| King Saud University
Section | College of Sciences
Quiz 2 Math 151 | Department of Mathematics
Semester I (1444) | |---------------------------------------|--|--| | Name: | Stu | dent Number: | | Q1: Let P be the relation of | n $A = \{1, 2, 3, 4, 5\}$ represent | ted by the following matrix | | | $M_P = \left(egin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{array} ight)$ | 1
)
)
)
1 | | 1. List all ordered pa | airs of P . (1 marks) | | | | | | | | | | | 2. Show that P is a | partial ordering relation. (3 | marks) | 3. Represent P by a | hasse diagram. (2 marks) | | | Q2: | Let E be the equivalence relation defined on $B = \{a, b, c, d, e, f\}$ by $E = \{(a, a), (a, c), (a, f), (b, b), (c, a), (c, c), (c, f), (d, d), (d, e), (e, d), (e, e), (f, a), (f, c), (f, f)\}$. Find all distinct equivalence classes of E . (2 marks) | |-----|--| Q3: | Let G be a graph with degree-sequence: $x, x, x+1, x-1, x-2, x+2$. Find the value of x if G has 9 edges. (2 marks) |