Quiz 1 for stoichiometry (Chapter 1 and 2)

Answer the following questions 1) When the following equation is balanced, the coefficient of nitric acid is ______. $N_2O_5(g) + H_2O(l) \to HNO_3(aq)$ A) 5 B) 2 C) 3 D) 4 E) 1 2) There are _____ mol of carbon atoms in 4 mol of dimethylsulfoxide (C₂H₆SO). A) 2 B) 6 C) 8 D) 4 E) 3 3) There are _____ sulfur atoms in 25 molecules of $C_4H_4S_2$. A) 1.5×10^{25} B) 4.8×10^{25} C) 3.0×10^{25} D) 50 E) 6.02×10^{23} 4) How many moles of carbon dioxide are there in 52.06 g of carbon dioxide? A) 0.8452 B) 1.183 C) 6.022×10^{23} D) 8.648×10^{23} E) 3.134×10^{25} 5) A 2.25-g sample of magnesium nitrate, Mg(NO₃)₂, contains _____ mol of this compound. A) 38.4 B) 65.8 C) 148.3 D) 0.0261 E) 0.0152

6) What is the maximum mass in grams of NH_3 that can be produced by the reaction of 1.0 g of N_2 with 3.0 g of H_2 via the equation below?

$N_2(g) + H_2(g) \rightarrow NH_3(g)$ (not balanced)
A) 2.0 B) 1.2 C) 0.61 D) 17 E) 4.0
7) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:
$S(s) + 3F_2(g) \rightarrow SF_6(g)$
In a particular experiment, the percent yield is 79.0%. This means that in this experiment, a 7.90-g sample of fluorine yields $\underline{}$ g of SF ₆ .
A) 30.3 B) 10.1 C) 7.99 D) 24.0 E) 0.110
8) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide:

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

How many moles of O_2 are consumed when 0.770 mol of magnesium burns?

- A) 0.0317
- B) 2.60
- C) 0.770
- D) 1.54
- E) 0.385
- 9) The total concentration of ions in a 0.250 M solution of HCl is ______.
- A) essentially zero.
- B) 0.125 M
- C) 0.250 M
- D) 0.500 M
- E) 0.750 M
- 10) What is the concentration (M) of KCl in a solution made by mixing 25.0 mL of 0.100 M KCl with 50.0 mL of 0.100 M KCl?
- A) 0.100
- B) 0.0500
- C) 0.0333

D) 0.0250 E) 125
11) How many grams of H_3PO_4 are in 175 mL of a 3.5 M solution of H_3PO_4 ?
A) 0.61 B) 60 C) 20 D) 4.9 E) 612
12) How many grams of CH_3OH must be added to water to prepare 150 mL of a solution that is 2.0 M CH_3OH ?
A) 9.6×10 ³ B) 4.3×10 ² C) 2.4 D) 9.6 E) 4.3
13) A 0.100 M solution of will contain the highest concentration of potassium ions.
A) potassium phosphate B) potassium hydrogen carbonate C) potassium hypochlorite D) potassium iodide E) potassium oxide
14) What volume (mL) of a concentrated solution of sodium hydroxide (6.00 M) must be diluted to 200. mL to make a 1.50 M solution of sodium hydroxide?
A) 0.0500 B) 50.0 C) 45.0 D) 800. E) 0.800