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Ph.D Qualifying Examination1

Analysis (General Paper)

2003

1. The first question.

(a) Does there exist a Lebesgue measurable set on (0, 1) which is not
Borel?

(b) Let (fn)n be a sequence of measurable functions on (0, 1) such that

|fn(x)| ≤
1√
x

and lim
n→+∞

fn(x) = f(x) a.e.

Show that

lim
n→+∞

∫ 1

0

e−xfn(x)dx =

∫ 1

0

e−xf(x)dx.

(c) If f is integrable on [a, b], show that the function F (x) =

∫ x

a

f(t)dt

is absolutely continuous on [a, b].

2. The second question.

(a) On a measure space (X,S , µ), consider a sequence (En)n of mea-
surable sets. Show that

µ(lim inf
n→+∞

En) ≤ lim inf
n→+∞

µ(En).

(b) On a measurable space (X,S ), let µ and ν be two signed measures
such that for every E ∈ S

ν(E) =

∫
E

f(x)dµ(x)

and

|ν|(E) =

∫
E

g(x)d|µ(x)|.

Show that g = |f | (µ a.e.).
1This document is free. It is prepared by:

Professor Mongi BLEL, King Saud University, Department of Mathematics .
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(c) Let f : [0, 1]× [0, 1] −→ R be the function defined by:

f(x, y) =

 y−2 if 0 < x < y < 1
−x−2 if 0 < y < x < 1
0 otherwise

Compute the iterated and the double integrals. Explain why the
Fubini’s theorem is not applicable in this example.
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Ph.D Qualifying Examination
Answer Analysis (General Paper)

March 2003

1. The first question.

(a) The Borel σ−algebra is not complete, then there is nulls subsets
which are not Borel subsets.

(b) For all x ∈ (0, 1), |e−xfn(x)| ≤
1√
x

and the function g(x) =
1√
x

is

integrable on (0, 1). Then by Dominate Convergence Theorem

lim
n→+∞

∫ 1

0

e−xfn(x)dx =

∫ 1

0

e−xf(x)dx.

(c) Let (ak, bk), k = 1, . . . ,m be a finite number of non overlapping
intervals with [ak, bk] ⊂ [a, b]

For n ∈ N, define fn = inf(|f |, n) and An = {x ∈ [a, b]; |f(x)| ≥ n}.
The sequence (fn)n increases to |f |, then by Monotone Convergence
Theorem, for all ε > 0 there exists N ∈ N such that ∀n ≥ N,∫

[a,b]

|f(x)| − fn(x)dx ≤ ε

2
.

Let δ = ε
2N and A = ∪m

k=1(ak, bk) a measurable subset such that
m∑

k=1

bk − ak ≤ ε

2N
.

∫
A

|f(x)|dx =

∫
A

|f(x)| − fN (x)dx+

∫
A

fN (x)dx

≤ ε

2
+N

m∑
k=1

bk − ak ≤ ε.

Then F is absolutely continuous on [a, b].

2. The second question.

(a) The sequence
(+∞⋂
k=n

Ek

)
n

is increasing then from the Monotone Con-

vergence Theorem: µ
(+∞⋃
n=1

+∞⋂
k=n

Ek

)
= lim

n→+∞
µ
(+∞⋂
k=n

Ek

)
. But µ

(+∞⋂
k=n

Ek

)
≤

inf
k≥n

µ(Ek), then µ(lim infn→+∞En) ≤ lim infn→+∞µ(En).



4

(b) We recall the total variation |µ| of µ is defined by:

|µ|(A) = sup

+∞∑
n=1

|µ(An)|,

where the supremum is taken over all measurable partitions (An)n
of A.
The total variation |µ| is a finite measure.
We denote E+ = {x ∈ X; f(x) > 0} and E− = {x ∈ X; f(x) < 0}.
For any subsets F ⊂ E+ and G ⊂ E−, |ν|(F ) = ν(F ) and |ν|(G) =
−ν(G), indeed:

For any measurable partition (Fn)n of F ,
+∞∑
n=1

|ν(Fn)| =
+∞∑
n=1

ν(Fn) ≤

ν(F ). Then |ν|(F ) ≤ ν(F ). The converse is trivial. The other
inequality is obtained by the same reasons.
For any A ∈ S , A = (A ∩ E+) ∪ (A ∩ E−),

|ν|(A) = ν(A ∩ E+)− ν(A ∩ E−) =

∫
X

|f(x)|d|µ(x)|

and
|ν|(E) =

∫
E

g(x)d|µ(x)| =
∫
E

|f(x)|d|µ(x)|.

Then g = |f | µ a.e.
(c) ∫

[0,1]

(∫
[0,1]

f(x, y)dx

)
dy =

∫ 1

0

(∫ y

0

1

y2
dx−

∫ 1

y

1

x2
dx

)
dy

=

∫ 1

0

1

y
+ 1− 1

y
dy = 1.

∫
[0,1]

(∫
[0,1]

f(x, y)dy

)
dx =

∫ 1

0

(
−
∫ x

0

1

x2
dx+

∫ 1

x

1

y2
dy

)
dx

=

∫ 1

0

− 1

x
− 1 +

1

x
dx = −1.

∫
[0,1]×[0,1]

|f(x, y)|dxdy =

∫ 1

0

(∫ x

0

1

x2
dx+

∫ 1

x

1

y2
dy

)
dx

=

∫ 1

0

1

x
− 1 +

1

x
dx = +∞.

The function f is not integrable.
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Ph.D Qualifying Examination
Analysis (General Paper)

October 2004

1. The first question.

(a) i.State the definition of a measurable function?
ii. Let f : R −→ R be a function. Prove that f is measurable if and
only if arctan f (tan−1 ◦f) is measurable. (R is equipped with the
Borel σ−algebra.)
iii. Let f be a differentiable function everywhere on [0, 1]. Prove
that f ′ is Lebesgue measurable on [0, 1].

(b) i. State the definition of the Lp space, p ≥ 1, (including L∞).
ii. Let (fn)n be a sequence of functions in Lp(X,µ), p ≥ 1 such
that :
1) (fn)n converges a.e. to f .
2) lim

n→+∞
||fn||p = ||f ||p.

Prove that fn −→ f in Lp as n −→ +∞. (Hint : introduce the
sequence φn = 21−p(|f |p + |fn|p)− |f − fn|p. Prove that φn ≥ 0 for
all n and then use Fatou lemma.)

2. The second question.

(a) i. State and prove the continuity of property of measure.
ii. Let A be a measurable subset of R such that λ(A) < ∞, where
λ(A) is the Lebesgue measure of A. Show that the function x 7−→
λ(A ∩ (−∞, x]) is continuous.

(b) Let µ be a measure on an algebra U ⊂ 2X . Assume that µ(X) = 1.

Prove that if for A1, . . . , An ∈ U such that
n∑

k=1

µ(Ak) > n− 1, then

µ(

n⋂
k=1

Ak) > 0. (Hint : Use the fact that µ(Ac
k) = 1− µ(Ak).
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Answer Ph.D Qualifying Examination
Analysis (General Paper)

October 2004

1. The first question.

(a) i. Let (X,A ) and (Y,B) be two measurable spaces. A mapping
f : X −→ Y is called measurable if f−1(B) ⊂ A .
ii. The function tan: ] − π

2 ,
π
2 [−→ R is an homeomorphism. (Con-

tinuous and its inverse is continuous).
If f : R −→ R is measurable, then tan−1 ◦f since tan−1 is measur-
able. In the other hand if tan−1 ◦f is measurable, then tan ◦ tan−1 ◦f =
f is measurable.

iii. For x ∈ (0, 1), f ′(x) = lim
n→+∞

f(x+ 1
n )− f(x)
1
n

. Then f ′ is

measurable as limit of measurable functions.
(b) i. Let (X,A , µ) be a measure space and , 1 ≤ p < +∞. The

space Lp(µ) is the set of measurable functions f : X −→ R̄ such

that
∫
X

|f(x)|pdµ(x) < ∞. (The functions are defined a.e.)

For p = +∞, we say that a function f : X −→ R̄ is essentially
bounded over X with respect to the measure µ if f is measurable
and there exists M < +∞ such that |f | ≤ M a.e. on X.
The space L∞(µ) is the set of all measurable functions f : X −→ R̄
which are essentially bounded over X with respect to the measure
µ.
ii. The function x 7−→ xp is convex on the interval ]0,+∞[, then for
all x, y ∈]0,+∞[, 1

2p |x − y|p ≤ 1
2x

p + 1
2y

p. Then φn = 21−p(|f |p +
|fn|p) − |f − fn|p ≥ 0. The sequence (φn)n converges pointwise to
2p|f |p. Then by Fatou lemma

2p∥f∥pp ≤ limn→+∞

∫
X

φn(x)dµ(x) = 2p∥f∥pp − limn→+∞∥fn − f∥pp.

Then fn −→ f in Lp as n −→ +∞.

2. The second question.

(a) i. State and prove the continuity of property of measure.
ii. For x < y, 0 ≤ λ(A∩ (−∞, x])− λ(A∩ (−∞, y]) ≤ |x− y|. Then
the function x 7−→ λ(A ∩ (−∞, x]) is continuous.
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(b) Since µ is finite, µ(Ac
k) = 1− µ(Ak). Moreover

µ(

n⋂
k=1

Ak)
c = µ(

n⋃
k=1

Ac
k) ≤

n∑
k=1

µ(Ac
k) = n−

n∑
k=1

µ(Ak) < 1.

Then µ(

n⋂
k=1

Ak) > 0.
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Ph.D Qualifying Examination
Analysis-Measure (General Paper)

December 2014

Section A
Problem I:

1. State the Fubini Theorem.

Let Ω = (0,+∞)× (0,+∞).

2. Compute ∫
Ω

dλ(x, y)

(1 + y)(1 + x2y)
,

where λ is the Lebesgue measure on R2.

3. Deduce the values of the following integrals

∫ +∞

0

ln(x)

1− x2
dx and

∫ 1

0

ln(x)

1− x2
dx.

4. Prove that ∫ 1

0

ln(x)

1− x2
dx =

+∞∑
n=0

∫ 1

0

x2n ln(x)dx

5. Deduce the sum of the following series

+∞∑
n=1

1

n2
and

+∞∑
n=1

1

(2n+ 1)2
.

Problem II: [Note that parts 1) and 2) are independent]

1. (a) Prove that µ =
+∞∑
n=1

δ 1
n

is a measure on the measurable space (R,BR),

where BR is the Borel σ−algebra on R.

(b) Consider the functions f(x) = x and g(x) = x ln(1 + |x|) on R.
Give the values of p, q ∈ [0,+∞) for which f ∈ Lp(R,BR, µ) and
g ∈ Lq(R,BR, µ).
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2. (a) Prove that the function f(x) =
1√

x(1− x)
is integrable on the in-

terval (0, 1) and compute the following integral
∫
(0,1)

dλ(x)√
x(1− x)

,

with λ is the Lebesgue measure on R.

(b) Let f : (a, b) −→ R be a bounded Lebesgue integrable function and
lim

t→a+
f(t) = c.

Prove that for any t ∈ (a, b), the function x 7−→ f(x)√
(x−a)(t−x)

is

integrable on (a, t) and compute lim
t→a+

∫
(a,t)

f(x)√
(x− a)(t− x)

dλ(x).
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Solution of Ph.D Qualifying Examination
Analysis-measure (General Paper)

December 2014

Section A
Problem I:

1. (The Fubini’s Theorem): Let (X1,A1, µ1) and (X2,A2, µ2) be two σ−
finite measure spaces, and let (X,A , µ) be the product measure space. If

f ∈ L1(X, dµ), then
∫
X2

f(x, y)dµ2(y) ∈ L1(X1, µ1) and
∫
X1

f(x, y)dµ1(x) ∈

L1(X2, µ2) and

∫
X1×X2

f(x, y)µ1 ⊗ µ2(x, y) =

∫
X2

(∫
X1

f(x, y)dµ1(x)

)
dµ2(y)(0.1)

=

∫
X1

(∫
X2

f(x, y)dµ2(y)

)
dµ1(x)

Let Ω = (0,+∞)× (0,+∞).

2. The function (x, y) 7−→ 1(1 + y)(1 + x2y) is non negative continuous
function, then by Fubini Tonelli Theorem

∫
Ω

dλ(x, y)

(1 + y)(1 + x2y)
=

∫ +∞

0

(∫ +∞

0

dx

(1 + y)(1 + x2y)

)
dy

=

∫ +∞

0

(∫ +∞

0

dy

(1 + y)(1 + x2y)

)
dx.

∫ +∞

0

dx

(1 + x2y)
=

π

2
√
y

and
∫ +∞

0

dy

2
√
y(1 + y)

y=t2

=
π2

2
.

For x ̸= 1,
1

(1 + y)(1 + x2y)
=

A

1 + y
− x2A

1 + x2y
, with A = 1

1−x2 . Then∫ +∞

0

dy

(1 + y)(1 + x2y)
= A ln(

1 + y

1 + x2y
)

]+∞

0

= − 2 lnx

1− x2
.

3. By Fubini Tonelli Theorem∫ +∞

0

ln(x)

1− x2
dx = −π2

4
. Moreover by the change of variable x = 1

t ,∫ 1

0

ln(x)

1− x2
dx =

∫ +∞

1

ln(x)

1− x2
dx = −π2

8
.
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4.
1

1− x2
=

+∞∑
n=0

x2n and by Monotone Convergence Theorem (x2n ln(x) ≤

0) ∫ 1

0

ln(x)

1− x2
dx =

+∞∑
n=0

∫ 1

0

x2n ln(x)dx.

5. By integration by parts
∫ 1

0

x2n ln(x)dx− 1

(2n+ 1)2
. Then

+∞∑
n=0

1

(2n+ 1)2
=

π2

8
.

+∞∑
n=1

1

n2
=

1

4

+∞∑
n=1

1

n2
+

+∞∑
n=0

1

(2n+ 1)2
. Then

+∞∑
n=1

1

n2
=

π2

6
.

Problem II:

1. (a) We know that if (µn)n is an increasing sequence of measures on a
measurable space (X,A ), the mapping µ : A −→ [0,+∞] defined
by µ(A) = lim

n→+∞
µn(A) = sup

n
µn(A) for any A ∈ A is a measure

on X.
Indeed it is clear that µ(∅) = 0 = lim

n→+∞
µn(∅), and if A,B are two

disjoints measurable subsets, we have

µ(A ∪B) = lim
n→+∞

µn(A) + lim
n→+∞

µn(B) = µ(A) + µ(B).

Let now (An)n be an increasing sequence of A and A =

+∞⋃
n=1

An. We

have µj(An) ≤ µ(An) ≤ µ(A). Then
µj(A) = lim

n→+∞
µj(An) ≤ lim

n→+∞
µ(An) ≤ µ(A)

and then

µ(A) = lim
j→+∞

µj(A) ≤ lim
n→+∞

µ(An) ≤ µ(A).

Then µ(A) = lim
n→+∞

µ(An).

Then µ1 = lim
n→+∞

n∑
k=1

δ 1
k

is a measure on the measurable space

(R,BR).

(b)
∫
R
fp(x)dµ1(x) =

+∞∑
n=1

1

np
. Then f ∈ Lp(R,BR, µ1) if and only if

p > 1.



12

∫
R
gq(x)dµ1(x) =

+∞∑
n=1

lnq(1 + 1
n )

nq
. Since

lnq(1 + 1
n )

nq
≈ 1

n2q
, then

g ∈ Lq(R,BR, µ1) ⇐⇒ q > 1
2 .

2. (a) In a neighborhood of 0, f(x) ≈ 1√
x

, which is integrable and in a

neighborhood of 1, f(x) ≈ 1√
1− x

, which is integrable.∫
(0,1)

dλ(x)√
x(1− x)

x=t2
=

∫ 1

0

2dt√
1− t2

= π.

(b) In a neighborhood of a in (a, t),
1√

(x− a)(t− x)
≈ 1√

(x− a)(t− a)
,

which is integrable and in a neighborhood of t in (a, t),
1√

(x− a)(t− x)
≈

1√
(t− a)(t− x)

, which is integrable. Moreover since f is bounded

then for any t ∈ (a, b), the function x 7−→ f(x)√
(x−a)(t−x)

is integrable

on (a, t).

∫
(a,t)

1√
(x− a)(t− x)

dλ(x)
x=st+(1−s)a

=

∫ 1

0

ds√
s(1− s)

= π.

Since f is bounded, then by Dominated Convergence Theorem

lim
t→a+

∫
(a,t)

f(x)√
(x− a)(t− x)

dλ(x)
x=st+(1−s)a

=

∫ 1

0

f(a+ s(t− a))√
s(1− s)

ds = πc.
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Ph.D Qualifying Examination
Analysis (General Paper)

1424-1425

Question 5

1. Let Ω be a non-countable set. If D is the class of all singleton sets {x}.
Find the σ-algebra generated by D.

2. Let (ωj) be a sequence in Ω and (pj) be a sequence of positive real num-
bers. Suppose µ is the measure defined by µ(E) =

∑
j,ωj∈E

pj on the class

of all subsets of Ω. Show that a function f : Ω −→ R̄ is integrable with

respect to µ if and only if
∞∑
j=1

pjf(ωj) is absolutely convergent and that

if f is integrable, then
∫
Ω

f(x)dµ(x) =

∞∑
j=1

pjf(ωj).

Question 6

1. Let B be the Borel σ-algebra on [0, 1]. Show that D = {(x, x);x ∈ [0, 1]}
is measurable with respect to the σ-algebra B ⊕ B.

If µ is the counting measure on B (so that µ(B) is the number of elements
of B), λ is the Lebesgue measure and h = χD, show that

∫ 1

0

∫ 1

0

h(x, y)dλ(x)dµ(y) ̸=
∫ 1

0

∫ 1

0

h(x, y)dµ(y)dλ(x)

why doesn’t this contradict Fubini’s theorem?

2. Let (Ω,F , µ) be a probability space and suppose that G is a sub-σ-algebra
of F . If f ∈ L1(Ω,F , µ), use the Radon-Nykodym theorem to show the
existence of a function g ∈ L1(Ω,F , µ) such that∫

E

f(x)dµ(x) =

∫
E

g(x)dµ(x), ∀E ∈ G.
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Ph.D Qualifying Examination
Answer Analysis (General Paper)

1424-1425

Question 5

1. The σ-algebra generated by D is the set of countable subsets of Ω or their
complement is countable.

2. µ(E) =

+∞∑
j=1

pjχE(wj). If f is a non negative simple function, f =

m∑
j=1

λjχEj ,

∫
Ω

f(x)dµ(x) =

m∑
j=1

λj

+∞∑
k=1

pkχEj
(wk) =

+∞∑
k=1

pkf(wk).

If f is non negative measurable, there exists an increasing sequence of
simple functions which converges to f , then by Monotone Convergence
Theorem,

∫
Ω

f(x)dµ(x) =

+∞∑
k=1

pkf(wk).

Then f is integrable with respect to µ if and only if
∞∑
j=1

pjf(ωj) is abso-

lutely convergent and if f is integrable, then
∫
Ω

f(x)dµ(x) =

∞∑
j=1

pjf(ωj).

Question 6

1. D = {(x, x);x ∈ [0, 1]} is a closed set, then D is measurable with respect
to the σ-algebra B ⊕ B.∫ 1

0

h(x, y)dλ(x) = 0, then
∫ 1

0

(∫ 1

0

h(x, y)dλ(x)

)
dµ(y) = 0.∫ 1

0

h(x, y)dµ(y) = 1, then
∫ 1

0

(∫ 1

0

h(x, y)dµ(y)

)
dλ(x) =

∫ 1

0

dλ(x) = 1.

This not contradict Fubini’s theorem since µ is not a σ−finite measure.
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2. The measure µ is finite (µ(Ω) = 1) and the measure fµ is absolutely
continuous with respect to the measure µ on the measure space (Ω,F , µ).

(If A ∈ G is a null set, then it is a null set in F and
∫
A

f(x)dµ(x) = 0). In

use of the Radon-Nykodym theorem there is a function g ∈ L1(Ω,F , µ)
such that ∫

E

f(x)dµ(x) =

∫
E

g(x)dµ(x), ∀E ∈ G.
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Ph.D Comprehensive Examination
Analysis

1425-1426

Question 5

1. Given a measure µ0 on a ring R, describe without proofs, how µ0 can be
extended to a measure on the σ-ring σ(R) generated by R.
Let Ω = Q∩ [0, 1), R be the ring of all finite disjoint unions of subsets of
Ω of the form Q ∩ [a, b) and µ0 be the counting measure on R.
i) Show that σ(R) is the class P(Ω) of all subsets of Ω.
ii) If µ1 is the counting measure on P(Ω) and µ2 = 2µ1, show that µ1

and µ2 are distinct σ-finite extensions of µ0 to σ(R). Why doesn’t this
contradict the uniqueness of the extension?

2. Given a measure space (Ω,F , µ) and a measurable function f : Ω −→ R̄,

describe without proofs how
∫
Ω

fdµ is defined, when it exits.

Let, for i = 1, 2, (Ωi,Fi) be a measurable space, and suppose that
T : Ω1 −→ Ω2 is measurable with respect to F1 and F2. If µ is a measure
on F1 and g : Ω2 −→ R is F2 measurable, show that µT−1 is a measure
on F2 and ∫

Ω1

g ◦ T (x)dµ(x) =
∫
Ω1

g(x)dµT−1(x)

in the sense that either side exist, so does the other and the two are equal.

Question 6

1. (an,m) be a double sequence of non-negative numbers. Employing the
counting measure on N, use the Fubini-Tonelli theorem to prove that

∞∑
n,m=1

an,m =

∞∑
n=1

( ∞∑
m=1

an,m

)
=

∞∑
m=1

( ∞∑
n=1

an,m

)
what can you say if we relax the requirement that an,m ≥ 0, ∀n,m ∈ N?

2. Let µ, ν and λ the signed measures on (Ω,F). If µ << ν and ν << λ,
prove that

dµ

dλ
=

dµ

dν
.
dν

dλ
.
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Answer Ph.D Comprehensive Examination
Analysis

1425-1426

Question 5

1. Given a measure µ0 on a ring R, for all A ∈ σ(R), we define

µ(A) = inf{
+∞∑
n=1

µ0(An); An ∈ R, ∀n ∈ N, A ⊂ ∪+∞
n=1An}.

Let Ω = Q ∩ [0, 1), R the ring of all finite disjoint unions of subsets of Ω
of the form Q ∩ [a, b) and µ0 the counting measure on R.

i) For all a ∈ Q, {a} = ∩+∞
n=1Q ∩ [a, a+ 1

n [. Then σ(R) = P(Ω).

ii) Since µ1 ̸= 0, then µ2 ̸= µ1. Moreover since Q is countable, µ1 and µ2

are σ-finite.

For every A ∈ R, A ̸= ∅, σ0(A) = σ1(A) = σ2(A) = +∞. Then µ1 and
µ2 are extension of µ0 on σ(R). We don’t have the uniqueness since µ0

is not σ−finite on R

2. We define the integral of non negative simple function f =

m∑
j=1

cjχAj ,

where cj ̸= ck for j ̸= k and (Aj)j measurable subsets. We define

∫
Ω

f(x)dµ(x) =

m∑
j=1

cjµ(Aj).

If f is a non-negative measurable function, there exists a sequence of
non-negative simple functions (fj)j which increases to f . We define∫

Ω

f(x)dµ(x) = lim
n→+∞

∫
Ω

fn(x)dµ(x).

If f is a measurable function, we define f+ = max(f, 0) and f− =

max(−f, 0). If
∫
Ω

f+(x)dµ(x) < +∞ or
∫
Ω

f−(x)dµ(x) < +∞, we define∫
Ω

f(x)dµ(x) =

∫
Ω

f+(x)dµ(x)−
∫
Ω

f−(x)dµ(x).
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We denote ν = µT−1.
Since T−1(∅) = ∅ and µ(∅) = 0, then ν(∅) = 0.
If (An)n is a sequence of F2 measurable sets,

ν(∪+∞
n=1An) = µ(T−1(∪+∞

n=1An)) = µ(∪+∞
n=1T

−1(An)) = lim
n→+∞

ν(An).

If g is a simple function,∫
Ω1

g ◦ T (x)dµ(x) =
∫
Ω1

g(x)dµT−1(x).

If g is a non negative measurable function, the result is obtained by
Monotone Convergence Theorem.

Question 6

1. If µ is the counting measure on N and g a non negative measurable
function,

∫
N
g(x)dµ(x) =

+∞∑
n=1

g(n).

Define the function f on N × N by f(n,m) = an,m. By Fubini-Tonelli
theorem

∞∑
n,m=1

an,m =

∞∑
n=1

( ∞∑
m=1

an,m

)
=

∞∑
m=1

( ∞∑
n=1

an,m

)

If an,m are not non negative, we use the Fubini theorem if
∞∑

n,m=1

|an,m| <

+∞.

2. Since µ << ν, there is f ∈ L1(ν) such that µ = fν and since ν << λ,
there is g ∈ L1(λ) such that ν = gλ.
If A is a null set with respect to the measure λ, then since ν << λ, A is
a null set with respect to the measure ν and since µ << ν, A is a null set
with respect to the measure µ. Then µ << λ and µ = fν = fgλ. Then

dµ

dλ
=

dµ

dν
.
dν

dλ
.
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Ph.D Comprehensive Examination
Analysis

1425-1426- Second semester

Question 3
a) Let (X,M , µ) be a measure space. Let N = {N ∈ M : µ(N) = 0}

and M = {E ∪ F, E ∈M and F ⊂ N for some N ∈ N}.
i) Show that M is a σ−algebra.
ii) Verify that the extension µ̄ of µ on M is a complete measure.
b) i) State the definition of an outer measure.
ii) Let X be a space. We consider M ⊂P (X) an algebra of sets and f

a non negative function defined on M , such that f(∅) = 0. For any A ⊂ X,
define

µ(A) = inf{
+∞∑
j=1

f(Ej); Ej ∈M and A ⊂ ∪+∞
j=1Ej}.

Show that µ is an outer measure.
c) If µ1, . . . , µn are measure on (X,M ) and a1, . . . , an positive numbers.

Prove that µ =

n∑
j=1

ajµj is a measure on (X,M ).

Question 4

a) Let (X,M , µ) and (Y,N , ν) be σ−finite measure spaces. Prove that
if E ∈M ⊗N , then the functions x ∈ X −→ ν(Ex) and y ∈ Y −→ µ(Ey)
are measurable on X and Y respectively, and

µ⊗ ν(E) =

∫
X

ν(Ex)dµ(x) =

∫
Y

µ(Ey)dν(y).

(*recall that Ex = {y ∈ Y ; (x, y) ∈ E} and Ey = {x ∈ X; (x, y) ∈ E}.)
b) Let X = [0, 1], B the Borel σ−algebra on [0, 1], µ is the Lebesgue

measure and ν the counting measure on B (if B ∈B , ν(B) is the number
of elements of B). Let D = {(x, y) ∈ X ×X : x = y}.

i) Show that D is measurable with respect to the σ−algebra B ⊗B .

ii) Show that
∫ 1

0

∫ 1

0

χD(x, y)dµ(x)dν(y) ̸=
∫ 1

0

∫ 1

0

χD(x, y)dν(y)dµ(x). Ex-

plain why these integrals are not equal?
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Answer Ph.D Comprehensive Examination
Analysis

1425-1426- Second semester

Question 3

a) i) M is closed under countable union. It remains to prove that it is
closed under complementarity. Let A′ = A∪N be an element of M . As N is
a null set there exists a subset B of M ∩N and N ⊂ B. We have

A′c = (A ∪N)c = (A ∪B)c ∪ (B \ (A ∪N)).

It follows that A′c is an element of M and M is a σ−algebra.
ii) To show that µ is a mapping on M , we must show that if A1 ∪ N1 =

A2 ∪N2 with A1, A2 ∈M and N1, N2 ∈ N , then µ(A1) = µ(A2). So we have
A1 \A2 ⊂ N2, then it is a null set. If B = A1∩A2, then A1 = B∪(A1 \A2) and
µ(B) = µ(A1). In the same way we have µ(B) = µ(A2), then µ(A1) = µ(A2).
Let prove now that µ defines a measure on the σ-algebra M . If (A′

n)n is
a sequence of disjoint elements of M , with A′

n = An ∪ Nn, An ∈ M and
Nn ∈ N ; ∀n ∈ N. We have

µ(

+∞⋃
n=1

A′
n) = µ

(
(

+∞⋃
n=1

An) ∪ (

+∞⋃
n=1

Nn)
)
= µ(

+∞⋃
n=1

An) =

+∞∑
n=1

µ(An) =

+∞∑
n=1

µ(A′
n).

Finally the measure space (X,M , µ) is complete because the ν-null sets are
elements of N . It is evident that µ is the smallest complete extension of the
measure µ.

b) i) Let X be a non empty set. An outer measure or an exterior mea-
sure µ∗ on X is a function µ∗ : P(X) −→ [0,∞] which satisfies the following
conditions :

• µ∗(∅) = 0.
• If (An)n is a sequence of subsets of X, then

µ∗(

∞⋃
n=1

An) ≤
∞∑

n=1

µ∗(An).

• µ∗ is increasing (i.e. µ∗(A) ≤ µ∗(B) if A ⊂ B).
ii) µ(∅) ≤ f(∅) = 0, then and µ∗ is increasing.

Let (An)n be a sequence of subsets of X. We claim that
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µ(∪+∞
n=1An) ≤

+∞∑
n=1

µ(An).

If there exists a subset An such that µ(An) = +∞, then the inequality is trivial.
Assume now that ∀n ∈ N, µ(An) < +∞.
For every n ∈ N, and for every ε > 0, there exists a sequence (An,j)j ∈ M ,
such that µ(An) ≥

∑+∞
j=1 f(An,j)− ε

2n . The sequence (An,j)j,n∈N is a covering

of the set A =

+∞⋃
j=1

An and
+∞∑
n=1

+∞∑
j=1

f(An,j) ≤
+∞∑
n=1

µ(An) + ε. Then µ(A) ≤

∑+∞
n=1 µ(An) + ε, for all ε > 0 and thus µ(A) ≤

+∞∑
n=1

µ(An), which proves that

µ is an outer measure.

c) i) µ(∅) =
n∑

j=1

ajµj(∅) = 0,

ii) If A ∩ B = ∅ and A,B ∈ M , µ(A ∪ B) =
∑n

j=1 ajµj(A ∪ B) =∑n
j=1 aj(µj(A) + µj(B)) = µ(A) + µ(B).
iii) If (An)n is an increasing sequence of the σ-algebra M ,

µ(

+∞⋃
k=1

Ak) =

n∑
j=1

ajµj(

+∞⋃
k=1

Ak) =

n∑
j=1

aj lim
k→+∞

µj(Ak) = lim
k→+∞

µ(Ak).

Then µ is a measure on (X,M ).

Question 4

a) Suppose in the first case that ν is finite and define

A = {C ∈M ⊗N ; x 7−→ ν(Cx) is measurable }.

A contains the measurable rectangles C = A×B, with A ∈ M and B ∈ N ,
since ν(Cx) = χA(x)ν(B). Moreover A is a monotone class: if C ⊂ C ′,
ν(C ′ \ C)x = ν(C ′

x) − ν(Cx) since ν is finite, and if (Cn)n is an increasing
sequence

ν(∪+∞
k=1Cn)x = lim

n→+∞
ν(Cn)x.

Then A =M ⊗N .
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If ν is σ−finite, we take a sequence (Bn)n such that ν(Bn) < +∞ for all
n ∈ N, ν(Bn) < +∞ and X = ∪+∞

n=1Bn. We define ν2,n(B) = ν(B ∩Bn). Then
ν(Cx) = lim

n→+∞
µ2,n(Cx) which is measurable.

Define for all E ∈M ⊗N ,

µ⊗ ν(E) =

∫
X

ν(Ex)dµ(x).

To prove that µ ⊗ ν is a measure on M ⊗N , let (Cn)n be a sequence of
disjoint measurable subsets in M ⊗N , the sequence ((Cn)x)n is disjoint for
all x ∈ X and

µ⊗ ν(∪+∞
n=1Cn) =

∫
X

ν(∪+∞
n=1(Cn)x)dµ(x)

=

∫
X

+∞∑
n=1

ν((Cn)x)dµ(x)

=

+∞∑
n=1

∫
X

ν((Cn)x)dµ(x) =

+∞∑
n=1

µ⊗ ν(Cn).

Moreover µ⊗ ν(A×B) = µ(A)ν(B).
In the same way, if we define

˜µ⊗ ν(C) =

∫
Y

µ(Cy)dν(y).

˜µ⊗ ν is a measure on M ⊗N and fulfills ˜µ⊗ ν(A × B) = µ(A)ν(B). We
deduce that µ⊗ ν = ˜µ⊗ ν and

µ⊗ ν(E) =

∫
X

ν(Ex)dµ(x) =

∫
Y

µ(Ey)dν(y).

b) i) D = {(x, x);x ∈ [0, 1]} is a closed set, then D is measurable with
respect to the σ-algebra B ⊕B .

ii)
∫ 1

0

h(x, y)dλ(x) = 0, then
∫ 1

0

(∫ 1

0

h(x, y)dλ(x)

)
dµ(y) = 0.∫ 1

0

h(x, y)dµ(y) = 1, then
∫ 1

0

(∫ 1

0

h(x, y)dµ(y)

)
dλ(x) =

∫ 1

0

dλ(x) = 1. This

not contradict Fubini’s theorem since µ is not σ−finite.
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Ph.D Comprehensive Examination
Analysis (General Paper)

First semester 1426-1427

Section A

I) a) Let f be the function defined on ]0,+∞[ by: f(x) =
xe−ax

1− e−bx
, with a

and b in ]0,+∞[.

Show that f is integrable on [0,+∞[ and
∫ +∞

0

f(x)dx =

+∞∑
n=0

1

(a+ nb)2
.

b) State the definition of the Borel σ-algebra on the real line R.

II) a) Let (X,B, µ) be a measure space and let f be a function defined on X.
If f is µ-integrable, show that the set {x ∈ X; f(x) ̸= 0} is of σ-finite measure.

b) State the Fubini theorem with respect the measure spaces (X,A, µ) and
(Y,B, ν), where X = Y = N0 = N ∪ {0} the set of non negative integers,
A = B = P(N0) and µ = ν the counting measure.
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Answer Ph.D Comprehensive Examination
Analysis (General Paper)

First semester 1426-1427

Section A

I) a) For x > 0, f(x) =
xe−ax

1− e−bx
=

+∞∑
n=0

xe−(a+nb)x.

f is continuous on [0,+∞[ and non negative. (f(0) = lim
x→0

f(x) =
1

b
). Moreover

f(x) ≤ 2xe−ax for x large, which is integrable. Then f is integrable.
By the Monotone Convergence Theorem or the Dominate Convergence Theo-

rem,
∫ +∞

0

f(x)dx =

+∞∑
n=0

∫ +∞

0

xe−(a+nb)xdx =

+∞∑
n=0

1

(a+ nb)2
.

b) The Borel σ-algebra on the real line R is the σ-algebra generated by the
open subsets of R.

II) a) For all n ∈ N define the set En = {x ∈ X; |f(x)| ≥ 1
n}.

µ(En) =

∫
En

dµ(x) ≤ n

∫
X

|f(x)|dµ(x) = n∥f∥1 < +∞. Then the set {x ∈

X; f(x) ̸= 0} is σ-finite.
b) (The Fubini’s Theorem): Let (X,A , µ) and (Y,B, ν) be two σ− fi-

nite measure spaces, and let (X × Y,A ⊗ B, µ ⊗ ν) be the product measure

space. If f ∈ L1(X × Y, d(µ ⊗ ν)), then
∫
Y

f(x, y)d ν(y) ∈ L1(X,µ) and∫
X

f(x, y)dµ(x) ∈ L1(Y, ν) and

∫
X×Y

f(x, y)dµ⊗ ν(x, y) =

∫
Y

(∫
X

f(x, y)dµ(x)

)
d ν(y)

=

∫
X

(∫
Y

f(x, y)d ν(y)

)
dµ(x)

Consider the special case where X = Y = N0 = N∪{0} the set of non negative
integers, A = B = P(N0) and µ = ν the counting measure.
Let (am,n)m,n be a sequence of real numbers. Then the Fubini-Tonelli theorem
says that if am,n ≥ 0 for all m,n ∈ N, then
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+∞∑
m=0

(
+∞∑
n=0

am,n

)
=

+∞∑
n=0

(
+∞∑
m=0

am,n

)
.

The Fubini theorem says that if
∑+∞

m=0

(∑+∞
n=0 |am,n|

)
< +∞, then

+∞∑
m=0

(
+∞∑
n=0

am,n

)
=

+∞∑
n=0

(
+∞∑
m=0

am,n

)
.
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Ph.D Comprehensive Examination
Analysis (General Paper)

Second semester 1429-1430 H Time
3 hours

Section B

III)

1. Let (X,B, µ) be a measure space and let (An)n be a decreasing sequence
of B. Assume that µ is a finite.

Prove that lim
n→+∞

µ(An) = µ( lim
n→+∞

An).

2. Give an example of a measure space (X,B , µ) and a decreasing se-
quence (An)n such that lim

n→+∞
µ(An) ̸= µ( lim

n→+∞
An).

3. a) Prove that for n ≥ 2 and x ≥ 0, we have (1 +
x

n
)n ≥ x2

4
, and find the

following limit lim
n→+∞

∫ +∞

0

1

(1 + x
n )

nx
1
n

dx.

b) Find the Lebesgue integral on [0, 1] of the function f defined by:

f(x) =
1√
x
+ χQ(x), for x ̸= 0 and f(0) = 0.

c) Consider the function g(x) =
1

(1 + x2)
√

| sinx|
, for x ̸∈ πN and

g(nπ) = 0, for all n ∈ N.
Show that the following function g is Lebesgue integrable on (0,+∞).

IV)

1. Let f : R −→ [0,∞) be defined as follows: f(x) =


1

x(log x)2 if x ∈ (0, e−1),

0 if x ̸∈ (0, e−1).

a) Check that
∫
(0,x)

f(t)dt =
−1

log x
for x ∈ (0, e−1). Deduce that f ∈

L1(R).
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b) Consider the maximal function M defined by Mf(x) := sup
x∈I

1

|I|

∫
I

|f(t)|dt,

(I is an open interval and |I| is the length of I).

Conclude that
∫
(0,r)

Mf(x)dx = ∞, for every r > 0.

2. Let (X,B, µ) be a measure space such that µ(X) = 1. Let Lp denote
Lp(X,B, µ) for 1 ≤ p ≤ ∞.

a) Show that Lq ⊂ Lp if 1 ≤ p ≤ q.

b) Use a) to show that Lp ∩ Lq ⊂ Ls if 1 ≤ p ≤ s ≤ q ≤ ∞.

c) Show that if f ∈ L∞, then ∥f∥∞ = lim
p→∞

∥f∥p.

d) Now, suppose that µ(X) is not necessarily finite. Put s = tp+(1−t)q for

t ∈ [0, 1] and apply Hölder’s inequality to
∫
X
|f |sdµ, to show that ||f ||s ≤

||f ||Φp ||f ||
1−Φ
q , where Φ = tp

s ∈ [0, 1]. Deduce again that Lp ∩ Lq ⊂ Ls.
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Answer Ph.D Comprehensive Examination
Analysis (General Paper)

Second semester 1429-1430 H

Section B

III)

1. The sequence (Ac
n)n is increasing, then lim

n→+∞
µ(Ac

n) = µ(X \ lim
n→+∞

An).

As µ is finite µ(Ac
n) = µ(X) − µ(An) and µ(X \ lim

n→+∞
An) = µ(X) −

µ( lim
n→+∞

An). Then lim
n→+∞

µ(An) = µ( lim
n→+∞

An).

2. We can take An = [n,+∞[⊂ R and µ the Lebesgue measure on R.
µ(An) = +∞, lim

n→+∞
An = ∅.

3. a) (1+
x

n
)n =

n∑
k=0

(
n
k

)
xk

nk
≥ 1+x+

(n− 1)x2

2n
≥ x2

4
for n ≥ 2 and x ≥ 0.

The function
1

(1 + x
n )

nx
1
n

is dominated by the function
4

x2+ 1
n

on the in-

terval [1,+∞[ which is integrable on [1,+∞[, and it is dominated by the

integrable function
1

x
1
n

on the interval ]0, 1]. Furthermore lim
n→+∞

1

(1 + x
n )

nx
1
n

=

e−x. Then by the dominated convergence theorem lim
n→+∞

∫ +∞

0

1

(1 + x
n )

nx
1
n

dx =∫ +∞

0

e−xdx = 1.

b) Q is a Lebesgue null set,
1√
x

is continuous on ]0,+∞[, then the

Lebesgue integral on [0, 1] of the function f is the Riemann integral of

the function g(x) =
1√
x

, and
∫ 1

0

dx√
x
= 2

c) By the Monotone Convergence Theorem
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∫ +∞

0

dx

(1 + x2)
√

| sinx|
=

+∞∑
n=0

∫ (n+1)π

nπ

dx

(1 + x2)
√
| sinx|

=

+∞∑
n=0

∫ π

0

dx

(1 + (x+ nπ)2)
√
| sinx|

≤
+∞∑
n=0

1

(1 + n2π2)

∫ π

0

dx√
| sinx|

.

∫ π

0

dx√
| sinx|

= 2

∫ π
2

0

dx√
sinx

and on the interval [0, π
2 ], sinx ≥ 2x

π . Then

the function
1√

| sinx|
is Lebesgue integrable on the interval (0, π

2 ), then

the function g is Lebesgue integrable on the interval (0,+∞).

IV)

1. a) For x ∈ (0, e−1),
∫
(0,x)

f(t)dt =

∫
(0,x)

dt

t(log t)2
s=log t
=

∫
(−∞,log x)

ds

s2
=

−1

log x
.

Since f(x) = 0 for x ̸∈ (0, e−1), f ≥ 0 for x ∈ (0, e−1) and
∫
(0,e−1)

f(t)dt =

1, then f ∈ L1(R).
b) To prove the result, we can consider 0 < r < e−1. For x > 0,

Mf(x) := sup
x∈I

1

|I|

∫
I

|f(t)|dt ≥ 1

2x

∫
(0,x)

f(t)dt =
−1

2x log x
.

Then ∫
(0,r)

Mf(x)dx ≥
∫
(0,r)

−dx

2x log x
= +∞.

2. a) We consider p < q < +∞, r = q
p > 1 and 1

r + 1
s = 1. If f ∈ Lq, by

Hölder’s inequality

∫
X
|f(x)|pdµ(x) ≤

(∫
X
|f(x)|qdµ(x)

) p
q

(µ(X))
1
s < +∞.
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Then Lq ⊂ Lp if 1 ≤ p ≤ q.

If q = +∞, ∥f∥p ≤ ∥f∥∞(µ(X))
1
p .

b) If 1 ≤ p ≤ s ≤ q ≤ ∞, then Lp ∩ Lq ⊂ Lp ⊂ Ls since If 1 ≤ p ≤ s.

c) If f ∈ L∞, ∥f∥p ≤ ∥f∥∞(µ(X))
1
p for all p ≥ 1, then limp→∞∥f∥p ≤

∥f∥∞.

Consider for t ∈ [0, ∥f∥∞) the measurable set At = {x ∈ X; |f(x)| > t}.

∥f∥p ≥
(∫

At

|f(x)|pdµ(x)
)p

≥ t(µ(At))
1
p .

Then limp→∞∥f∥p = ∥f∥∞ and ∥f∥∞ = limp→∞ ∥f∥p.
d) By Hölder’s inequality∫

X
|f(x)|sdµ(x) =

∫
X
|f(x)|tp|f(x)|(1−t)qdµ(x)

≤
(∫

X
|f(x)|pdµ(x)

)t(∫
X
|f(x)|qdµ(x)

)1−t

Then(∫
X
|f(x)|sdµ(x)

) 1
s

≤
(∫

X
|f(x)|pdµ(x)

) t
s
(∫

X
|f(x)|qdµ(x)

) 1−t
s

and

||f ||s ≤ ||f ||Φp ||f ||
1−Φ
q ,

where Φ = tp
s ∈ [0, 1].

It results that if f ∈ Lp ∩ Lq then f ∈ Ls.
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Ph.D Comprehensive Examination
Analysis (General Paper)

Second semester 1996 Time 3 hours

Section I

1. (a) Let (En)n be a sequence of Borel sets in R and µ the Lebesgue
measure. Show that µ(lim inf

n→+∞
En) ≤ lim inf

n→+∞
µ(En).

(b) Construct a sequence (fn)n, fn ≥ 0 of Lebesgue measurable func-
tions on R, for which lim infn→+∞

∫
R fn(x)dµ(x) >

∫
R lim infn→+∞ fn(x)dµ(x).

(c) Check whether the continuous function x2 sin
1

x2
is a function of

bounded variation in [−1, 1].

2. (a) Let f be a function on (a, b) such that |f(x) − f(y)| ≤ 2|x − y| for
all x and y in the interval. Show that f is absolutely continuous on
(a, b).

(b) Give an example of a function f(x) on [a, b] for which
∫ b

a

f ′(x)dx

exists, but
∫ b

a

f ′(x)dx ̸= f(b)− f(a).

(c) Let g(x) =
1
4
√
x

, 0 < x < 1. Show that A(f) =

∫ 1

0

f(x)g(x)dx

defines a bounded linear functional on L3; find the value of ∥A∥.

3. Let X and Y be the unit interval [0, 1] and B be the class of Borel sets
in [0, 1]. For E ∈ B, let µ(E) be the Lebesgue measure of E and µ(E) be
the number of points in E. Let D = {(x, y) : x = y} be the diagonal of
X × Y .

(a) Show that D is a measurable subset of X × Y .

(b) If Dx = {y : (x, y) ∈ D}, show that
∫
X

ν(Dx)dµ(x) = 1.

(c) If Dy = {x : (x, y) ∈ D}, show that
∫
Y

µ(Dy)dν(y) = 0.
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(d) Using the above results, show that it may happen for some function

f(x, y) and some measures λ1 and λ2 that
∫ ∫

f(x, y)dλ1(x)dλ2(y) ̸=∫ ∫
f(x, y)dλ2(y)dλ1(x).
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Answer Ph.D Comprehensive Examination
Analysis (General Paper)

Second semester 1996 Time
3 hours

Section I

1. (a) The sequence
(+∞⋂
k=n

Ek

)
n

is increasing then from the Monotone Con-

vergence Theorem: µ
(+∞⋃
n=1

+∞⋂
k=n

Ek

)
= lim

n→+∞
µ
(+∞⋂
k=n

Ek

)
. But µ

(+∞⋂
k=n

Ek

)
≤

inf
k≥n

µ(Ek), then µ(lim inf
n→+∞

En) ≤ lim inf
n→+∞

µ(En).

(b) Take fn = χ[n,+∞[, lim infn→+∞ fn = 0 but lim inf
n→+∞

∫
R
fn(x)dµ(x) =

+∞.

(c)
∫ 1

−1

|f ′(x)|dx =

∫ 1

−1

|2x sin 1

x2
− 2

x
cos

1

x2
|dx.∫ 1

−1

|2x sin 1

x2
|dx ≤ 4, but

∫ 1

−1

| 2
x
cos

1

x2
|dx = 2

∫ 1

0

2

x
| cos 1

x2
|dx =

2

∫ +∞

1

| cos t|
t

dt = +∞. Then the function f(x) = x2 sin
1

x2
is not

of bounded variation in [−1, 1].

2. (a) Let ε > 0 and let ]ak, bk[, k = 1, . . . , n be a finite number of mutu-

ally disjoint subintervals of ]a, b[ such that
n∑

k=1

(bk − ak) ≤
ε

2
, then

n∑
k=1

|f(bk) − f(ak)| ≤
n∑

k=1

2(bk − ak) ≤ ε. Then f is absolutely con-

tinuous on ]a, b[.

(b) The function f defined on [−1, 1] by f(x) = 1 if x > 0 and f(x) = 0
if x ≤ 0. f ′ = 0 a.e. and f(1)− f(−1) = 1.

(c) Let f ∈ L3, |A(f)| ≤
∫ 1

0

|f(x)||g(x)|dx ≤ ∥f∥3∥g∥ 3
2
= (

8

5
)

2
3 ∥f∥3.

Then A defines a bounded linear functional on L3 and ∥A∥ = ∥g∥ 3
2
=

( 85 )
2
3 .
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3. (a) D = {(x, x);x ∈ [0, 1]} is a closed set, then D is measurable with
respect to the σ-algebra B ⊕ B.

(b) Dx = {y : (x, y) ∈ D} = {x}, then ν(Dx) = 1 and
∫
X

ν(Dx)dµ(x) =

1.

(c) Dy = {x : (x, y) ∈ D} = {y}, then µ(Dy) = 0 and
∫
Y

µ(Dy)dν(y) =

0.

(d) Let f(x, y) = χD(x, y).
∫
Y

∫
X

f(x, y)dµ(x)dν(y) = 1 ̸=
∫
X

∫
Y

f(x, y)dν(y)dµ(x) =

0.
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Ph.D Comprehensive Examination
Analysis (General Paper)

Autumn 1997 Time 3 hours

Section I

1. (a) Let f, g : R −→ R be two functions such that f is measurable and g
is continuous. Is f ◦ g measurable?

(b) Describe a non measurable set A on R. Suppose A is a non measur-
able set. Define

f(x) =

{
ex ifx ∈ A
e−x ifx ̸∈ A

.

Show that for any c, {x; f(x) = c} is measurable, but f is not a
measurable function.

2. (a) Let f be a monotonic function on [a, b]. Show that f can be written
as f = h + g, where h is absolutely continuous and g is monotonic
for which g′(x) = 0 a.e.

(b) Construct two measures µ and σ on R such that µ << σ, but there
exist no function f such that dµ

dσ = f .

3. (a) State Tonelli theorem.

(b) Let f : Ω −→ R defined by: f(x, y) =

{
x2−y2

x2+y2 if (x, y) ̸= (0, 0) and

0 if (x, y) = (0, 0)

with Ω = {(x, y); −1 ≤ x ≤ 1, −1 ≤ x ≤ 1}.

Is
∫ 1

−1

(∫ 1

−1

f(x, y)dx

)
dy =

∫ 1

−1

(∫ 1

−1

f(x, y)dy

)
dx?

What can you say about the double integral
∫ ∫

Ω

f(x, y)dxdy?.
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Answer Ph.D Comprehensive Examination
Analysis (General Paper)

Autumn 1997 Time 3 hours

Section I

1. (a) If B is the Borel σ−algebra, f and g are measurable, then

(f ◦ g)−1(B ) = g−1(f−1(B )) ⊂ f−1(B ) ⊂B .

Then f ◦ g is measurable.

(b) We consider on E = [0, 1] the equivalence relationship R, defined
by xRy ⇐⇒ x− y ∈ Q. We choose a representative of each class,
and we denote A the set of these representatives. The set A is not
countable and non measurable set.
If c > 0, {x; f(x) = c} = {ln c} ∩A is measurable.
If c < 0, {x; f(x) = c} = {ln−c} ∩Ac is measurable.
If c = 0, {x; f(x) = 0} = ∅ is measurable.
f is not a measurable function since {x; f(x) > 0} = A which is
not measurable.

2. (a) Since f is monotonic, then it is of bounded variation, f is a.e dif-

ferentiable. The function h defined h(x) =

∫ x

a

f ′(t)dt is absolutely

continuous. The function g = f − fa is singular i.e g′ = 0 a.e and
monotonic.

(b) Consider λ the Lebesgue measure and δ the Dirac measure.
Construct two measures µ and σ on R such that µ << σ, but there

exist no function f such that
dµ

dσ
= f .

3. (a) The Fubini Tonelli theorem: Let (X1,A1, µ1) and (X2,A2, µ2) be
two σ− finite measure spaces. Let f be a non negative measurable
function on (X1 ×X2,A1 ⊗ A2, µ1 ⊗ µ2). Then the functions

x 7−→ g(x) =

∫
X2

f(x, y)dµ2(y) and y 7−→ h(y) =

∫
X1

f(x, y)dµ1(x)

are respectively measurable on X1 and X2. Moreover
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∫
X1×X2

f(x, y)µ1 ⊗ µ2(x, y) =

∫
X2

(∫
X1

f(x, y)dµ1(x)

)
dµ2(y)

=

∫
X1

(∫
X2

f(x, y)dµ2(y)

)
dµ1(x).

(b)
∫ 1

−1

f(x, y)dx = 2−2y tan−1(
1

y
) for y ̸= 0 and

∫ 1

−1

(∫ 1

−1

f(x, y)dx

)
dy =

4

∫ 1

0

1−y tan−1(
1

y
)dy = 2. Since f(x, y) = −f(y, x), then

∫ 1

−1

(∫ 1

−1

f(x, y)dy

)
dx =

−2.
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Ph.D Qualifying Examination
Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014

Section A
Problem I:

1. State the Fubini Theorem.

Let Ω = (0,+∞)× (0,+∞).

2. Compute ∫
Ω

dλ(x, y)

(1 + y)(1 + x2y)
,

where λ is the Lebesgue measure on R2.

3. Deduce the values of the following integrals

∫ +∞

0

ln(x)

1− x2
dx and

∫ 1

0

ln(x)

1− x2
dx.

4. Prove that ∫ 1

0

ln(x)

1− x2
dx =

+∞∑
n=0

∫ 1

0

x2n ln(x)dx

5. Deduce the sum of each of the following series

+∞∑
n=1

1

n2
and

+∞∑
n=1

1

(2n+ 1)2
.

Problem II: [Note that parts 1) and 2) are independent]

1. (a) Prove that µ1 =

+∞∑
n=1

δ 1
n

is a measure on the measurable space

(R,BR), where BR is the Borel σ−algebra on R.

(b) Consider the functions f(x) = x and g(x) = x ln(1 + |x|) on R.
Give the values of p, q ∈ [0,+∞) for which f ∈ Lp(R,BR) and
g ∈ Lq(R,BR).
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2. (a) Prove that the function f(x) =
1√

x(1− x)
is integrable on the in-

terval (0, 1) and compute the following integral
∫
(0,1)

dλ(x)√
x(1− x)

,

with λ is the Lebesgue measure on R.

(b) Let f : (a, b) −→ R be a bounded Lebesgue integrable function and
lim

t→a+
f(t) = c.

Prove that for any t ∈ (a, b), the function x 7−→ f(x)√
(x−a)(t−x)

is

integrable on (a, t) and compute lim
t→a+

∫
(a,t)

f(x)√
(x− a)(t− x)

dλ(x).
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Answer Ph.D Qualifying Examination
Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014

Section A
Problem I:

1. (The Fubini’s Theorem): Let (X1,A1, µ1) and (X2,A2, µ2) be two σ−
finite measure spaces, and let (X,A , µ) be the product measure space. If

f ∈ L1(X, dµ), then
∫
X2

f(x, y)dµ2(y) ∈ L1(X1, µ1) and
∫
X1

f(x, y)dµ1(x) ∈

L1(X2, µ2) and

∫
X1×X2

f(x, y)µ1 ⊗ µ2(x, y) =

∫
X2

(∫
X1

f(x, y)dµ1(x)

)
dµ2(y)

=

∫
X1

(∫
X2

f(x, y)dµ2(y)

)
dµ1(x)

Let Ω = (0,+∞)× (0,+∞).

2. The function (x, y) 7−→ 1(1 + y)(1 + x2y) is non negative continuous
function, then by Fubini Tonelli Theorem

∫
Ω

dλ(x, y)

(1 + y)(1 + x2y)
=

∫ +∞

0

(∫ +∞

0

dx

(1 + y)(1 + x2y)

)
dy

=

∫ +∞

0

(∫ +∞

0

dy

(1 + y)(1 + x2y)

)
dx.

∫ +∞

0

dx

(1 + x2y)
=

π

2
√
y

and
∫ +∞

0

dy

2
√
y(1 + y)

y=t2

=
π2

2
.

For x ̸= 1,
1

(1 + y)(1 + x2y)
=

A

1 + y
− x2A

1 + x2y
, with A = 1

1−x2 . Then∫ +∞

0

dy

(1 + y)(1 + x2y)
= A ln(

1 + y

1 + x2y
)

]+∞

0

= − 2 lnx

1− x2
.
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3. By Fubini Tonelli Theorem∫ +∞

0

ln(x)

1− x2
dx = −π2

4
. Moreover by the change of variable x = 1

t ,∫ 1

0

ln(x)

1− x2
dx =

∫ +∞

1

ln(x)

1− x2
dx = −π2

8
.

4. For |x| < 1,
1

1− x2
=

+∞∑
n=0

x2n and by Monotone Convergence Theorem

(x2n ln(x) ≤ 0) ∫ 1

0

ln(x)

1− x2
dx =

+∞∑
n=0

∫ 1

0

x2n ln(x)dx.

5. By integration by parts
∫ 1

0

x2n ln(x)dx = − 1

(2n+ 1)2
. Then

+∞∑
n=0

1

(2n+ 1)2
=

π2

8
.

+∞∑
n=1

1

n2
=

1

4

+∞∑
n=1

1

n2
+

+∞∑
n=0

1

(2n+ 1)2
. Then

+∞∑
n=1

1

n2
=

π2

6
.

Problem II:

1. (a) We know that if (µn)n is an increasing sequence of measures on a
measurable space (X,A ), the mapping µ : A −→ [0,+∞] defined
by µ(A) = lim

n→+∞
µn(A) = sup

n
µn(A) for any A ∈ A is a measure

on X.
Indeed it is clear that µ(∅) = 0 = lim

n→+∞
µn(∅), and if A,B are two

disjoints measurable subsets, we have

µ(A ∪B) = lim
n→+∞

µn(A) + lim
n→+∞

µn(B) = µ(A) + µ(B).

Let now (An)n be an increasing sequence of A and A =

+∞⋃
n=1

An. We

have µj(An) ≤ µ(An) ≤ µ(A). Then
µj(A) = lim

n→+∞
µj(An) ≤ lim

n→+∞
µ(An) ≤ µ(A).

Moreover

µ(A) = lim
j→+∞

µj(A) ≤ lim
n→+∞

µ(An) ≤ µ(A).

Then µ(A) = lim
n→+∞

µ(An).
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Then µ1 = lim
n→+∞

n∑
k=1

δ 1
k

is a measure on the measurable space

(R,BR).

(b)
∫
R
fp(x)dµ1(x) =

+∞∑
n=1

1

np
. Then f ∈ Lp(R,BR, µ1) if and only if

p > 1.∫
R
gq(x)dµ1(x) =

+∞∑
n=1

lnq(1 + 1
n )

nq
. Since

lnq(1 + 1
n )

nq
≈ 1

n2q
, then

g ∈ Lq(R,BR, µ1) ⇐⇒ q > 1
2 .

2. (a) In a neighborhood of 0, f(x) ≈ 1√
x

, which is integrable and in a

neighborhood of 1, f(x) ≈ 1√
1− x

, which is integrable.∫
(0,1)

dλ(x)√
x(1− x)

x=t2
=

∫ 1

0

2dt√
1− t2

= π.

(b) In a neighborhood of a in (a, t),
1√

(x− a)(t− x)
≈ 1√

(x− a)(t− a)
,

which is integrable and in a neighborhood of t in (a, t),
1√

(x− a)(t− x)
≈

1√
(t− a)(t− x)

, which is integrable. Moreover since f is bounded

then for any t ∈ (a, b), the function x 7−→ f(x)√
(x−a)(t−x)

is integrable

on (a, t).

∫
(a,t)

dλ(x)√
(x− a)(t− x)

x=st+(1−s)a
=

∫ 1

0

ds√
s(1− s)

= π.

Since f is bounded, then by Dominated Convergence Theorem

lim
t→a+

∫
(a,t)

f(x)√
(x− a)(t− x)

dλ(x)
x=st+(1−s)a

= lim
t→a+

∫ 1

0

f(a+ s(t− a))√
s(1− s)

ds = πc.
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Ph.D Comprehensive Examination
Analysis (Special Paper)

Second semester 28-29

Section B

Problem III

1. State the Dominate Convergence Theorem. Prove that if f is integrable

on [0, 1], then lim
n→+∞

∫ 1

0

xnf(x)dx = 0.

2. We consider the function F defined on [0,+∞[ by F (x) =

∫ +∞

0

e−xt

1 + t2
dt.

a) Find lim
x→+∞

F (x) and lim
x→0

F (x)

b) Prove that F is of class C2 for x > 0 and find F
′′
(x).

3. Show that
∫ 1

0

sinx lnxdx =

+∞∑
n=1

(−1)n

(2n)(2n)!
.

Problem IV

1. Let (N,P(N), µ) be the measure space, with µ the counting measure. Let
f : N −→ [0,+∞] be a function.

a) Show that
∫
N
f(x)dµ(x) =

+∞∑
n=1

f(n).

b) Let σ : N −→ N be a bijection. Show that

+∞∑
n=1

f(n) =

+∞∑
n=1

f(σ(n)).

c) Let (uj,k)j,k be a sequence of non negative numbers. Deduce

+∞∑
j=1

+∞∑
k=1

uj,k =

+∞∑
k=1

+∞∑
j=1

uj,k.

d) Find
+∞∑
j=0

+∞∑
k=0

ajbk, with 0 ≤ a, b < 1.
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e) Give an example of sequence (uj,k)j,k for which the result of c) is false.

2. a) Let (X,M , µ) and (Y,N , ν) be σ−finite measure spaces. Prove
that if E ∈ M ⊗N , then the functions x ∈ X 7−→ ν(Ex) and y ∈
Y 7−→ µ(Ey) are measurable on X and Y respectively with Ex = {y ∈
Y ; (x, y) ∈ E} and Ey = {x ∈ X; (x, y) ∈ E}.

b) Let X = [0, 1], B the Borel σ−algebra on [0, 1].

Show that D = {(x, y) ∈ X ×X; x− y = 0} is measurable with respect
to the σ−algebra B ⊗B .
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Ph.D Comprehensive Examination
Analysis (Special Paper)

Second semester 28-29

Section B

Problem III

1. The Dominate Convergence Theorem:

Let (fn)n be a sequence of measurable functions on a measure space
(X,A , µ). We assume that :

i) the sequence (fn)n converges almost everywhere on X to a measurable
function f definite almost everywhere.

ii) There exist a non-negative integrable function g such that : |fn| ≤ g
almost everywhere for all n. Then the sequence (fn)n and the function f
are integrable and we have:∫

X

f(x) dµ(x) = lim
n−→+∞

∫
X

fn(x)dµ(x).

If f is integrable on [0, 1], the sequence (fn)n defined by fn(x) = xnf(x) is
dominated by |f | and lim

n→+∞
fn = 0 a.e, the by the Dominate Convergence

Theorem lim
n→+∞

∫ 1

0

xnf(x)dx = 0.

2. a) We have f(x, t) =
e−xt

1 + t2
≤ 1

1 + t2
which is integrable and lim

x→+∞
f(x, t) =

0. Then by the Dominate Convergence Theorem lim
x→+∞

F (x) = 0.

We have also lim
x→0

f(x, t) =
1

1 + t2
. Then by the Dominate Convergence

Theorem, lim
x→0

F (x) =
π

2
.

b) x 7−→ f(x, t) is C∞,
∂f

∂x
(x, t) =

−te−xt

1 + t2
and

∂2f

∂x2
(x, t) =

t2e−xt

1 + t2
. For

a > 0,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ ≤ te−at

1 + t2
and

∣∣∣∣∂2f

∂x2
(x, t)

∣∣∣∣ ≤ t2e−at

1 + t2
for all x ∈ [a,+∞[.

Since the functions t 7−→ te−at

1 + t2
and t 7−→ t2e−at

1 + t2
are integrable, the

function F is of class C2 on [0,+∞[ and F
′′
(x) =

∫ +∞
0

t2e−xt

1+t2 dt = 1
x −

F (x).



46

3. We have sinx =

+∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, ∀x ∈ R. By Dominate Convergence

Theorem

∫ 1

0

sinx lnxdx =

+∞∑
n=0

∫ 1

0

(−1)nx2n+1 lnx

(2n+ 1)!
dx

=

+∞∑
n=0

(−1)n

(2n+ 1)!

∫ 1

0

x2n+1 lnxdx

=

+∞∑
n=1

(−1)n

(2n)(2n)!
.

Problem IV

1. a)
∫
N
f(x)dµ(x)

M.C.T
= lim

n→+∞

∫
[1,n]

f(x)dµ(x) = lim
n→+∞

n∑
k=1

f(k) =

+∞∑
k=1

f(k).

b) If An = σ([1, n]), then
+∞⋃
n=1

An = N. The sequence (An)n is increasing.

It follows from the Monotone Convergence Theorem that

lim
n→+∞

n∑
k=1

f(σ(k)) = lim
n→+∞

∫
An

f(x)dµ(x) =

∫
N
f(x)dµ(x) =

+∞∑
k=1

f(k).

c) a) If fn(m) =

n∑
k=1

uk,m, then
∫
N
fn(x)dµ(x) =

+∞∑
m=1

n∑
k=1

uk,m. Since the

sequence (fn)n is increasing then

∫
N

lim
n→+∞

fn(x)dµ(x) = lim
n→+∞

∫
N
fn(x)dµ(x)

=

+∞∑
m=1

+∞∑
k=1

uk,m = lim
n→+∞

n∑
k=1

+∞∑
m=1

uk,m

=

+∞∑
k=1

+∞∑
m=1

uk,m.
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d)
+∞∑
k=1

aj =
a

1− a
, then

+∞∑
j=1

+∞∑
k=1

ajbk =
ab

(1− a)(1− b)
.

e) Let aj,k =
1

kj(j + 1)
, for j ≥ 2 and a1,k = −1

2k .

+∞∑
j=1

1

j(j + 1)
= 1 and

+∞∑
j=1

aj,k = 0. So
+∞∑
k=1

+∞∑
j=1

aj,k = 0 and
+∞∑
k=1

aj,k = +∞,

for j ≥ 2 and
+∞∑
k=1

a1,k = −∞.

2. a) Suppose that ν is finite and define

A = {E ∈M ⊗N ; x 7−→ ν(Ex) is measurable }.

A contains the measurable rectangles E = A × B since ν(Ex) =

χA(x)ν(B). Moreover A is a monotone class: if E ⊂ E′, ν(E′ \ E)x =
ν(E′

x)− ν(Ex) since ν is finite, and if (En)n is an increasing sequence

ν(∪+∞
k=1En)x = lim

n→+∞
ν(En)x.

Then A =M ⊗N .

In the general case where ν is σ−finite, we take an increasing sequence

(Bn)n such that ν(Bn) < +∞ and X =

+∞⋃
n=1

Bn. Define νn(B) = ν(B ∩

Bn). Then ν(Ex) = lim
n→+∞

νn(Ex) which is measurable.

By the same arguments, y ∈ Y 7−→ µ(Ey) is measurable on Y .

b) D = {(x, y) ∈ X ×X; x− y = 0} is closed then it is measurable with
respect to the σ−algebra B ⊗B .
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Solve five (5) problems.

Section B

Problem III

1. a) Give the definitions of a measure and an outer measure.

b) Let (X,B ) be a measurable space and (µn)n be a sequence of mea-
sures on X such that µn(X) = 1 for all n ∈ N0. For any A ∈ B ,
define

µ(A) =

+∞∑
n=0

µn(A)

2n+1
.

Prove that µ defines a probability measure on (X,B ).

2. a) Let (X,B ) be a measurable space. Give the definition of a measur-
able function on X.

Let fn : X −→ R be a sequence of measurable functions. Prove that
{x ∈ X; (fn(x))n converges } is measurable.

3. a) Let (X,B , µ) be a measure space and f an integrable function on

X. Suppose that
∫
E

f(x)dµ(x) = 0 for any measurable set E. Show that

f = 0 almost every where.

Problem IV

1. Let λ be the Lebesgue measure on R. Evaluate the following integrals:

a)
∫
[0,π]

f(x)dλ(x), where f(x) =

{
sinx x ∈ Q ∩ [0, π],
cosx x ∈ [0, π] \Q,

.

b)
∫
[0,1]

χR\Q(x)dλ(x). (Recall χR\Q(x) = 1 if x ∈ R\Q and 0 otherwise.)
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2. a) State the Monotone Convergence Theorem.

b) Let f(x) =
xe−x

1− e−x
. Prove that f is integrable on [0,+∞) and

∫ +∞

0

f(x)dx =

+∞∑
n=0

1

(1 + n)2
.

3. a) Let f be an integrable function on a measure space (X,B , µ). Prove
that {x ∈ X; f(x) = ±∞} is a null set.

b) Let f be an integrable function on R and α > 0. Prove that
f(nx)

nα
−→

0 as n −→ +∞ almost every where. (Hint: prove that
+∞∑
n=1

|f(nx)|
nα

is

integrable.)



50

Answer Ph.D Comprehensive Examination
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Second semester 30-31

Problem III

1. a) • Let (X,A ) be a measurable space. A measure on X is a set function
µ : A → [0,∞] such that :

i) µ(∅) = 0;

ii) For any disjoint sequence (An)n ∈ A ,

µ(∪+∞
n=1An) =

+∞∑
n=1

µ(An). (0.2)

• Let X be a non empty set. An outer measure µ∗ on X is a set function
µ∗ : P(X) −→ [0,∞] which satisfies the following conditions :

i) µ∗(∅) = 0.

ii) If (An)n is a sequence of subsets of X, then

µ∗(

∞⋃
n=1

An) ≤
∞∑

n=1

µ∗(An).

iii) µ∗ is increasing (i.e. µ∗(A) ≤ µ∗(B) if A ⊂ B).

b) Let A ∈ B , the series
∑
n≥0

µn(A)

2n+1
is convergent. Then µ is well

defined.

µn(∅) = 0, then µ(∅) = 0.

If A and B are measurable and disjoint, then µn(A∪B) = µn(A)+µn(B)
and µ(A ∪B) = µ(A) + µ(B).

Let (An)n ∈B be a disjoint sequence and A =
+∞⋃
n=0

An.
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µ(A) = lim
m→+∞

m∑
n=0

µn(A)

2n+1

= lim
m→+∞

m∑
n=0

+∞∑
k=0

µn(Ak)

2n+1

= lim
m→+∞

+∞∑
k=0

m∑
n=0

µn(Ak)

2n+1

≤
+∞∑
k=0

µ(Ak), ∀p ∈ N.

Then µ(A) ≤
+∞∑
n=0

µ(An).

Moreover for all m ∈ N, µ(A) ≥
m∑

n=0

µ(An). Then µ(A) ≥
+∞∑
n=0

µ(An).

Which proves that µ(A) =

+∞∑
n=0

µ(An).

It is obvious that µ defines a probability measure on (X,B ).

2. a) A function f : X −→ R is called measurable if the σ-algebra f−1(B R) ⊂
B .
Let C = {x ∈ X; (fn(x))n converges } and Let D = Cc, D = {x ∈
X; limn→+∞fn(x) < limn→+∞fn(x)}. If we set g = limn→+∞fn and
h = limn→+∞fn. For each rational r, let

Dr = {x ∈ X; g(x) < r < h(x)} = {x ∈ X; g(x) < r}∩{x ∈ X; h(x) > r}

which is measurable. D =
⋃

r∈Q Dr which proves the measurability of D.

3. a) Let E+ = {x ∈ X; f(x) > 0} and E− = {x ∈ X; f(x) < 0}. Since

χE+f ≥ 0, χE−f ≤ 0,
∫
E+

f(x)dµ(x) = 0 and
∫
E−

f(x)dµ(x) = 0, then

χE−f = 0 and χE+f = 0 almost every where, which proves that f = 0
almost every where.

Problem IV
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1. a)
∫
[0,π]

f(x)dλ(x) =

∫ π

0

cos(x)dx = 0.

b)
∫
[0,1]

χR\Q(x)dλ(x) =

∫ 1

0

dx = 1.

2. a) The Monotone Convergence Theorem:

Let (fn)n be an increasing sequence of non-negative measurable functions
on a measure space (X,B, µ), then∫

X

lim
n→+∞

fn(x)dµ(x) = lim
n→+∞

∫
X

fn(x)dµ(x).

b) f is a continuous non negative function on ]0,+∞[. Moreover lim
x→0

f(x) =

1. Then f is integrable on [0,+∞[ if and only if the improper integral∫ +∞

0

f(x)dx is convergent. For x large enough, f(x) ≤ 2xe−x which is

integrable on [0,+∞).

For x > 0, f(x) =
+∞∑
n=0

xe−(n+1)x. Then by Monotone Convergence The-

orem

∫ +∞

0

f(x)dx =

+∞∑
n=0

∫ +∞

0

xe−(n+1)xdx =

+∞∑
n=0

1

(1 + n)2
.

3. a) {x ∈ X; f(x) = ±∞} = {x ∈ X; |f(x)| = ∞} = ∩+∞
n=1{x ∈

X; |f(x)| ≥ n}. If En = {x ∈ X; |f(x)| ≥ n},∫
X

|f(x)|dµ(x) ≥
∫
En

|f(x)|dµ(x) ≥ nµ(En).

Then {x ∈ X; f(x) = ±∞} is a null set.

b) By Monotone Convergence Theorem

∫
R

+∞∑
n=1

|f(nx)|
nα

dx =

+∞∑
n=1

∫
R

|f(nx)|
nα

dx =

+∞∑
n=1

∥f∥1
nα+1

.

Then lim
n→+∞

f(nx)

nα
= 0 as n −→ +∞ almost every where.


