a \in \mathbb{R}$ either $a \in P$ or a = 0 or $-a \in P$
- 2 If $a, b \in P$ then $a + b \in P$ and $a.b \in P$

Triangle Inequality

Theorem



æ

イロト イヨト イヨト イヨト

Completeness Axiom

Definition

- $\mathsf{If}\ A \subset \mathbb{R}$
 - **1** If there is $u \in \mathbb{R}$ such that

$$a \le u \qquad \forall a \in A$$

the \boldsymbol{u} is an upper bound of $\boldsymbol{A}\text{,}$ and \boldsymbol{A} is bounded Above.

2 If there is $l \in \mathbb{R}$ such that

$$l \le a \qquad \forall a \in A$$

the l is a lower bound of $A, \, {\rm and} \, {\rm A}$ is bounded below.

 \bigcirc A is bounded if it is bounded above and below.

Supremum and Infimum

Definition

If $A \subset \mathbb{R},$ then an element $\beta \in \mathbb{R}$ is a least upper bound (supremum) if

•
$$\beta$$
 is an upper bound of A

$$a \leq \beta \qquad \forall a \in A$$

2 If there is an upper bound $u \in \mathbb{R}$ of A then

$$\beta \leq u$$

We use the notation

$$\beta = \sup A$$

Supremum and Infimum

Definition

If $A \subset \mathbb{R}$, then an element $\alpha \in \mathbb{R}$ is a greatest lower bound (infimum) if

- $\textbf{0} \ \alpha \text{ is a lower bound of } A$
- **2** If there is a lower bound $l \in \mathbb{R}$ of A then

$$\alpha \ge l$$

We use the notation

$$\alpha = \inf A$$

Maximum and Minimum

- If $\sup A \in A$ then $\sup A = \max A$
- If $\inf A \in A$ then $\inf A = \min A$

Examples

\$\{1,2,5\}\$
\$\[[2,5)\$]
\$\[Q\$\$
\$\{\frac{1}{n}:n\in\mathbb{N}\$}\$
\$\{1-\frac{1}{n},n\in\mathbb{N}\$}\$

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Examples

If A is any of the intervals (a, b), (a, b], [a, b), [a, b] then

 $\sup A = b$

 $\inf A = a$

æ

Image: A matrix and a matrix

Completeness Axiom

Completeness Axiom

- If $\phi \neq A \subset \mathbb{R}$ is bounded above then it has a least upper bound in \mathbb{R}
- ② If $\phi \neq A \subset \mathbb{R}$ is bounded below then it has a greatest lower bound in \mathbb{R}

Completeness Axiom

Completeness Axiom

If we define $-A = \{-a : a \in A\}$ then A is bounded below iff -A is bounded above and we have

$$\inf A = -\sup(-A)$$

There is no rational number x such that $x^2 = 2$

Ibraheem Alolyan Real Analysis

æ

《曰》《聞》《臣》《臣》。

The set \mathbb{N} is not bounded above.

Archimedean Property

For every x > 0 there is $n \in \mathbb{N}$ such that $x > \frac{1}{n}$

Corollary

for every $x \geq 0$ there is an $n \in \mathbb{N}$ such that $n-1 \leq x < n$

▲ (司) ▶ ▲

Exercise

1 lt	$x \in \mathbb{R}, x \leq \frac{1}{n} \forall n \in \mathbb{N}$
then	
if	$x \in [0,\infty), x \leq \frac{1}{n} \forall n \in \mathbb{N}$
then	
3 if	$x \in \mathbb{R}^+, x \leq \frac{1}{n} \forall n \in \mathbb{N}$
then	

æ

Each open interval in \mathbb{R} has a rational number. If $x, y \in \mathbb{R}$, x < y there exist $r \in \mathbb{Q}$ such that x < r < y

Each open interval in \mathbb{R} has an irrational number. If $x, y \in \mathbb{R}$, x < y there exist $t \in \mathbb{Q}^c$ such that x < t < y

< 4 → <