King Saud University

Department of Mathematics

Ph.D Qualifying Examinations with solutions

Measure Theory

Mongi BLEL

2023

Ph.D Qualifying Examination¹ Analysis (General Paper)

2003

- 1. The first question.
 - (a) Does there exist a Lebesgue measurable set on (0,1) which is not Borel?
 - (b) Let $(f_n)_n$ be a sequence of measurable functions on (0, 1) such that

$$|f_n(x)| \le \frac{1}{\sqrt{x}}$$
 and $\lim_{n \to +\infty} f_n(x) = f(x) \ a.e.$

Show that

$$\lim_{n \to +\infty} \int_0^1 e^{-x} f_n(x) dx = \int_0^1 e^{-x} f(x) dx$$

- (c) If f is integrable on [a, b], show that the function $F(x) = \int_{a}^{x} f(t)dt$ is absolutely continuous on [a, b].
- 2. The second question.
 - (a) On a measure space (X, \mathscr{S}, μ) , consider a sequence $(E_n)_n$ of measurable sets. Show that

$$\mu(\liminf_{n \to +\infty} E_n) \le \liminf_{n \to +\infty} \mu(E_n).$$

(b) On a measurable space (X, \mathscr{S}) , let μ and ν be two signed measures such that for every $E \in \mathscr{S}$

$$\nu(E) = \int_E f(x)d\mu(x)$$

and

$$|\nu|(E) = \int_E g(x) d|\mu(x)|.$$

Show that g = |f| (μ a.e.).

¹This document is free. It is prepared by:

Professor Mongi BLEL, King Saud University, Department of Mathematics . mblel@ksu.edu.sa , mongi_blel@yahoo.fr

(c) Let $f \colon [0,1] \times [0,1] \longrightarrow \mathbb{R}$ be the function defined by:

$$f(x,y) = \begin{cases} y^{-2} & \text{if } 0 < x < y < 1\\ -x^{-2} & \text{if } 0 < y < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Compute the iterated and the double integrals. Explain why the Fubini's theorem is not applicable in this example.

Ph.D Qualifying Examination Answer Analysis (General Paper)

March 2003

- 1. The first question.
 - (a) The Borel σ -algebra is not complete, then there is nulls subsets which are not Borel subsets.
 - (b) For all $x \in (0,1)$, $|e^{-x}f_n(x)| \le \frac{1}{\sqrt{x}}$ and the function $g(x) = \frac{1}{\sqrt{x}}$ is integrable on (0,1). Then by Dominate Convergence Theorem

$$\lim_{n \to +\infty} \int_0^1 e^{-x} f_n(x) dx = \int_0^1 e^{-x} f(x) dx$$

(c) Let (a_k, b_k) , k = 1, ..., m be a finite number of non overlapping intervals with $[a_k, b_k] \subset [a, b]$ For $n \in \mathbb{N}$, define $f_n = \inf(|f|, n)$ and $A_n = \{x \in [a, b]; |f(x)| \ge n\}$. The sequence $(f_n)_n$ increases to |f|, then by Monotone Convergence Theorem, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $\forall n \ge N$,

$$\int_{[a,b]} |f(x)| - f_n(x) dx \le \frac{\varepsilon}{2}.$$

Let
$$\delta = \frac{\varepsilon}{2N}$$
 and $A = \bigcup_{k=1}^{m} (a_k, b_k)$ a measurable subset such that
 $\sum_{k=1}^{m} b_k - a_k \leq \frac{\varepsilon}{2N}$.
 $\int_A |f(x)| dx = \int_A |f(x)| - f_N(x) dx + \int_A f_N(x) dx$
 $\leq \frac{\varepsilon}{2} + N \sum_{k=1}^{m} b_k - a_k \leq \varepsilon$.

Then F is absolutely continuous on [a, b].

- 2. The second question.
 - (a) The sequence $\left(\bigcap_{k=n}^{+\infty} E_k\right)_n$ is increasing then from the Monotone Convergence Theorem: $\mu\left(\bigcup_{n=1}^{+\infty}\bigcap_{k=n}^{+\infty}E_k\right) = \lim_{n \to +\infty}\mu\left(\bigcap_{k=n}^{+\infty}E_k\right)$. But $\mu\left(\bigcap_{k=n}^{+\infty}E_k\right) \leq \inf_{k \geq n}\mu(E_k)$, then $\mu(\liminf_{n \to +\infty}E_n) \leq \liminf_{n \to +\infty}\mu(E_n)$.

(b) We recall the total variation $|\mu|$ of μ is defined by:

$$|\mu|(A) = \sup \sum_{n=1}^{+\infty} |\mu(A_n)|,$$

where the supremum is taken over all measurable partitions $(A_n)_n$ of A.

The total variation $|\mu|$ is a finite measure.

We denote $E_+ = \{x \in X; f(x) > 0\}$ and $E_- = \{x \in X; f(x) < 0\}$. For any subsets $F \subset E_+$ and $G \subset E_-$, $|\nu|(F) = \nu(F)$ and $|\nu|(G) = -\nu(G)$, indeed:

For any measurable partition $(F_n)_n$ of F, $\sum_{n=1}^{+\infty} |\nu(F_n)| = \sum_{n=1}^{+\infty} \nu(F_n) \le \nu(F)$. Then $|\nu|(F) \le \nu(F)$. The converse is trivial. The other inequality is obtained by the same reasons. For any $A \in \mathscr{S}$, $A = (A \cap E_+) \cup (A \cap E_-)$,

[

$$|\nu|(A) = \nu(A \cap E_{+}) - \nu(A \cap E_{-}) = \int_{X} |f(x)|d|\mu(x)|$$

and

$$|\nu|(E) = \int_E g(x)d|\mu(x)| = \int_E |f(x)|d|\mu(x)|.$$

Then $g = |f| \ \mu$ a.e.

(c)

$$\begin{split} \int_{[0,1]} \left(\int_{[0,1]} f(x,y) dx \right) dy &= \int_0^1 \left(\int_0^y \frac{1}{y^2} dx - \int_y^1 \frac{1}{x^2} dx \right) dy \\ &= \int_0^1 \frac{1}{y} + 1 - \frac{1}{y} dy = 1. \\ \int_{[0,1]} \left(\int_{[0,1]} f(x,y) dy \right) dx &= \int_0^1 \left(-\int_0^x \frac{1}{x^2} dx + \int_x^1 \frac{1}{y^2} dy \right) dx \\ &= \int_0^1 -\frac{1}{x} - 1 + \frac{1}{x} dx = -1. \\ \int |f(x,y)| dx dy &= \int_0^1 \left(\int_0^x \frac{1}{x^2} dx + \int_x^1 \frac{1}{x^2} dy \right) dx \end{split}$$

$$\begin{aligned} \int_{[0,1]\times[0,1]} |f(x,y)| dx dy &= \int_0^1 \left(\int_0^1 \frac{1}{x^2} dx + \int_x^1 \frac{1}{y^2} dy \right) dx \\ &= \int_0^1 \frac{1}{x} - 1 + \frac{1}{x} dx = +\infty. \end{aligned}$$

The function f is not integrable.

Ph.D Qualifying Examination Analysis (General Paper)

October 2004

1. The first question.

(a) i.State the definition of a measurable function?

ii. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function. Prove that f is measurable if and only if $\arctan f (\tan^{-1} \circ f)$ is measurable. (\mathbb{R} is equipped with the Borel σ -algebra.)

iii. Let f be a differentiable function everywhere on [0, 1]. Prove that f' is Lebesgue measurable on [0, 1].

- (b) i. State the definition of the L^p space, p ≥ 1, (including L[∞]).
 ii. Let (f_n)_n be a sequence of functions in L^p(X, μ), p ≥ 1 such that:
 - 1) $(f_n)_n$ converges a.e. to f.
 - 2) $\lim_{n \to +\infty} ||f_n||_p = ||f||_p.$

Prove that $f_n \longrightarrow f$ in L^p as $n \longrightarrow +\infty$. (Hint: introduce the sequence $\varphi_n = 2^{1-p}(|f|^p + |f_n|^p) - |f - f_n|^p$. Prove that $\varphi_n \ge 0$ for all n and then use Fatou lemma.)

- 2. The second question.
 - (a) i. State and prove the continuity of property of measure.

ii. Let A be a measurable subset of \mathbb{R} such that $\lambda(A) < \infty$, where $\lambda(A)$ is the Lebesgue measure of A. Show that the function $x \mapsto \lambda(A \cap (-\infty, x])$ is continuous.

(b) Let μ be a measure on an algebra $U \subset 2^X$. Assume that $\mu(X) = 1$. Prove that if for $A_1, \ldots, A_n \in U$ such that $\sum_{k=1}^n \mu(A_k) > n-1$, then $\mu(\bigcap_{k=1}^n A_k) > 0$. (Hint: Use the fact that $\mu(A_k^c) = 1 - \mu(A_k)$.

Answer Ph.D Qualifying Examination Analysis (General Paper)

October 2004

1. The first question.

(a) i. Let (X, \mathscr{A}) and (Y, \mathscr{B}) be two measurable spaces. A mapping $f: X \longrightarrow Y$ is called measurable if $f^{-1}(\mathscr{B}) \subset \mathscr{A}$.

ii. The function $\tan:] - \frac{\pi}{2}, \frac{\pi}{2} [\longrightarrow \mathbb{R}$ is an homeomorphism. (Continuous and its inverse is continuous).

If $f : \mathbb{R} \longrightarrow \mathbb{R}$ is measurable, then $\tan^{-1} \circ f$ since \tan^{-1} is measurable. In the other hand if $\tan^{-1} \circ f$ is measurable, then $\tan \circ \tan^{-1} \circ f = f$ is measurable.

iii. For
$$x \in (0,1)$$
, $f'(x) = \lim_{n \to +\infty} \frac{f(x+\frac{1}{n}) - f(x)}{\frac{1}{n}}$. Then f' is

measurable as limit of measurable functions.

(b) i. Let (X, \mathscr{A}, μ) be a measure space and , $1 \leq p < +\infty$. The space $L^p(\mu)$ is the set of measurable functions $f: X \longrightarrow \overline{\mathbb{R}}$ such that $\int_X |f(x)|^p d\mu(x) < \infty$. (The functions are defined a.e.) For $p = +\infty$, we say that a function $f: X \longrightarrow \overline{\mathbb{R}}$ is essentially

bounded over X with respect to the measure μ if f is measurable and there exists $M < +\infty$ such that $|f| \leq M$ a.e. on X.

The space $L^{\infty}(\mu)$ is the set of all measurable functions $f: X \longrightarrow \mathbb{R}$ which are essentially bounded over X with respect to the measure μ .

ii. The function $x \mapsto x^p$ is convex on the interval $]0, +\infty[$, then for all $x, y \in]0, +\infty[$, $\frac{1}{2^p}|x-y|^p \leq \frac{1}{2}x^p + \frac{1}{2}y^p$. Then $\varphi_n = 2^{1-p}(|f|^p + |f_n|^p) - |f - f_n|^p \geq 0$. The sequence $(\varphi_n)_n$ converges pointwise to $2^p |f|^p$. Then by Fatou lemma

$$2^{p} \|f\|_{p}^{p} \leq \underline{\lim}_{n \to +\infty} \int_{X} \varphi_{n}(x) d\mu(x) = 2^{p} \|f\|_{p}^{p} - \overline{\lim}_{n \to +\infty} \|f_{n} - f\|_{p}^{p}.$$

Then $f_{n} \longrightarrow f$ in L^{p} as $n \longrightarrow +\infty$.

- 2. The second question.
 - (a) i. State and prove the continuity of property of measure.
 ii. For x < y, 0 ≤ λ(A ∩ (-∞, x]) − λ(A ∩ (-∞, y]) ≤ |x − y|. Then the function x → λ(A ∩ (-∞, x]) is continuous.

(b) Since μ is finite, $\mu(A_k^c) = 1 - \mu(A_k)$. Moreover

$$\mu(\bigcap_{k=1}^{n} A_{k})^{c} = \mu(\bigcup_{k=1}^{n} A_{k}^{c}) \leq \sum_{k=1}^{n} \mu(A_{k}^{c}) = n - \sum_{k=1}^{n} \mu(A_{k}) < 1.$$

Then $\mu(\bigcap_{k=1}^{n} A_{k}) > 0.$

Ph.D Qualifying Examination Analysis-Measure (General Paper) December 2014

Section A

Problem I:

- 1. State the Fubini Theorem. Let $\Omega = (0, +\infty) \times (0, +\infty)$.
- 2. Compute

$$\int_{\Omega} \frac{d\lambda(x,y)}{(1+y)(1+x^2y)},$$

where λ is the Lebesgue measure on \mathbb{R}^2 .

3. Deduce the values of the following integrals

$$\int_{0}^{+\infty} \frac{\ln(x)}{1 - x^2} dx \text{ and } \int_{0}^{1} \frac{\ln(x)}{1 - x^2} dx$$

4. Prove that

$$\int_0^1 \frac{\ln(x)}{1 - x^2} dx = \sum_{n=0}^{+\infty} \int_0^1 x^{2n} \ln(x) dx$$

5. Deduce the sum of the following series

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} \quad \text{and} \quad \sum_{n=1}^{+\infty} \frac{1}{(2n+1)^2}.$$

Problem II: [Note that parts 1) and 2) are independent]

- 1. (a) Prove that $\mu = \sum_{n=1}^{+\infty} \delta_{\frac{1}{n}}$ is a measure on the measurable space $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$, where $\mathscr{B}_{\mathbb{R}}$ is the Borel σ -algebra on \mathbb{R} .
 - (b) Consider the functions f(x) = x and $g(x) = x \ln(1 + |x|)$ on \mathbb{R} . Give the values of $p, q \in [0, +\infty)$ for which $f \in L^p(\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \mu)$ and $g \in L^q(\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \mu)$.

- 2. (a) Prove that the function $f(x) = \frac{1}{\sqrt{x(1-x)}}$ is integrable on the interval (0,1) and compute the following integral $\int_{(0,1)} \frac{d\lambda(x)}{\sqrt{x(1-x)}}$, with λ is the Lebesgue measure on \mathbb{R} .
 - (b) Let $f: (a, b) \longrightarrow \mathbb{R}$ be a bounded Lebesgue integrable function and $\lim_{t \to a^+} f(t) = c.$

Prove that for any $t \in (a, b)$, the function $x \mapsto \frac{f(x)}{\sqrt{(x-a)(t-x)}}$ is integrable on (a, t) and compute $\lim_{t \to a^+} \int_{(a,t)} \frac{f(x)}{\sqrt{(x-a)(t-x)}} d\lambda(x)$.

Solution of Ph.D Qualifying Examination Analysis-measure (General Paper) December 2014

Section A

Problem I:

1. (The Fubini's Theorem): Let $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_2, \mathscr{A}_2, \mu_2)$ be two σ finite measure spaces, and let (X, \mathscr{A}, μ) be the product measure space. If $f \in L^1(X, d\,\mu)$, then $\int_{X_2} f(x, y) d\,\mu_2(y) \in L^1(X_1, \mu_1)$ and $\int_{X_1} f(x, y) d\,\mu_1(x) \in L^1(X_2, \mu_2)$ and

$$\int_{X_1 \times X_2} f(x, y) \mu_1 \otimes \mu_2(x, y) = \int_{X_2} \left(\int_{X_1} f(x, y) d \, \mu_1(x) \right) d \, \mu_2(\mathbf{y}) 1$$
$$= \int_{X_1} \left(\int_{X_2} f(x, y) d \, \mu_2(y) \right) d \, \mu_1(x)$$

Let $\Omega = (0, +\infty) \times (0, +\infty)$.

2. The function $(x, y) \mapsto 1(1+y)(1+x^2y)$ is non negative continuous function, then by Fubini Tonelli Theorem

$$\begin{split} \int_{\Omega} \frac{d\lambda(x,y)}{(1+y)(1+x^2y)} &= \int_{0}^{+\infty} \left(\int_{0}^{+\infty} \frac{dx}{(1+y)(1+x^2y)} \right) dy \\ &= \int_{0}^{+\infty} \left(\int_{0}^{+\infty} \frac{dy}{(1+y)(1+x^2y)} \right) dx. \\ \int_{0}^{+\infty} \frac{dx}{(1+x^2y)} &= \frac{\pi}{2\sqrt{y}} \text{ and } \int_{0}^{+\infty} \frac{dy}{2\sqrt{y}(1+y)} \stackrel{y=t^2}{=} \frac{\pi^2}{2}. \\ \text{For } x \neq 1, \ \frac{1}{(1+y)(1+x^2y)} &= \frac{A}{1+y} - \frac{x^2A}{1+x^2y}, \text{ with } A = \frac{1}{1-x^2}. \text{ Then } \\ \int_{0}^{+\infty} \frac{dy}{(1+y)(1+x^2y)} &= A \ln(\frac{1+y}{1+x^2y}) \Big]_{0}^{+\infty} = -\frac{2\ln x}{1-x^2}. \end{split}$$

3. By Fubini Tonelli Theorem

$$\int_{0}^{+\infty} \frac{\ln(x)}{1-x^{2}} dx = -\frac{\pi^{2}}{4}.$$
 Moreover by the change of variable $x = \frac{1}{t},$
$$\int_{0}^{1} \frac{\ln(x)}{1-x^{2}} dx = \int_{1}^{+\infty} \frac{\ln(x)}{1-x^{2}} dx = -\frac{\pi^{2}}{8}.$$

4. $\frac{1}{1-x^2} = \sum_{n=0}^{+\infty} x^{2n}$ and by Monotone Convergence Theorem $(x^{2n} \ln(x) \le 0)$

$$\int_0^1 \frac{\ln(x)}{1 - x^2} dx = \sum_{n=0}^{+\infty} \int_0^1 x^{2n} \ln(x) dx.$$

5. By integration by parts
$$\int_0^1 x^{2n} \ln(x) dx - \frac{1}{(2n+1)^2}$$
. Then $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} \cdot \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$. Then $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Problem II:

1. (a) We know that if $(\mu_n)_n$ is an increasing sequence of measures on a measurable space (X, \mathscr{A}) , the mapping $\mu : \mathscr{A} \longrightarrow [0, +\infty]$ defined by $\mu(A) = \lim_{n \to +\infty} \mu_n(A) = \sup_n \mu_n(A)$ for any $A \in \mathscr{A}$ is a measure on X.

Indeed it is clear that $\mu(\emptyset) = 0 = \lim_{n \to +\infty} \mu_n(\emptyset)$, and if A, B are two disjoints measurable subsets, we have

$$\mu(A \cup B) = \lim_{n \to +\infty} \mu_n(A) + \lim_{n \to +\infty} \mu_n(B) = \mu(A) + \mu(B).$$

Let now $(A_n)_n$ be an increasing sequence of \mathscr{A} and $A = \bigcup_{n=1}^{+\infty} A_n$. We have $\mu_j(A_n) \le \mu(A_n) \le \mu(A)$. Then $\mu_j(A) = \lim_{n \to +\infty} \mu_j(A_n) \le \lim_{n \to +\infty} \mu(A_n) \le \mu(A)$

and then

$$\mu(A) = \lim_{j \to +\infty} \mu_j(A) \le \lim_{n \to +\infty} \mu(A_n) \le \mu(A)$$

Then $\mu(A) = \lim_{n \to +\infty} \mu(A_n)$. Then $\mu_1 = \lim_{n \to +\infty} \sum_{k=1}^n \delta_{\frac{1}{k}}$ is a measure on the measurable space $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$.

(b)
$$\int_{\mathbb{R}} f^p(x) d\mu_1(x) = \sum_{n=1}^{+\infty} \frac{1}{n^p}$$
. Then $f \in L^p(\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \mu_1)$ if and only if $p > 1$.

$$\int_{\mathbb{R}} g^{q}(x) d\mu_{1}(x) = \sum_{n=1}^{+\infty} \frac{\ln^{q}(1+\frac{1}{n})}{n^{q}}. \text{ Since } \frac{\ln^{q}(1+\frac{1}{n})}{n^{q}} \approx \frac{1}{n^{2q}}, \text{ then}$$
$$g \in L^{q}(\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \mu_{1}) \iff q > \frac{1}{2}.$$

2. (a) In a neighborhood of 0, f(x) ≈ 1/√x, which is integrable and in a neighborhood of 1, f(x) ≈ 1/√(1-x), which is integrable. ∫_(0,1) dλ(x)/√x(1-x) = ∫₀¹ 2dt/√(1-t²) = π.
(b) In a neighborhood of a in (a,t), 1/√(x-a)(t-x) ≈ 1/√(x-a)(t-a), which is integrable and in a neighborhood of t in (a, t), 1/√(x-a)(t-x) ≈ 1/√((x-a)(t-x)), which is integrable and in a neighborhood of t in (a, t), 1/√(x-a)(t-x) ≈ 1/√((x-a)(t-x)) ≈ 1/√((x-a)(t-x)), which is integrable. Moreover since f is bounded then for any t ∈ (a, b), the function x → f(x)/√((x-a)(t-x)) is integrable on (a, t).

$$\int_{(a,t)} \frac{1}{\sqrt{(x-a)(t-x)}} d\lambda(x) \quad \stackrel{x=st+(1-s)a}{=} \quad \int_0^1 \frac{ds}{\sqrt{s(1-s)}} = \pi.$$

Since f is bounded, then by Dominated Convergence Theorem

$$\lim_{t \to a^+} \int_{(a,t)} \frac{f(x)}{\sqrt{(x-a)(t-x)}} d\lambda(x) \quad \stackrel{x=st+(1-s)a}{=} \quad \int_0^1 \frac{f(a+s(t-a))}{\sqrt{s(1-s)}} ds = \pi c$$

Ph.D Qualifying Examination Analysis (General Paper)

1424 - 1425

Question 5

- 1. Let Ω be a non-countable set. If \mathcal{D} is the class of all singleton sets $\{x\}$. Find the σ -algebra generated by \mathcal{D} .
- 2. Let (ω_j) be a sequence in Ω and (p_j) be a sequence of positive real numbers. Suppose μ is the measure defined by $\mu(E) = \sum_{j,\omega_j \in E} p_j$ on the class of all subsets of Ω . Show that a function $f: \Omega \longrightarrow \overline{\mathbb{R}}$ is integrable with respect to μ if and only if $\sum_{j=1}^{\infty} p_j f(\omega_j)$ is absolutely convergent and that if f is integrable, then $\int_{\Omega} f(x) d\mu(x) = \sum_{j=1}^{\infty} p_j f(\omega_j)$.

Question 6

1. Let \mathcal{B} be the Borel σ -algebra on [0, 1]. Show that $D = \{(x, x); x \in [0, 1]\}$ is measurable with respect to the σ -algebra $\mathcal{B} \oplus \mathcal{B}$.

If μ is the counting measure on \mathcal{B} (so that $\mu(\mathcal{B})$ is the number of elements of \mathcal{B}), λ is the Lebesgue measure and $h = \chi_D$, show that

$$\int_0^1 \int_0^1 h(x,y) d\lambda(x) d\mu(y) \neq \int_0^1 \int_0^1 h(x,y) d\mu(y) d\lambda(x)$$

why doesn't this contradict Fubini's theorem?

2. Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and suppose that \mathcal{G} is a sub- σ -algebra of \mathcal{F} . If $f \in L^1(\Omega, \mathcal{F}, \mu)$, use the Radon-Nykodym theorem to show the existence of a function $g \in L^1(\Omega, \mathcal{F}, \mu)$ such that

$$\int_E f(x)d\mu(x) = \int_E g(x)d\mu(x), \ \forall E \in \mathcal{G}.$$

Ph.D Qualifying Examination Answer Analysis (General Paper)

1424 - 1425

Question 5

1. The σ -algebra generated by \mathcal{D} is the set of countable subsets of Ω or their complement is countable.

2.
$$\mu(E) = \sum_{j=1}^{+\infty} p_j \chi_E(w_j)$$
. If f is a non negative simple function, $f = \sum_{j=1}^{m} \lambda_j \chi_{E_j}$,
$$\int_{\Omega} f(x) d\mu(x) = \sum_{j=1}^{m} \lambda_j \sum_{k=1}^{+\infty} p_k \chi_{E_j}(w_k) = \sum_{k=1}^{+\infty} p_k f(w_k).$$

If f is non negative measurable, there exists an increasing sequence of simple functions which converges to f, then by Monotone Convergence Theorem,

$$\int_{\Omega} f(x)d\mu(x) = \sum_{k=1}^{+\infty} p_k f(w_k).$$

Then f is integrable with respect to μ if and only if $\sum_{j=1}^{\infty} p_j f(\omega_j)$ is absolutely convergent and if f is integrable, then $\int_{\Omega} f(x) d\mu(x) = \sum_{j=1}^{\infty} p_j f(\omega_j)$.

Question 6

1. $D = \{(x, x); x \in [0, 1]\}$ is a closed set, then D is measurable with respect to the σ -algebra $\mathcal{B} \oplus \mathcal{B}$.

$$\begin{split} &\int_0^1 h(x,y)d\lambda(x)=0, \text{ then } \int_0^1 \left(\int_0^1 h(x,y)d\lambda(x)\right)d\mu(y)=0.\\ &\int_0^1 h(x,y)d\mu(y)=1, \text{ then } \int_0^1 \left(\int_0^1 h(x,y)d\mu(y)\right)d\lambda(x)=\int_0^1 d\lambda(x)=1.\\ &\text{ This not contradict Fubini's theorem since } \mu \text{ is not a } \sigma-\text{finite measure.} \end{split}$$

2. The measure μ is finite $(\mu(\Omega) = 1)$ and the measure $f\mu$ is absolutely continuous with respect to the measure μ on the measure space $(\Omega, \mathcal{F}, \mu)$. (If $A \in \mathcal{G}$ is a null set, then it is a null set in \mathcal{F} and $\int_A f(x)d\mu(x) = 0$). In use of the Radon-Nykodym theorem there is a function $g \in L^1(\Omega, \mathcal{F}, \mu)$ such that

$$\int_E f(x)d\mu(x) = \int_E g(x)d\mu(x), \ \forall E \in \mathcal{G}.$$

Ph.D Comprehensive Examination Analysis

1425 - 1426

Question 5

1. Given a measure μ_0 on a ring \mathcal{R} , describe without proofs, how μ_0 can be extended to a measure on the σ -ring $\sigma(\mathcal{R})$ generated by \mathcal{R} .

Let $\Omega = \mathbb{Q} \cap [0, 1)$, \mathcal{R} be the ring of all finite disjoint unions of subsets of Ω of the form $\mathbb{Q} \cap [a, b)$ and μ_0 be the counting measure on \mathcal{R} .

i) Show that $\sigma(\mathcal{R})$ is the class $\mathcal{P}(\Omega)$ of all subsets of Ω .

ii) If μ_1 is the counting measure on $\mathcal{P}(\Omega)$ and $\mu_2 = 2\mu_1$, show that μ_1 and μ_2 are distinct σ -finite extensions of μ_0 to $\sigma(\mathcal{R})$. Why doesn't this contradict the uniqueness of the extension?

2. Given a measure space $(\Omega, \mathcal{F}, \mu)$ and a measurable function $f: \Omega \longrightarrow \mathbb{R}$, describe without proofs how $\int_{\Omega} f d\mu$ is defined, when it exits.

Let, for i = 1, 2, $(\Omega_i, \mathcal{F}_i)$ be a measurable space, and suppose that $T: \Omega_1 \longrightarrow \Omega_2$ is measurable with respect to \mathcal{F}_1 and \mathcal{F}_2 . If μ is a measure on \mathcal{F}_1 and $g: \Omega_2 \longrightarrow \mathbb{R}$ is \mathcal{F}_2 measurable, show that μT^{-1} is a measure on \mathcal{F}_2 and

$$\int_{\Omega_1} g \circ T(x) d\mu(x) = \int_{\Omega_1} g(x) d\mu T^{-1}(x)$$

in the sense that either side exist, so does the other and the two are equal.

Question 6

1

1. $(a_{n,m})$ be a double sequence of non-negative numbers. Employing the counting measure on \mathbb{N} , use the Fubini-Tonelli theorem to prove that

$$\sum_{n,m=1}^{\infty} a_{n,m} = \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} a_{n,m} \right) = \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} a_{n,m} \right)$$

what can you say if we relax the requirement that $a_{n,m} \ge 0, \forall n, m \in \mathbb{N}$?

2. Let μ, ν and λ the signed measures on (Ω, \mathcal{F}) . If $\mu \ll \nu$ and $\nu \ll \lambda$, prove that

$$\frac{d\mu}{d\lambda} = \frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\lambda}.$$

Answer Ph.D Comprehensive Examination Analysis

1425 - 1426

Question 5

1. Given a measure μ_0 on a ring \mathcal{R} , for all $A \in \sigma(\mathcal{R})$, we define

$$\mu(A) = \inf\{\sum_{n=1}^{+\infty} \mu_0(A_n); \ A_n \in \mathcal{R}, \ \forall n \in \mathbb{N}, \ A \subset \bigcup_{n=1}^{+\infty} A_n\}.$$

Let $\Omega = \mathbb{Q} \cap [0, 1)$, \mathcal{R} the ring of all finite disjoint unions of subsets of Ω of the form $\mathbb{Q} \cap [a, b)$ and μ_0 the counting measure on \mathcal{R} .

i) For all $a \in \mathbb{Q}$, $\{a\} = \bigcap_{n=1}^{+\infty} \mathbb{Q} \cap [a, a + \frac{1}{n}[$. Then $\sigma(\mathcal{R}) = \mathcal{P}(\Omega)$.

ii) Since $\mu_1 \neq 0$, then $\mu_2 \neq \mu_1$. Moreover since \mathbb{Q} is countable, μ_1 and μ_2 are σ -finite.

For every $A \in \mathcal{R}$, $A \neq \emptyset$, $\sigma_0(A) = \sigma_1(A) = \sigma_2(A) = +\infty$. Then μ_1 and μ_2 are extension of μ_0 on $\sigma(\mathcal{R})$. We don't have the uniqueness since μ_0 is not σ -finite on \mathcal{R}

2. We define the integral of non negative simple function $f = \sum_{j=1}^{m} c_j \chi_{A_j}$, where $c_j \neq c_k$ for $j \neq k$ and $(A_j)_j$ measurable subsets. We define

$$\int_{\Omega} f(x)d\mu(x) = \sum_{j=1}^{m} c_j \mu(A_j).$$

If f is a non-negative measurable function, there exists a sequence of non-negative simple functions $(f_j)_j$ which increases to f. We define

$$\int_{\Omega} f(x) d\mu(x) = \lim_{n \to +\infty} \int_{\Omega} f_n(x) d\mu(x).$$

If f is a measurable function, we define $f^+ = \max(f, 0)$ and $f^- = \max(-f, 0)$. If $\int_{\Omega} f^+(x)d\mu(x) < +\infty$ or $\int_{\Omega} f^-(x)d\mu(x) < +\infty$, we define $\int_{\Omega} f(x)d\mu(x) = \int_{\Omega} f^+(x)d\mu(x) - \int_{\Omega} f^-(x)d\mu(x)$.

We denote $\nu = \mu T^{-1}$. Since $T^{-1}(\emptyset) = \emptyset$ and $\mu(\emptyset) = 0$, then $\nu(\emptyset) = 0$. If $(A_n)_n$ is a sequence of \mathcal{F}_2 measurable sets,

$$\nu(\bigcup_{n=1}^{+\infty} A_n) = \mu(T^{-1}(\bigcup_{n=1}^{+\infty} A_n)) = \mu(\bigcup_{n=1}^{+\infty} T^{-1}(A_n)) = \lim_{n \to +\infty} \nu(A_n).$$

If g is a simple function,

If g is a non negative measurable function, the result is obtained by Monotone Convergence Theorem.

Question 6

1. If μ is the counting measure on \mathbb{N} and g a non negative measurable function,

$$\int_{\mathbb{N}} g(x) d\mu(x) = \sum_{n=1}^{+\infty} g(n).$$

Define the function f on $\mathbb{N} \times \mathbb{N}$ by $f(n,m) = a_{n,m}$. By Fubini-Tonelli theorem

$$\sum_{n,m=1}^{\infty} a_{n,m} = \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} a_{n,m} \right) = \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} a_{n,m} \right)$$

If $a_{n,m}$ are not non negative, we use the Fubini theorem if $\sum_{n,m=1}^{\infty} |a_{n,m}| < +\infty$.

2. Since $\mu \ll \nu$, there is $f \in L^1(\nu)$ such that $\mu = f\nu$ and since $\nu \ll \lambda$, there is $g \in L^1(\lambda)$ such that $\nu = g\lambda$.

If A is a null set with respect to the measure λ , then since $\nu \ll \lambda$, A is a null set with respect to the measure ν and since $\mu \ll \nu$, A is a null set with respect to the measure μ . Then $\mu \ll \lambda$ and $\mu = f\nu = fg\lambda$. Then

$$\frac{d\mu}{d\lambda} = \frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\lambda}.$$

Ph.D Comprehensive Examination Analysis

1425-1426- Second semester

Question 3

a) Let (X, \mathscr{M}, μ) be a measure space. Let $\mathcal{N} = \{N \in \mathscr{M} : \mu(N) = 0\}$ and $\overline{\mathscr{M}} = \{E \cup F, E \in \mathscr{M} \text{ and } F \subset N \text{ for some } N \in \mathcal{N}\}.$

i) Show that $\overline{\mathscr{M}}$ is a σ -algebra.

- ii) Verify that the extension $\bar{\mu}$ of μ on $\overline{\mathscr{M}}$ is a complete measure.
- b) i) State the definition of an outer measure.

ii) Let X be a space. We consider $\mathscr{M} \subset \mathscr{P}(X)$ an algebra of sets and f a non negative function defined on \mathscr{M} , such that $f(\emptyset) = 0$. For any $A \subset X$, define

$$\mu(A) = \inf\{\sum_{j=1}^{+\infty} f(E_j); E_j \in \mathscr{M} \text{ and } A \subset \bigcup_{j=1}^{+\infty} E_j\}.$$

Show that μ is an outer measure.

c) If μ_1, \ldots, μ_n are measure on (X, \mathscr{M}) and a_1, \ldots, a_n positive numbers. Prove that $\mu = \sum_{j=1}^n a_j \mu_j$ is a measure on (X, \mathscr{M}) .

Question 4

a) Let (X, \mathscr{M}, μ) and (Y, \mathscr{N}, ν) be σ -finite measure spaces. Prove that if $E \in \mathscr{M} \otimes \mathscr{N}$, then the functions $x \in X \longrightarrow \nu(E_x)$ and $y \in Y \longrightarrow \mu(E^y)$ are measurable on X and Y respectively, and

$$\mu \otimes \nu(E) = \int_X \nu(E_x) d\mu(x) = \int_Y \mu(E^y) d\nu(y)$$

(*recall that $E_x = \{y \in Y; (x, y) \in E\}$ and $E^y = \{x \in X; (x, y) \in E\}$.)

b) Let X = [0, 1], \mathscr{B} the Borel σ -algebra on [0, 1], μ is the Lebesgue measure and ν the counting measure on \mathscr{B} (if $B \in \mathscr{B}$, $\nu(B)$ is the number of elements of B). Let $D = \{(x, y) \in X \times X : x = y\}$.

i) Show that D is measurable with respect to the σ -algebra $\mathscr{B} \otimes \mathscr{B}$. ii) Show that $\int_0^1 \int_0^1 \chi_D(x,y) d\mu(x) d\nu(y) \neq \int_0^1 \int_0^1 \chi_D(x,y) d\nu(y) d\mu(x)$. Explain why these integrals are not equal?

Answer Ph.D Comprehensive Examination Analysis

1425-1426- Second semester

Question 3

a) i) \mathscr{M} is closed under countable union. It remains to prove that it is closed under complementarity. Let $A' = A \cup N$ be an element of $\overline{\mathscr{M}}$. As N is a null set there exists a subset B of $\mathscr{M} \cap \mathcal{N}$ and $N \subset B$. We have

$$A'^{c} = (A \cup N)^{c} = (A \cup B)^{c} \cup (B \setminus (A \cup N)).$$

It follows that $A^{\prime c}$ is an element of $\overline{\mathscr{M}}$ and $\overline{\mathscr{M}}$ is a σ -algebra.

ii) To show that $\overline{\mu}$ is a mapping on $\overline{\mathscr{M}}$, we must show that if $A_1 \cup N_1 = A_2 \cup N_2$ with $A_1, A_2 \in \mathscr{M}$ and $N_1, N_2 \in \mathcal{N}$, then $\mu(A_1) = \mu(A_2)$. So we have $A_1 \setminus A_2 \subset N_2$, then it is a null set. If $B = A_1 \cap A_2$, then $A_1 = B \cup (A_1 \setminus A_2)$ and $\mu(B) = \mu(A_1)$. In the same way we have $\mu(B) = \mu(A_2)$, then $\mu(A_1) = \mu(A_2)$. Let prove now that $\overline{\mu}$ defines a measure on the σ -algebra $\overline{\mathscr{M}}$. If $(A'_n)_n$ is a sequence of disjoint elements of $\overline{\mathscr{M}}$, with $A'_n = A_n \cup N_n$, $A_n \in \mathscr{M}$ and $N_n \in \mathcal{N}$; $\forall n \in \mathbb{N}$. We have

$$\overline{\mu}(\bigcup_{n=1}^{+\infty}A'_n) = \overline{\mu}\Big((\bigcup_{n=1}^{+\infty}A_n) \cup (\bigcup_{n=1}^{+\infty}N_n)\Big) = \mu(\bigcup_{n=1}^{+\infty}A_n) = \sum_{n=1}^{+\infty}\mu(A_n) = \sum_{n=1}^{+\infty}\overline{\mu}(A'_n).$$

Finally the measure space $(X, \overline{\mathcal{M}}, \overline{\mu})$ is complete because the ν -null sets are elements of \mathcal{N} . It is evident that $\overline{\mu}$ is the smallest complete extension of the measure μ .

b) i) Let X be a non empty set. An outer measure or an exterior measure μ^* on X is a function $\mu^* \colon \mathscr{P}(X) \longrightarrow [0,\infty]$ which satisfies the following conditions:

- $\mu^*(\emptyset) = 0.$
- If $(A_n)_n$ is a sequence of subsets of X, then

$$\mu^*(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu^*(A_n).$$

- μ^* is increasing (i.e. $\mu^*(A) \le \mu^*(B)$ if $A \subset B$).
- ii) $\mu(\emptyset) \leq f(\emptyset) = 0$, then and μ^* is increasing.

Let $(A_n)_n$ be a sequence of subsets of X. We claim that

$$\mu(\cup_{n=1}^{+\infty}A_n) \le \sum_{n=1}^{+\infty}\mu(A_n).$$

If there exists a subset A_n such that $\mu(A_n) = +\infty$, then the inequality is trivial. Assume now that $\forall n \in \mathbb{N}, \ \mu(A_n) < +\infty$.

For every $n \in \mathbb{N}$, and for every $\varepsilon > 0$, there exists a sequence $(A_{n,j})_j \in \mathcal{M}$, such that $\mu(A_n) \ge \sum_{j=1}^{+\infty} f(A_{n,j}) - \frac{\varepsilon}{2^n}$. The sequence $(A_{n,j})_{j,n\in\mathbb{N}}$ is a covering of the set $A = \bigcup_{j=1}^{+\infty} A_n$ and $\sum_{n=1}^{+\infty} \sum_{j=1}^{+\infty} f(A_{n,j}) \le \sum_{\substack{n=1\\+\infty}}^{+\infty} \mu(A_n) + \varepsilon$. Then $\mu(A) \le$

 $\sum_{n=1}^{+\infty} \mu(A_n) + \varepsilon$, for all $\varepsilon > 0$ and thus $\mu(A) \le \sum_{n=1}^{+\infty} \mu(A_n)$, which proves that μ is an outer measure.

c) i)
$$\mu(\emptyset) = \sum_{j=1}^{n} a_j \mu_j(\emptyset) = 0,$$

ii) If $A \cap B = \emptyset$ and $A, B \in \mathscr{M}$, $\mu(A \cup B) = \sum_{j=1}^{n} a_j \mu_j(A \cup B) = \sum_{j=1}^{n} a_j(\mu_j(A) + \mu_j(B)) = \mu(A) + \mu(B).$

iii) If $(A_n)_n$ is an increasing sequence of the σ -algebra \mathscr{M} ,

$$\mu(\bigcup_{k=1}^{+\infty} A_k) = \sum_{j=1}^n a_j \mu_j(\bigcup_{k=1}^{+\infty} A_k) = \sum_{j=1}^n a_j \lim_{k \to +\infty} \mu_j(A_k) = \lim_{k \to +\infty} \mu(A_k).$$

Then μ is a measure on (X, \mathscr{M}) .

Question 4

a) Suppose in the first case that ν is finite and define

$$\mathscr{A} = \{ C \in \mathscr{M} \otimes \mathscr{N} ; x \longmapsto \nu(C_x) \text{ is measurable } \}.$$

 \mathscr{A} contains the measurable rectangles $C = A \times B$, with $A \in \mathscr{M}$ and $B \in \mathscr{N}$, since $\nu(C_x) = \chi_A(x)\nu(B)$. Moreover \mathscr{A} is a monotone class: if $C \subset C'$, $\nu(C' \setminus C)_x = \nu(C'_x) - \nu(C_x)$ since ν is finite, and if $(C_n)_n$ is an increasing sequence

$$\nu(\bigcup_{k=1}^{+\infty}C_n)_x = \lim_{n \to +\infty} \nu(C_n)_x.$$

Then $\mathscr{A} = \mathscr{M} \otimes \mathscr{N}$.

If ν is σ -finite, we take a sequence $(B_n)_n$ such that $\nu(B_n) < +\infty$ for all $n \in \mathbb{N}, \nu(B_n) < +\infty$ and $X = \bigcup_{n=1}^{+\infty} B_n$. We define $\nu_{2,n}(B) = \nu(B \cap B_n)$. Then $\nu(C_x) = \lim_{n \to +\infty} \mu_{2,n}(C_x)$ which is measurable.

Define for all $E \in \mathscr{M} \otimes \mathscr{N}$,

$$\mu \otimes \nu(E) = \int_X \nu(E_x) d\mu(x).$$

To prove that $\mu \otimes \nu$ is a measure on $\mathscr{M} \otimes \mathscr{N}$, let $(C_n)_n$ be a sequence of disjoint measurable subsets in $\mathscr{M} \otimes \mathscr{N}$, the sequence $((C_n)_x)_n$ is disjoint for all $x \in X$ and

$$\mu \otimes \nu(\bigcup_{n=1}^{+\infty} C_n) = \int_X \nu(\bigcup_{n=1}^{+\infty} (C_n)_x) d\mu(x)$$
$$= \int_X \sum_{n=1}^{+\infty} \nu((C_n)_x) d\mu(x)$$
$$= \sum_{n=1}^{+\infty} \int_X \nu((C_n)_x) d\mu(x) = \sum_{n=1}^{+\infty} \mu \otimes \nu(C_n).$$

Moreover $\mu \otimes \nu(A \times B) = \mu(A)\nu(B)$. In the same way, if we define

$$\mu \,\tilde{\otimes} \,\nu(C) = \int_Y \mu(C^y) d\nu(y).$$

 $\mu \otimes \nu$ is a measure on $\mathscr{M} \otimes \mathscr{N}$ and fulfills $\mu \otimes \nu(A \times B) = \mu(A)\nu(B)$. We deduce that $\mu \otimes \nu = \mu \otimes \nu$ and

$$\mu \otimes \nu(E) = \int_X \nu(E_x) d\mu(x) = \int_Y \mu(E^y) d\nu(y).$$

b) i) $D = \{(x, x); x \in [0, 1]\}$ is a closed set, then D is measurable with respect to the σ -algebra $\mathscr{B} \oplus \mathscr{B}$.

ii)
$$\int_0^1 h(x,y)d\lambda(x) = 0, \text{ then } \int_0^1 \left(\int_0^1 h(x,y)d\lambda(x)\right)d\mu(y) = 0.$$
$$\int_0^1 h(x,y)d\mu(y) = 1, \text{ then } \int_0^1 \left(\int_0^1 h(x,y)d\mu(y)\right)d\lambda(x) = \int_0^1 d\lambda(x) = 1. \text{ This not contradict Fubini's theorem since } \mu \text{ is not } \sigma-\text{finite.}$$

Ph.D Comprehensive Examination Analysis (General Paper)

First semester 1426-1427

Section A

I) a) Let f be the function defined on $]0, +\infty[$ by: $f(x) = \frac{xe^{-ax}}{1 - e^{-bx}}$, with a and b in $]0, +\infty[$.

Show that f is integrable on $[0, +\infty[$ and $\int_0^{+\infty} f(x) dx = \sum_{n=0}^{+\infty} \frac{1}{(a+nb)^2}$.

b) State the definition of the Borel σ -algebra on the real line \mathbb{R} .

II) a) Let (X, \mathcal{B}, μ) be a measure space and let f be a function defined on X. If f is μ -integrable, show that the set $\{x \in X; f(x) \neq 0\}$ is of σ -finite measure.

b) State the Fubini theorem with respect the measure spaces (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) , where $X = Y = \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ the set of non negative integers, $\mathcal{A} = \mathcal{B} = \mathcal{P}(\mathbb{N}_0)$ and $\mu = \nu$ the counting measure.

Answer Ph.D Comprehensive Examination Analysis (General Paper)

First semester 1426-1427

Section A

I) a) For
$$x > 0$$
, $f(x) = \frac{xe^{-ax}}{1 - e^{-bx}} = \sum_{n=0}^{+\infty} xe^{-(a+nb)x}$.

f is continuous on $[0, +\infty[$ and non negative. $(f(0) = \lim_{x \to 0} f(x) = \frac{1}{b})$. Moreover $f(x) \le 2xe^{-ax}$ for x large, which is integrable. Then f is integrable. By the Monotone Convergence Theorem or the Dominate Convergence Theorem, $\int_{0}^{+\infty} f(x)dx = \sum_{a=0}^{+\infty} \int_{0}^{+\infty} xe^{-(a+nb)x}dx = \sum_{a=0}^{+\infty} \frac{1}{(a+nb)^2}.$

b) The Borel σ -algebra on the real line \mathbb{R} is the σ -algebra generated by the open subsets of \mathbb{R} .

II) a) For all $n \in \mathbb{N}$ define the set $E_n = \{x \in X; |f(x)| \ge \frac{1}{n}\}$. $\mu(E_n) = \int_{E_n} d\mu(x) \le n \int_X |f(x)| d\mu(x) = n ||f||_1 < +\infty$. Then the set $\{x \in X; f(x) \neq 0\}$ is σ -finite.

b) (The Fubini's Theorem): Let (X, \mathscr{A}, μ) and (Y, \mathscr{B}, ν) be two σ - finite measure spaces, and let $(X \times Y, \mathscr{A} \otimes \mathscr{B}, \mu \otimes \nu)$ be the product measure space. If $f \in L^1(X \times Y, d(\mu \otimes \nu))$, then $\int_Y f(x, y) d\nu(y) \in L^1(X, \mu)$ and $\int_X f(x, y) d\mu(x) \in L^1(Y, \nu)$ and

$$\int_{X \times Y} f(x, y) d\mu \otimes \nu(x, y) = \int_{Y} \left(\int_{X} f(x, y) d\mu(x) \right) d\nu(y)$$
$$= \int_{X} \left(\int_{Y} f(x, y) d\nu(y) \right) d\mu(x)$$

Consider the special case where $X = Y = \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ the set of non negative integers, $\mathcal{A} = \mathcal{B} = \mathcal{P}(\mathbb{N}_0)$ and $\mu = \nu$ the counting measure.

Let $(a_{m,n})_{m,n}$ be a sequence of real numbers. Then the Fubini-Tonelli theorem says that if $a_{m,n} \ge 0$ for all $m, n \in \mathbb{N}$, then

$$\sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} a_{m,n} \right) = \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} a_{m,n} \right).$$

The Fubini theorem says that if $\sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} |a_{m,n}| \right) < +\infty$, then

$$\sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} a_{m,n} \right) = \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} a_{m,n} \right).$$

Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1429-1430 H

Time

3 hours

Section B

III)

1. Let (X, \mathscr{B}, μ) be a measure space and let $(A_n)_n$ be a decreasing sequence of \mathscr{B} . Assume that μ is a finite.

Prove that $\lim_{n \to +\infty} \mu(A_n) = \mu(\lim_{n \to +\infty} A_n).$

2. Give an example of a measure space (X, \mathscr{B}, μ) and a decreasing sequence $(A_n)_n$ such that $\lim_{n \to +\infty} \mu(A_n) \neq \mu(\lim_{n \to +\infty} A_n)$.

3. a) Prove that for n ≥ 2 and x ≥ 0, we have (1 + x/n)ⁿ ≥ x²/4, and find the following limit lim_{n→+∞} ∫₀^{+∞} 1/((1 + x/n)ⁿx^{1/n}) dx.
b) Find the Lebesgue integral on [0, 1] of the function f defined by: f(x) = 1/√x + χ_Q(x), for x ≠ 0 and f(0) = 0.

c) Consider the function $g(x) = \frac{1}{(1+x^2)\sqrt{|\sin x|}}$, for $x \notin \pi \mathbb{N}$ and $g(n\pi) = 0$, for all $n \in \mathbb{N}$. Show that the following function g is Lebesgue integrable on $(0, +\infty)$.

1. Let
$$f : \mathbb{R} \longrightarrow [0, \infty)$$
 be defined as follows: $f(x) = \begin{cases} \frac{1}{x(\log x)^2} & \text{if } x \in (0, e^{-1}), \\ 0 & \text{if } x \notin (0, e^{-1}). \end{cases}$

a) Check that
$$\int_{(0,x)} f(t)dt = \frac{-1}{\log x}$$
 for $x \in (0, e^{-1})$. Deduce that $f \in L^1(\mathbb{R})$.

b) Consider the maximal function \mathcal{M} defined by $\mathcal{M}f(x) := \sup_{x \in I} \frac{1}{|I|} \int_{I} |f(t)| dt$, (*I* is an open interval and |I| is the length of *I*).

Conclude that
$$\int_{(0,r)} \mathcal{M}f(x)dx = \infty$$
, for every $r > 0$.

- 2. Let $(\mathbb{X}, \mathscr{B}, \mu)$ be a measure space such that $\mu(\mathbb{X}) = 1$. Let L^p denote $L^p(\mathbb{X}, \mathscr{B}, \mu)$ for $1 \leq p \leq \infty$.
 - a) Show that $L^q \subset L^p$ if $1 \le p \le q$.
 - b) Use a) to show that $L^p \cap L^q \subset L^s$ if $1 \le p \le s \le q \le \infty$.
 - c) Show that if $f \in L^{\infty}$, then $||f||_{\infty} = \lim_{p \to \infty} ||f||_p$.

d) Now, suppose that $\mu(\mathbb{X})$ is not necessarily finite. Put s = tp + (1-t)q for $t \in [0, 1]$ and apply Hölder's inequality to $\int_{\mathbb{X}} |f|^s d\mu$, to show that $||f||_s \leq ||f||_p^{\Phi} ||f||_q^{1-\Phi}$, where $\Phi = \frac{tp}{s} \in [0, 1]$. Deduce again that $L^p \cap L^q \subset L^s$.

Answer Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1429-1430 H

Section B

III)

- 1. The sequence $(A_n^c)_n$ is increasing, then $\lim_{n \to +\infty} \mu(A_n^c) = \mu(X \setminus \lim_{n \to +\infty} A_n)$. As μ is finite $\mu(A_n^c) = \mu(X) - \mu(A_n)$ and $\mu(X \setminus \lim_{n \to +\infty} A_n) = \mu(X) - \mu(\lim_{n \to +\infty} A_n)$. Then $\lim_{n \to +\infty} \mu(A_n) = \mu(\lim_{n \to +\infty} A_n)$.
- 2. We can take $A_n = [n, +\infty[\subset \mathbb{R} \text{ and } \mu \text{ the Lebesgue measure on } \mathbb{R}$. $\mu(A_n) = +\infty, \lim_{n \to +\infty} A_n = \emptyset.$

3. a)
$$(1+\frac{x}{n})^n = \sum_{k=0}^n \binom{n}{k} \frac{x^k}{n^k} \ge 1 + x + \frac{(n-1)x^2}{2n} \ge \frac{x^2}{4}$$
 for $n \ge 2$ and $x \ge 0$.

The function $\frac{1}{(1+\frac{x}{n})^n x^{\frac{1}{n}}}$ is dominated by the function $\frac{4}{x^{2+\frac{1}{n}}}$ on the interval $[1, +\infty[$ which is integrable on $[1, +\infty[$, and it is dominated by the integrable function $\frac{1}{x^{\frac{1}{n}}}$ on the interval]0, 1]. Furthermore $\lim_{n \to +\infty} \frac{1}{(1+\frac{x}{n})^n x^{\frac{1}{n}}} = e^{-x}$. Then by the dominated convergence theorem $\lim_{n \to +\infty} \int_0^{+\infty} \frac{1}{(1+\frac{x}{n})^n x^{\frac{1}{n}}} dx = \int_0^{+\infty} e^{-x} dx = 1.$

b) \mathbb{Q} is a Lebesgue null set, $\frac{1}{\sqrt{x}}$ is continuous on $]0, +\infty[$, then the Lebesgue integral on [0, 1] of the function f is the Riemann integral of the function $g(x) = \frac{1}{\sqrt{x}}$, and $\int_0^1 \frac{dx}{\sqrt{x}} = 2$

c) By the Monotone Convergence Theorem

$$\int_{0}^{+\infty} \frac{dx}{(1+x^{2})\sqrt{|\sin x|}} = \sum_{n=0}^{+\infty} \int_{n\pi}^{(n+1)\pi} \frac{dx}{(1+x^{2})\sqrt{|\sin x|}}$$
$$= \sum_{n=0}^{+\infty} \int_{0}^{\pi} \frac{dx}{(1+(x+n\pi)^{2})\sqrt{|\sin x|}}$$
$$\leq \sum_{n=0}^{+\infty} \frac{1}{(1+n^{2}\pi^{2})} \int_{0}^{\pi} \frac{dx}{\sqrt{|\sin x|}}.$$

 $\int_0^{\pi} \frac{dx}{\sqrt{|\sin x|}} = 2 \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{\sin x}} \text{ and on the interval } [0, \frac{\pi}{2}], \sin x \ge \frac{2x}{\pi}.$ Then the function $\frac{1}{\sqrt{|\sin x|}}$ is Lebesgue integrable on the interval $(0, \frac{\pi}{2})$, then the function g is Lebesgue integrable on the interval $(0, +\infty)$.

IV)

1. a) For
$$x \in (0, e^{-1})$$
, $\int_{(0,x)} f(t)dt = \int_{(0,x)} \frac{dt}{t(\log t)^2} \stackrel{s=\log t}{=} \int_{(-\infty,\log x)} \frac{ds}{s^2} = \frac{-1}{\log x}$.

Since f(x) = 0 for $x \notin (0, e^{-1}), f \ge 0$ for $x \in (0, e^{-1})$ and $\int_{(0, e^{-1})} f(t) dt = 1$, then $f \in L^1(\mathbb{R})$.

b) To prove the result, we can consider $0 < r < e^{-1}$. For x > 0,

$$\mathcal{M}f(x) := \sup_{x \in I} \frac{1}{|I|} \int_{I} |f(t)| dt \ge \frac{1}{2x} \int_{(0,x)} f(t) dt = \frac{-1}{2x \log x}.$$

Then

$$\int_{(0,r)} \mathcal{M}f(x) dx \ge \int_{(0,r)} \frac{-dx}{2x \log x} = +\infty.$$

2. a) We consider $p < q < +\infty$, $r = \frac{q}{p} > 1$ and $\frac{1}{r} + \frac{1}{s} = 1$. If $f \in L^q$, by Hölder's inequality

$$\int_{\mathbb{X}} |f(x)|^p d\mu(x) \le \left(\int_{\mathbb{X}} |f(x)|^q d\mu(x)\right)^{\frac{p}{q}} (\mu(\mathbb{X}))^{\frac{1}{s}} < +\infty.$$

Then $L^q \subset L^p$ if $1 \le p \le q$. If $q = +\infty$, $||f||_p \le ||f||_{\infty} (\mu(\mathbb{X}))^{\frac{1}{p}}$. b) If $1 \le p \le s \le q \le \infty$, then $L^p \cap L^q \subset L^p \subset L^s$ since If $1 \le p \le s$. c) If $f \in L^\infty$, $||f||_p \le ||f||_{\infty} (\mu(\mathbb{X}))^{\frac{1}{p}}$ for all $p \ge 1$, then $\overline{\lim}_{p \to \infty} ||f||_p \le ||f||_{\infty}$.

Consider for $t \in [0, ||f||_{\infty})$ the measurable set $A_t = \{x \in \mathbb{X}; |f(x)| > t\}.$

$$||f||_p \ge \left(\int_{A_t} |f(x)|^p d\mu(x)\right)^p \ge t(\mu(A_t))^{\frac{1}{p}}.$$

Then $\underline{\lim}_{p\to\infty} ||f||_p = ||f||_{\infty}$ and $||f||_{\infty} = \lim_{p\to\infty} ||f||_p$. d) By Hölder's inequality

$$\begin{split} \int_{\mathbb{X}} |f(x)|^s d\mu(x) &= \int_{\mathbb{X}} |f(x)|^{tp} |f(x)|^{(1-t)q} d\mu(x) \\ &\leq \left(\int_{\mathbb{X}} |f(x)|^p d\mu(x) \right)^t \left(\int_{\mathbb{X}} |f(x)|^q d\mu(x) \right)^{1-t} \end{split}$$

Then

$$\left(\int_{\mathbb{X}} |f(x)|^s d\mu(x)\right)^{\frac{1}{s}} \le \left(\int_{\mathbb{X}} |f(x)|^p d\mu(x)\right)^{\frac{t}{s}} \left(\int_{\mathbb{X}} |f(x)|^q d\mu(x)\right)^{\frac{1-t}{s}}$$

and

$$||f||_{s} \le ||f||_{p}^{\Phi} ||f||_{q}^{1-\Phi},$$

where $\Phi = \frac{tp}{s} \in [0, 1]$. It results that if $f \in L^p \cap L^q$ then $f \in L^s$.

Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1996

Time 3 hours

Section I

- 1. (a) Let $(E_n)_n$ be a sequence of Borel sets in \mathbb{R} and μ the Lebesgue measure. Show that $\mu(\liminf_{n \to +\infty} E_n) \leq \liminf_{n \to +\infty} \mu(E_n)$.
 - (b) Construct a sequence $(f_n)_n$, $f_n \ge 0$ of Lebesgue measurable functions on \mathbb{R} , for which $\liminf_{n \to +\infty} \int_{\mathbb{R}} f_n(x) d\mu(x) > \int_{\mathbb{R}} \liminf_{n \to +\infty} f_n(x) d\mu(x)$.
 - (c) Check whether the continuous function $x^2 \sin \frac{1}{x^2}$ is a function of bounded variation in [-1, 1].
- 2. (a) Let f be a function on (a, b) such that $|f(x) f(y)| \le 2|x y|$ for all x and y in the interval. Show that f is absolutely continuous on (a, b).

(b) Give an example of a function f(x) on [a, b] for which ∫_a^b f'(x)dx exists, but ∫_a^b f'(x)dx ≠ f(b) - f(a).
(c) Let g(x) = 1/(√x), 0 < x < 1. Show that A(f) = ∫₀¹ f(x)g(x)dx defines a bounded linear functional on L³; find the value of ||A||.

- 3. Let X and Y be the unit interval [0,1] and \mathcal{B} be the class of Borel sets in [0,1]. For $E \in \mathcal{B}$, let $\mu(E)$ be the Lebesgue measure of E and $\mu(E)$ be
- in [0, 1]. For $E \in \mathcal{B}$, let $\mu(E)$ be the Lebesgue measure of E and $\mu(E)$ be the number of points in E. Let $D = \{(x, y) : x = y\}$ be the diagonal of $X \times Y$.
 - (a) Show that D is a measurable subset of $X \times Y$.

(b) If
$$D_x = \{y : (x, y) \in D\}$$
, show that $\int_X \nu(D_x) d\mu(x) = 1$.
(c) If $D^y = \{x : (x, y) \in D\}$, show that $\int_Y \mu(D^y) d\nu(y) = 0$.

- (d) Using the above results, show that it may happen for some function
 - f(x,y) and some measures λ_1 and λ_2 that $\int \int f(x,y)d\lambda_1(x)d\lambda_2(y) \neq \int \int f(x,y)d\lambda_2(y)d\lambda_1(x).$

Answer Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1996

3 hours

Section I

- 1. (a) The sequence $\left(\bigcap_{k=n}^{+\infty} E_k\right)_n$ is increasing then from the Monotone Convergence Theorem: $\mu\left(\bigcup_{n=1}^{+\infty}\bigcap_{k=n}^{+\infty}E_k\right) = \lim_{n \to +\infty}\mu\left(\bigcap_{k=n}^{+\infty}E_k\right)$. But $\mu\left(\bigcap_{k=n}^{+\infty}E_k\right) \leq \inf_{k \ge n}\mu(E_k)$, then $\mu(\liminf_{n \to +\infty}E_n) \leq \liminf_{n \to +\infty}\mu(E_n)$.
 - (b) Take $f_n = \chi_{[n,+\infty[}, \liminf_{n \to +\infty} f_n = 0$ but $\liminf_{n \to +\infty} \int_{\mathbb{R}} f_n(x) d\mu(x) = +\infty$.
 - (c) $\int_{-1}^{1} |f'(x)| dx = \int_{-1}^{1} |2x \sin \frac{1}{x^2} \frac{2}{x} \cos \frac{1}{x^2}| dx.$ $\int_{-1}^{1} |2x \sin \frac{1}{x^2}| dx \le 4, \text{ but } \int_{-1}^{1} |\frac{2}{x} \cos \frac{1}{x^2}| dx = 2 \int_{0}^{1} \frac{2}{x} |\cos \frac{1}{x^2}| dx = 2 \int_{0$
- 2. (a) Let $\varepsilon > 0$ and let $]a_k, b_k[, k = 1, ..., n$ be a finite number of mutually disjoint subintervals of]a, b[such that $\sum_{k=1}^{n} (b_k a_k) \le \frac{\varepsilon}{2}$, then $\sum_{k=1}^{n} |f(b_k) f(a_k)| \le \sum_{k=1}^{n} 2(b_k a_k) \le \varepsilon$. Then f is absolutely continuous on]a, b[.
 - (b) The function f defined on [-1, 1] by f(x) = 1 if x > 0 and f(x) = 0 if $x \le 0$. f' = 0 a.e. and f(1) f(-1) = 1.
 - (c) Let $f \in L^3$, $|A(f)| \leq \int_0^1 |f(x)| |g(x)| dx \leq ||f||_3 ||g||_{\frac{3}{2}} = (\frac{8}{5})^{\frac{2}{3}} ||f||_3$. Then A defines a bounded linear functional on L^3 and $||A|| = ||g||_{\frac{3}{2}} = (\frac{8}{5})^{\frac{2}{3}}$.

Time

- 3. (a) $D = \{(x, x); x \in [0, 1]\}$ is a closed set, then D is measurable with respect to the σ -algebra $\mathcal{B} \oplus \mathcal{B}$.
 - (b) $D_x = \{y : (x, y) \in D\} = \{x\}$, then $\nu(D_x) = 1$ and $\int_X \nu(D_x) d\mu(x) = 1$.
 - (c) $D^y = \{x : (x, y) \in D\} = \{y\}$, then $\mu(D^y) = 0$ and $\int_Y \mu(D^y) d\nu(y) = 0$.
 - (d) Let $f(x,y) = \chi_D(x,y)$. $\int_Y \int_X f(x,y) d\mu(x) d\nu(y) = 1 \neq \int_X \int_Y f(x,y) d\nu(y) d\mu(x) = 0$.

Ph.D Comprehensive Examination Analysis (General Paper)

Autumn 1997

Time 3 hours

Section I

- 1. (a) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be two functions such that f is measurable and g is continuous. Is $f \circ g$ measurable?
 - (b) Describe a non measurable set A on \mathbb{R} . Suppose A is a non measurable set. Define

$$f(x) = \begin{cases} e^x & \text{if } x \in A \\ e^{-x} & \text{if } x \notin A \end{cases}.$$

Show that for any c, $\{x; f(x) = c\}$ is measurable, but f is not a measurable function.

- 2. (a) Let f be a monotonic function on [a, b]. Show that f can be written as f = h + g, where h is absolutely continuous and g is monotonic for which g'(x) = 0 a.e.
 - (b) Construct two measures μ and σ on \mathbb{R} such that $\mu \ll \sigma$, but there exist no function f such that $\frac{d\mu}{d\sigma} = f$.
- 3. (a) State Tonelli theorem.
 - (b) Let $f: \Omega \longrightarrow \mathbb{R}$ defined by: $f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \text{ and} \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$ with $\Omega = \{(x,y); \ -1 \le x \le 1, \ -1 \le x \le 1\}.$ Is $\int_{-1}^1 \left(\int_{-1}^1 f(x,y) dx\right) dy = \int_{-1}^1 \left(\int_{-1}^1 f(x,y) dy\right) dx$? What can you say about the double integral $\int \int_{\Omega} f(x,y) dx dy$?.

Answer Ph.D Comprehensive Examination Analysis (General Paper)

Autumn 1997

Time 3 hours

Section I

1. (a) If \mathscr{B} is the Borel σ -algebra, f and g are measurable, then

 $(f \circ g)^{-1}(\mathscr{B}) = g^{-1}(f^{-1}(\mathscr{B})) \subset f^{-1}(\mathscr{B}) \subset \mathscr{B}.$

Then $f \circ g$ is measurable.

- (b) We consider on E = [0, 1] the equivalence relationship R, defined by xRy ⇔ x y ∈ Q. We choose a representative of each class, and we denote A the set of these representatives. The set A is not countable and non measurable set.
 If c > 0, {x; f(x) = c} = {ln c} ∩ A is measurable.
 - If c < 0, $\{x; f(x) = c\} = \{\ln c\} \cap A^c$ is measurable.
 - If c = 0, $\{x; f(x) = 0\} = \emptyset$ is measurable.

f is not a measurable function since $\{x; f(x) > 0\} = A$ which is not measurable.

- 2. (a) Since f is monotonic, then it is of bounded variation, f is a.e differentiable. The function h defined $h(x) = \int_a^x f'(t)dt$ is absolutely continuous. The function $g = f f_a$ is singular i.e g' = 0 a.e and monotonic.
 - (b) Consider λ the Lebesgue measure and δ the Dirac measure. Construct two measures μ and σ on R such that μ << σ, but there exist no function f such that dμ/dσ = f.</p>
- (a) The Fubini Tonelli theorem: Let (X₁, A₁, μ₁) and (X₂, A₂, μ₂) be two σ− finite measure spaces. Let f be a non negative measurable function on (X₁ × X₂, A₁ ⊗ A₂, μ₁ ⊗ μ₂). Then the functions

$$x \longmapsto g(x) = \int_{X_2} f(x, y) d\mu_2(y) \quad \text{and} \quad y \longmapsto h(y) = \int_{X_1} f(x, y) d\mu_1(x) d\mu_2(y)$$

are respectively measurable on X_1 and X_2 . Moreover

$$\begin{split} \int_{X_1 \times X_2} f(x, y) \mu_1 \otimes \mu_2(x, y) &= \int_{X_2} \left(\int_{X_1} f(x, y) d \, \mu_1(x) \right) d \, \mu_2(y) \\ &= \int_{X_1} \left(\int_{X_2} f(x, y) d \, \mu_2(y) \right) d \, \mu_1(x). \end{split}$$

(b)
$$\int_{-1}^{1} f(x,y)dx = 2-2y \tan^{-1}(\frac{1}{y}) \text{ for } y \neq 0 \text{ and } \int_{-1}^{1} \left(\int_{-1}^{1} f(x,y)dx \right) dy = 4 \int_{0}^{1} 1-y \tan^{-1}(\frac{1}{y})dy = 2. \text{ Since } f(x,y) = -f(y,x), \text{ then } \int_{-1}^{1} \left(\int_{-1}^{1} f(x,y)dy \right) dx = -2.$$

Ph.D Qualifying Examination Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014

Section A

Problem I:

- 1. State the Fubini Theorem. Let $\Omega = (0, +\infty) \times (0, +\infty)$.
- 2. Compute

$$\int_{\Omega} \frac{d\lambda(x,y)}{(1+y)(1+x^2y)},$$

where λ is the Lebesgue measure on \mathbb{R}^2 .

3. Deduce the values of the following integrals

$$\int_{0}^{+\infty} \frac{\ln(x)}{1 - x^2} dx \text{ and } \int_{0}^{1} \frac{\ln(x)}{1 - x^2} dx$$

4. Prove that

$$\int_0^1 \frac{\ln(x)}{1 - x^2} dx = \sum_{n=0}^{+\infty} \int_0^1 x^{2n} \ln(x) dx$$

5. Deduce the sum of each of the following series

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} \quad \text{and} \quad \sum_{n=1}^{+\infty} \frac{1}{(2n+1)^2}.$$

Problem II: [Note that parts 1) and 2) are independent]

- 1. (a) Prove that $\mu_1 = \sum_{n=1}^{+\infty} \delta_{\frac{1}{n}}$ is a measure on the measurable space $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$, where $\mathscr{B}_{\mathbb{R}}$ is the Borel σ -algebra on \mathbb{R} .
 - (b) Consider the functions f(x) = x and $g(x) = x \ln(1 + |x|)$ on \mathbb{R} . Give the values of $p, q \in [0, +\infty)$ for which $f \in L^p(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$ and $g \in L^q(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$.

- 2. (a) Prove that the function $f(x) = \frac{1}{\sqrt{x(1-x)}}$ is integrable on the interval (0,1) and compute the following integral $\int_{(0,1)} \frac{d\lambda(x)}{\sqrt{x(1-x)}}$, with λ is the Lebesgue measure on \mathbb{R} .
 - (b) Let $f: (a, b) \longrightarrow \mathbb{R}$ be a bounded Lebesgue integrable function and $\lim_{t \to a^+} f(t) = c.$

Prove that for any $t \in (a, b)$, the function $x \mapsto \frac{f(x)}{\sqrt{(x-a)(t-x)}}$ is integrable on (a, t) and compute $\lim_{t \to a^+} \int_{(a,t)} \frac{f(x)}{\sqrt{(x-a)(t-x)}} d\lambda(x)$.

Answer Ph.D Qualifying Examination Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014

Section A

Problem I:

1. (The Fubini's Theorem): Let $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_2, \mathscr{A}_2, \mu_2)$ be two σ finite measure spaces, and let (X, \mathscr{A}, μ) be the product measure space. If $f \in L^1(X, d\,\mu)$, then $\int_{X_2} f(x, y) d\,\mu_2(y) \in L^1(X_1, \mu_1)$ and $\int_{X_1} f(x, y) d\,\mu_1(x) \in L^1(X_2, \mu_2)$ and

$$\int_{X_1 \times X_2} f(x, y) \mu_1 \otimes \mu_2(x, y) = \int_{X_2} \left(\int_{X_1} f(x, y) d \, \mu_1(x) \right) d \, \mu_2(y)$$

=
$$\int_{X_1} \left(\int_{X_2} f(x, y) d \, \mu_2(y) \right) d \, \mu_1(x)$$

Let $\Omega = (0, +\infty) \times (0, +\infty)$.

2. The function $(x, y) \mapsto 1(1+y)(1+x^2y)$ is non negative continuous function, then by Fubini Tonelli Theorem

$$\int_{\Omega} \frac{d\lambda(x,y)}{(1+y)(1+x^2y)} = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} \frac{dx}{(1+y)(1+x^2y)} \right) dy$$
$$= \int_{0}^{+\infty} \left(\int_{0}^{+\infty} \frac{dy}{(1+y)(1+x^2y)} \right) dx.$$

$$\int_{0}^{+\infty} \frac{dx}{(1+x^{2}y)} = \frac{\pi}{2\sqrt{y}} \text{ and } \int_{0}^{+\infty} \frac{dy}{2\sqrt{y}(1+y)} \stackrel{y=t^{2}}{=} \frac{\pi^{2}}{2}.$$

For $x \neq 1$, $\frac{1}{(1+y)(1+x^{2}y)} = \frac{A}{1+y} - \frac{x^{2}A}{1+x^{2}y}$, with $A = \frac{1}{1-x^{2}}$. Then
 $\int_{0}^{+\infty} \frac{dy}{(1+y)(1+x^{2}y)} = A \ln(\frac{1+y}{1+x^{2}y}) \Big]_{0}^{+\infty} = -\frac{2\ln x}{1-x^{2}}.$

3. By Fubini Tonelli Theorem

$$\int_{0}^{+\infty} \frac{\ln(x)}{1-x^{2}} dx = -\frac{\pi^{2}}{4}.$$
 Moreover by the change of variable $x = \frac{1}{t},$
$$\int_{0}^{1} \frac{\ln(x)}{1-x^{2}} dx = \int_{1}^{+\infty} \frac{\ln(x)}{1-x^{2}} dx = -\frac{\pi^{2}}{8}.$$

4. For $|x|<1,\ \frac{1}{1-x^2}=\sum_{n=0}^{+\infty}x^{2n}$ and by Monotone Convergence Theorem $(x^{2n}\ln(x)\leq 0)$

$$\int_0^1 \frac{\ln(x)}{1 - x^2} dx = \sum_{n=0}^{+\infty} \int_0^1 x^{2n} \ln(x) dx$$

5. By integration by parts
$$\int_0^1 x^{2n} \ln(x) dx = -\frac{1}{(2n+1)^2}$$
. Then $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} \cdot \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$. Then $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Problem II:

1. (a) We know that if $(\mu_n)_n$ is an increasing sequence of measures on a measurable space (X, \mathscr{A}) , the mapping $\mu \colon \mathscr{A} \longrightarrow [0, +\infty]$ defined by $\mu(A) = \lim_{n \to +\infty} \mu_n(A) = \sup_n \mu_n(A)$ for any $A \in \mathscr{A}$ is a measure on X.

Indeed it is clear that $\mu(\emptyset) = 0 = \lim_{n \to +\infty} \mu_n(\emptyset)$, and if A, B are two disjoints measurable subsets, we have

$$\mu(A \cup B) = \lim_{n \to +\infty} \mu_n(A) + \lim_{n \to +\infty} \mu_n(B) = \mu(A) + \mu(B).$$

Let now $(A_n)_n$ be an increasing sequence of \mathscr{A} and $A = \bigcup_{n=1}^{+\infty} A_n$. We have $\mu_j(A_n) \le \mu(A_n) \le \mu(A)$. Then

$$\mu_j(A) = \lim_{n \to +\infty} \mu_j(A_n) \le \lim_{n \to +\infty} \mu(A_n) \le \mu(A).$$

Moreover

$$\mu(A) = \lim_{j \to +\infty} \mu_j(A) \le \lim_{n \to +\infty} \mu(A_n) \le \mu(A).$$

Then $\mu(A) = \lim_{n \to +\infty} \mu(A_n).$

Then $\mu_1 = \lim_{n \to +\infty} \sum_{k=1}^n \delta_{\frac{1}{k}}$ is a measure on the measurable space $(\mathbb{R}, \mathscr{B}_{\mathbb{R}}).$

(b)
$$\int_{\mathbb{R}} f^{p}(x) d\mu_{1}(x) = \sum_{n=1}^{+\infty} \frac{1}{n^{p}}.$$
 Then $f \in L^{p}(\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \mu_{1})$ if and only if $p > 1.$
$$\int_{\mathbb{R}} g^{q}(x) d\mu_{1}(x) = \sum_{n=1}^{+\infty} \frac{\ln^{q}(1+\frac{1}{n})}{n^{q}}.$$
 Since $\frac{\ln^{q}(1+\frac{1}{n})}{n^{q}} \approx \frac{1}{n^{2q}},$ then $g \in L^{q}(\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \mu_{1}) \iff q > \frac{1}{2}.$

2. (a) In a neighborhood of 0, $f(x) \approx \frac{1}{\sqrt{x}}$, which is integrable and in a neighborhood of 1, $f(x) \approx \frac{1}{\sqrt{1-x}}$, which is integrable. $\int_{(0,1)} \frac{d\lambda(x)}{\sqrt{x(1-x)}} \stackrel{x=t^2}{=} \int_0^1 \frac{2dt}{\sqrt{1-t^2}} = \pi.$

(b) In a neighborhood of a in (a, t), $\frac{1}{\sqrt{(x-a)(t-x)}} \approx \frac{1}{\sqrt{(x-a)(t-a)}}$, which is integrable and in a neighborhood of t in (a, t), $\frac{1}{\sqrt{(x-a)(t-x)}} \approx \frac{1}{\sqrt{(t-a)(t-x)}}$, which is integrable. Moreover since f is bounded then for any $t \in (a, b)$, the function $x \mapsto \frac{f(x)}{\sqrt{(x-a)(t-x)}}$ is integrable on (a, t).

$$\int_{(a,t)} \frac{d\lambda(x)}{\sqrt{(x-a)(t-x)}} \quad \stackrel{x=st+(1-s)a}{=} \quad \int_0^1 \frac{ds}{\sqrt{s(1-s)}} = \pi.$$

Since f is bounded, then by Dominated Convergence Theorem

$$\lim_{t \to a^+} \int_{(a,t)} \frac{f(x)}{\sqrt{(x-a)(t-x)}} d\lambda(x) \quad \stackrel{x=st+(1-s)a}{=} \quad \lim_{t \to a^+} \int_0^1 \frac{f(a+s(t-a))}{\sqrt{s(1-s)}} ds = \pi c$$

Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 28-29

Section B

Problem III

1. State the Dominate Convergence Theorem. Prove that if f is integrable on [0, 1], then $\lim_{n \to +\infty} \int_0^1 x^n f(x) dx = 0.$

2. We consider the function F defined on $[0, +\infty[$ by $F(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$. a) Find $\lim_{x \to +\infty} F(x)$ and $\lim_{x \to 0} F(x)$

b) Prove that F is of class C^2 for x > 0 and find F''(x).

3. Show that
$$\int_0^1 \sin x \ln x \, dx = \sum_{n=1}^{+\infty} \frac{(-1)^n}{(2n)(2n)!}$$

Problem IV

- 1. Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ be the measure space, with μ the counting measure. Let $f: \mathbb{N} \longrightarrow [0, +\infty]$ be a function.
 - a) Show that $\int_{\mathbb{N}} f(x) d\mu(x) = \sum_{n=1}^{+\infty} f(n).$
 - b) Let $\sigma \colon \mathbb{N} \longrightarrow \mathbb{N}$ be a bijection. Show that

$$\sum_{n=1}^{+\infty} f(n) = \sum_{n=1}^{+\infty} f(\sigma(n)).$$

c) Let $(u_{j,k})_{j,k}$ be a sequence of non negative numbers. Deduce

$$\sum_{j=1}^{+\infty} \sum_{k=1}^{+\infty} u_{j,k} = \sum_{k=1}^{+\infty} \sum_{j=1}^{+\infty} u_{j,k}.$$

d) Find
$$\sum_{j=0}^{+\infty} \sum_{k=0}^{+\infty} a^j b^k$$
, with $0 \le a, b < 1$.

e) Give an example of sequence $(u_{j,k})_{j,k}$ for which the result of c) is false.

- 2. a) Let (X, \mathscr{M}, μ) and (Y, \mathscr{N}, ν) be σ -finite measure spaces. Prove that if $E \in \mathscr{M} \otimes \mathscr{N}$, then the functions $x \in X \mapsto \nu(E_x)$ and $y \in$ $Y \mapsto \mu(E^y)$ are measurable on X and Y respectively with $E_x = \{y \in$ $Y; (x, y) \in E\}$ and $E^y = \{x \in X; (x, y) \in E\}$.
 - b) Let $X = [0,1], \mathcal{B}$ the Borel σ -algebra on [0,1].

Show that $D = \{(x, y) \in X \times X; x - y = 0\}$ is measurable with respect to the σ -algebra $\mathscr{B} \otimes \mathscr{B}$.

Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 28-29

Section B

Problem III

1. The Dominate Convergence Theorem:

Let $(f_n)_n$ be a sequence of measurable functions on a measure space (X, \mathscr{A}, μ) . We assume that:

i) the sequence $(f_n)_n$ converges almost everywhere on X to a measurable function f definite almost everywhere.

ii) There exist a non-negative integrable function g such that: $|f_n| \leq g$ almost everywhere for all n. Then the sequence $(f_n)_n$ and the function f are integrable and we have:

$$\int_X f(x) \ d\mu(x) = \lim_{n \longrightarrow +\infty} \int_X f_n(x) d\mu(x).$$

If f is integrable on [0, 1], the sequence $(f_n)_n$ defined by $f_n(x) = x^n f(x)$ is dominated by |f| and $\lim_{n \to +\infty} f_n = 0$ a.e., the by the Dominate Convergence Theorem $\lim_{n \to +\infty} \int_0^1 x^n f(x) dx = 0.$

2. a) We have $f(x,t) = \frac{e^{-xt}}{1+t^2} \le \frac{1}{1+t^2}$ which is integrable and $\lim_{x \to +\infty} f(x,t) = 0$. 0. Then by the Dominate Convergence Theorem $\lim_{x \to +\infty} F(x) = 0$.

We have also $\lim_{x\to 0} f(x,t) = \frac{1}{1+t^2}$. Then by the Dominate Convergence Theorem, $\lim_{x\to 0} F(x) = \frac{\pi}{2}$.

b) $x \mapsto f(x,t)$ is C^{∞} , $\frac{\partial f}{\partial x}(x,t) = \frac{-te^{-xt}}{1+t^2}$ and $\frac{\partial^2 f}{\partial x^2}(x,t) = \frac{t^2e^{-xt}}{1+t^2}$. For a > 0, $\left|\frac{\partial f}{\partial x}(x,t)\right| \le \frac{te^{-at}}{1+t^2}$ and $\left|\frac{\partial^2 f}{\partial x^2}(x,t)\right| \le \frac{t^2e^{-at}}{1+t^2}$ for all $x \in [a, +\infty[$. Since the functions $t \mapsto \frac{te^{-at}}{1+t^2}$ and $t \mapsto \frac{t^2e^{-at}}{1+t^2}$ are integrable, the function F is of class \mathcal{C}^2 on $[0, +\infty[$ and $F''(x) = \int_0^{+\infty} \frac{t^2e^{-xt}}{1+t^2}dt = \frac{1}{x} - F(x)$.

3. We have
$$\sin x = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \forall x \in \mathbb{R}$$
. By Dominate Convergence Theorem

$$\begin{split} \int_0^1 \sin x \ln x dx &= \sum_{n=0}^{+\infty} \int_0^1 \frac{(-1)^n x^{2n+1} \ln x}{(2n+1)!} dx \\ &= \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \int_0^1 x^{2n+1} \ln x dx \\ &= \sum_{n=1}^{+\infty} \frac{(-1)^n}{(2n)(2n)!}. \end{split}$$

Problem IV

1. a)
$$\int_{\mathbb{N}} f(x) d\mu(x) \stackrel{\text{M.C.T}}{=} \lim_{n \to +\infty} \int_{[1,n]} f(x) d\mu(x) = \lim_{n \to +\infty} \sum_{k=1}^{n} f(k) = \sum_{k=1}^{+\infty} f(k)$$

b) If $A_n = \sigma([1,n])$, then $\bigcup_{n=1}^{+\infty} A_n = \mathbb{N}$. The sequence $(A_n)_n$ is increasing.
It follows from the Monotone Convergence Theorem that

$$\lim_{n \to +\infty} \sum_{k=1}^n f(\sigma(k)) = \lim_{n \to +\infty} \int_{A_n} f(x) d\mu(x) = \int_{\mathbb{N}} f(x) d\mu(x) = \sum_{k=1}^{+\infty} f(k).$$

c) a) If $f_n(m) = \sum_{k=1}^n u_{k,m}$, then $\int_{\mathbb{N}} f_n(x) d\mu(x) = \sum_{m=1}^{+\infty} \sum_{k=1}^n u_{k,m}$. Since the sequence $(f_n)_n$ is increasing then

$$\int_{\mathbb{N}} \lim_{n \to +\infty} f_n(x) d\mu(x) = \lim_{n \to +\infty} \int_{\mathbb{N}} f_n(x) d\mu(x)$$
$$= \sum_{m=1}^{+\infty} \sum_{k=1}^{+\infty} u_{k,m} = \lim_{n \to +\infty} \sum_{k=1}^n \sum_{m=1}^{+\infty} u_{k,m}$$
$$= \sum_{k=1}^{+\infty} \sum_{m=1}^{+\infty} u_{k,m}.$$

46

d)
$$\sum_{k=1}^{+\infty} a^j = \frac{a}{1-a}$$
, then $\sum_{j=1}^{+\infty} \sum_{k=1}^{+\infty} a^j b^k = \frac{ab}{(1-a)(1-b)}$.
e) Let $a_{j,k} = \frac{1}{kj(j+1)}$, for $j \ge 2$ and $a_{1,k} = \frac{-1}{2k}$.
 $\sum_{j=1}^{+\infty} \frac{1}{j(j+1)} = 1$ and $\sum_{j=1}^{+\infty} a_{j,k} = 0$. So $\sum_{k=1}^{+\infty} \sum_{j=1}^{+\infty} a_{j,k} = 0$ and $\sum_{k=1}^{+\infty} a_{j,k} = +\infty$,
for $j \ge 2$ and $\sum_{k=1}^{+\infty} a_{1,k} = -\infty$.

2. a) Suppose that ν is finite and define

$$\mathscr{A} = \{ E \in \mathscr{M} \otimes \mathscr{N} ; x \longmapsto \nu(E_x) \text{ is measurable } \}$$

 \mathscr{A} contains the measurable rectangles $E = A \times B$ since $\nu(E_x) = \chi_A(x)\nu(B)$. Moreover \mathscr{A} is a monotone class: if $E \subset E'$, $\nu(E' \setminus E)_x = \nu(E'_x) - \nu(E_x)$ since ν is finite, and if $(E_n)_n$ is an increasing sequence

$$\nu(\bigcup_{k=1}^{+\infty} E_n)_x = \lim_{n \to +\infty} \nu(E_n)_x.$$

Then $\mathscr{A} = \mathscr{M} \otimes \mathscr{N}$.

In the general case where ν is σ -finite, we take an increasing sequence $(B_n)_n$ such that $\nu(B_n) < +\infty$ and $X = \bigcup_{n=1}^{+\infty} B_n$. Define $\nu_n(B) = \nu(B \cap B_n)$. Then $\nu(E_x) = \lim_{n \to +\infty} \nu_n(E_x)$ which is measurable.

By the same arguments, $y \in Y \mapsto \mu(E^y)$ is measurable on Y.

b) $D = \{(x, y) \in X \times X; x - y = 0\}$ is closed then it is measurable with respect to the σ -algebra $\mathscr{B} \otimes \mathscr{B}$.

Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 30-31

Solve five (5) problems.

Section B

Problem III

1. a) Give the definitions of a measure and an outer measure.

b) Let (X, \mathscr{B}) be a measurable space and $(\mu_n)_n$ be a sequence of measures on X such that $\mu_n(X) = 1$ for all $n \in \mathbb{N}_0$. For any $A \in \mathscr{B}$, define

$$\mu(A) = \sum_{n=0}^{+\infty} \frac{\mu_n(A)}{2^{n+1}}.$$

Prove that μ defines a probability measure on (X, \mathscr{B}) .

2. a) Let (X, \mathscr{B}) be a measurable space. Give the definition of a measurable function on X.

Let $f_n: X \longrightarrow \mathbb{R}$ be a sequence of measurable functions. Prove that $\{x \in X; (f_n(x))_n \text{ converges }\}$ is measurable.

3. a) Let (X, \mathscr{B}, μ) be a measure space and f an integrable function on X. Suppose that $\int_E f(x)d\mu(x) = 0$ for any measurable set E. Show that f = 0 almost every where.

Problem IV

1. Let λ be the Lebesgue measure on \mathbb{R} . Evaluate the following integrals:

a)
$$\int_{[0,\pi]} f(x) d\lambda(x), \text{ where } f(x) = \begin{cases} \sin x & x \in \mathbb{Q} \cap [0,\pi], \\ \cos x & x \in [0,\pi] \setminus \mathbb{Q}, \end{cases}$$

b)
$$\int_{[0,1]} \chi_{\mathbb{R} \setminus \mathbb{Q}}(x) d\lambda(x). \text{ (Recall } \chi_{\mathbb{R} \setminus \mathbb{Q}}(x) = 1 \text{ if } x \in \mathbb{R} \setminus \mathbb{Q} \text{ and } 0 \text{ otherwise.)} \end{cases}$$

2. a) State the Monotone Convergence Theorem.

b) Let
$$f(x) = \frac{xe^{-x}}{1 - e^{-x}}$$
. Prove that f is integrable on $[0, +\infty)$ and
$$\int_0^{+\infty} f(x)dx = \sum_{n=0}^{+\infty} \frac{1}{(1+n)^2}.$$

3. a) Let f be an integrable function on a measure space (X, \mathscr{B}, μ) . Prove that $\{x \in X; f(x) = \pm \infty\}$ is a null set.

b) Let f be an integrable function on \mathbb{R} and $\alpha > 0$. Prove that $\frac{f(nx)}{n^{\alpha}} \longrightarrow 0$ as $n \longrightarrow +\infty$ almost every where. (Hint: prove that $\sum_{n=1}^{+\infty} \frac{|f(nx)|}{n^{\alpha}}$ is integrable.)

Answer Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 30-31

Problem III

- 1. a) Let (X, \mathscr{A}) be a measurable space. A measure on X is a set function $\mu \colon \mathscr{A} \to [0, \infty]$ such that:
 - i) $\mu(\emptyset) = 0;$
 - ii) For any disjoint sequence $(A_n)_n \in \mathscr{A}$,

$$\mu(\bigcup_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} \mu(A_n).$$
(0.2)

Let X be a non empty set. An outer measure μ* on X is a set function μ*: 𝒫(X) → [0,∞] which satisfies the following conditions:
i) μ*(Ø) = 0.

ii) If $(A_n)_n$ is a sequence of subsets of X, then

$$\mu^*(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu^*(A_n).$$

iii) μ^* is increasing (i.e. $\mu^*(A) \le \mu^*(B)$ if $A \subset B$).

b) Let $A \in \mathscr{B}$, the series $\sum_{n \ge 0} \frac{\mu_n(A)}{2^{n+1}}$ is convergent. Then μ is well defined

defined.

 $\mu_n(\emptyset) = 0$, then $\mu(\emptyset) = 0$.

If A and B are measurable and disjoint, then $\mu_n(A \cup B) = \mu_n(A) + \mu_n(B)$ and $\mu(A \cup B) = \mu(A) + \mu(B)$.

Let $(A_n)_n \in \mathscr{B}$ be a disjoint sequence and $A = \bigcup_{n=0}^{+\infty} A_n$.

$$\mu(A) = \lim_{m \to +\infty} \sum_{n=0}^{m} \frac{\mu_n(A)}{2^{n+1}}$$
$$= \lim_{m \to +\infty} \sum_{n=0}^{m} \sum_{k=0}^{+\infty} \frac{\mu_n(A_k)}{2^{n+1}}$$
$$= \lim_{m \to +\infty} \sum_{k=0}^{+\infty} \sum_{n=0}^{m} \frac{\mu_n(A_k)}{2^{n+1}}$$
$$\leq \sum_{k=0}^{+\infty} \mu(A_k), \quad \forall p \in \mathbb{N}.$$

Then $\mu(A) \leq \sum_{n=0}^{+\infty} \mu(A_n).$

Moreover for all $m \in \mathbb{N}$, $\mu(A) \ge \sum_{n=0}^{m} \mu(A_n)$. Then $\mu(A) \ge \sum_{n=0}^{+\infty} \mu(A_n)$. Which proves that $\mu(A) = \sum_{n=0}^{+\infty} \mu(A_n)$.

It is obvious that μ defines a probability measure on (X, \mathscr{B}) .

2. a) A function $f: X \longrightarrow \mathbb{R}$ is called measurable if the σ -algebra $f^{-1}(\mathscr{B}_{\mathbb{R}}) \subset \mathscr{B}$. Let $C = \{x \in X; (f_n(x))_n \text{ converges }\}$ and Let $D = C^c, D = \{x \in X; \lim_{n \to +\infty} f_n(x) < \lim_{n \to +\infty} f_n(x)\}$. If we set $g = \lim_{n \to +\infty} f_n$ and $h = \overline{\lim_{n \to +\infty}} f_n$. For each rational r, let

$$D_r = \{x \in X; \ g(x) < r < h(x)\} = \{x \in X; \ g(x) < r\} \cap \{x \in X; \ h(x) > r\}$$

which is measurable. $D = \bigcup_{r \in \mathbb{Q}} D_r$ which proves the measurability of D.

3. a) Let $E^+ = \{x \in X; f(x) > 0\}$ and $E^- = \{x \in X; f(x) < 0\}$. Since $\chi_{E^+} f \ge 0, \chi_{E^-} f \le 0, \int_{E^+} f(x) d\mu(x) = 0$ and $\int_{E^-} f(x) d\mu(x) = 0$, then $\chi_{E^-} f = 0$ and $\chi_{E^+} f = 0$ almost every where, which proves that f = 0 almost every where.

Problem IV

1. a)
$$\int_{[0,\pi]} f(x)d\lambda(x) = \int_0^\pi \cos(x)dx = 0$$

b)
$$\int_{[0,1]} \chi_{\mathbb{R}\setminus\mathbb{Q}}(x)d\lambda(x) = \int_0^1 dx = 1.$$

2. a) The Monotone Convergence Theorem:

Let $(f_n)_n$ be an increasing sequence of non-negative measurable functions on a measure space (X, \mathcal{B}, μ) , then

$$\int_X \lim_{n \to +\infty} f_n(x) d\,\mu(x) = \lim_{n \to +\infty} \int_X f_n(x) d\,\mu(x).$$

b) f is a continuous non negative function on $]0, +\infty[$. Moreover $\lim_{x\to 0} f(x) = 1$. Then f is integrable on $[0, +\infty[$ if and only if the improper integral $\int_0^{+\infty} f(x) dx$ is convergent. For x large enough, $f(x) \leq 2xe^{-x}$ which is integrable on $[0, +\infty)$.

For x > 0, $f(x) = \sum_{n=0}^{+\infty} x e^{-(n+1)x}$. Then by Monotone Convergence Theorem

$$\int_{0}^{+\infty} f(x)dx = \sum_{n=0}^{+\infty} \int_{0}^{+\infty} x e^{-(n+1)x} dx = \sum_{n=0}^{+\infty} \frac{1}{(1+n)^2}$$

3. a) $\{x \in X; f(x) = \pm \infty\} = \{x \in X; |f(x)| = \infty\} = \bigcap_{n=1}^{+\infty} \{x \in X; |f(x)| \ge n\}$. If $E_n = \{x \in X; |f(x)| \ge n\}$,

$$\int_X |f(x)| d\mu(x) \ge \int_{E_n} |f(x)| d\mu(x) \ge n\mu(E_n).$$

Then $\{x \in X; f(x) = \pm \infty\}$ is a null set.

b) By Monotone Convergence Theorem

$$\int_{\mathbb{R}} \sum_{n=1}^{+\infty} \frac{|f(nx)|}{n^{\alpha}} dx = \sum_{n=1}^{+\infty} \int_{\mathbb{R}} \frac{|f(nx)|}{n^{\alpha}} dx = \sum_{n=1}^{+\infty} \frac{\|f\|_{1}}{n^{\alpha+1}}.$$

Then $\lim_{n \to +\infty} \frac{f(nx)}{n^{\alpha}} = 0$ as $n \longrightarrow +\infty$ almost every where.

52