Ph.D Qualifying Examination ${ }^{1}$ Analysis (General Paper)

2003

Exercise 1 :

1. Let Ω be a bounded domain in the complex plane. Suppose that f is continuous on $\bar{\Omega}$ and analytic on Ω. Let $\alpha \geq 0$ be a constant such that $|f(z)|=\alpha$ for all z on the boundary of Ω. Show that f is a constant function or f has a zero on Ω.
2. Show that the most general linear transformation from the upper half-plane to the unit disc is of the form

$$
W=e^{\mathrm{i} \alpha} \frac{z-\beta}{z-\bar{\beta}}
$$

where α is real and $\operatorname{Im} \beta>0$.
3. Let Ω be a domain in the complex plane. Let $\left(f_{n}\right)_{n}$ be a sequence of analytic functions on Ω, is without zeros and converging uniformly to f on compact sets in Ω. Show that f is analytic on Ω and $f \equiv 0$ or f is without zeros in Ω.

Exercise 2:

1. Show that

$$
\int_{0}^{2 \pi} \frac{\cos ^{2} \theta}{5+3 \sin \theta} d \theta=\frac{2 \pi}{9}
$$

2. Let f be an analytic function defined on the annulus $r<$ $|z-a|<R$. Show that there exists two uniquely determined

[^0]analytic functions f_{1} on $|z-a|<R$ and f_{2} on $|z-a|>r$ such that $\lim _{|z| \rightarrow+\infty} f_{2}(z)=0$ and $f=f_{1}+f_{2}$ on the annulus $r<|z-a|<R$.

Answer of Ph.D Qualifying Examination
 Analysis (General Paper)

March 2003

Solution of the Exercise 1:

1. If f is without zeros on Ω, the function $\frac{1}{f}$ is analytic on Ω and $\frac{1}{|f(z)|}=\frac{1}{\alpha}$ for all z on the boundary of Ω. Then by the maximum principle $|f| \leq \alpha$ and $\frac{1}{|f|} \leq \frac{1}{\alpha}$ on Ω. Then $|f|=\alpha$ on Ω, which proves that f is constant.
2. Show that the most general linear transformation from the upper half-plane to the unit disc is of the form $\operatorname{Im} \beta>0$ and $f(\beta)=0$. Moreover by symmetry, $f(\bar{\beta})=\infty$, then $f(z)=\lambda \frac{z-\beta}{z-\beta}$. The function f transforms the real axis to the unit circle, then for all $x \in \mathbb{R},\left|\lambda \frac{x-\beta}{x-\bar{\beta}}\right|=|\lambda|=1$, then

$$
f(z)=e^{\mathrm{i} \alpha \frac{z-\beta}{z-\bar{\beta}}}
$$

where $\alpha \in \mathbb{R}$ and $\operatorname{Im} \beta>0$.
3. Since the sequence $\left(f_{n}\right)_{n}$ is uniformly convergent on any compact subset of Ω, then f is holomorphic. We assume that f is not identically zero and there exists $a \in \Omega$ a zero of multiplicity $k \geq 1$ of f. Let $r>0$ such that $f(z) \neq 0$ for any $z \in \overline{D(a, r)} \backslash\{a\}$ and let γ be the closed curve defined by the
circle of radius r and centered at a traversed in the clockwise direction. Then $\frac{1}{2 i \pi} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=k$. Since f never vanishing on γ, the sequence $\left(\frac{f_{n}^{\prime}}{f_{n}}\right)_{n}$ converges uniformly on γ to $\frac{f^{\prime}}{f}$, thus

$$
k=\frac{1}{2 i \pi} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\lim _{n \rightarrow+\infty} \frac{1}{2 i \pi} \int_{\gamma} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} d z=0
$$

which is absurd.

Solution of the Exercise
 2 :

1.

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\cos ^{2} \theta}{5+3 \sin \theta} d \theta & =\int_{|z|=1} \frac{\left(z^{2}+1\right)^{2}}{4 z^{2}\left(5+3 \frac{z^{2}-1}{2 \mathrm{i} z}\right)} \frac{d z}{\mathrm{i} z} \\
& =\int_{|z|=1} \frac{\left(z^{2}+1\right)^{2}}{2 z^{2}\left(3 z^{2}+10 \mathrm{i} z-3\right)} d z \\
& =2 \mathrm{i} \pi\left(\operatorname{Res}(f, 0)+\operatorname{Res}\left(f,-\frac{\mathrm{i}}{3}\right)\right)=-2 \mathrm{i} \pi\left(\frac{\mathrm{i}}{9}\right)=\frac{2 \pi}{9}
\end{aligned}
$$

where $f(z)=\frac{\left(z^{2}+1\right)^{2}}{2 z^{2}\left(3 z^{2}+10 \mathrm{i} z-3\right)}$.
$\operatorname{Res}(f, 0)=-\frac{5 \mathrm{i}}{9}$ and $\operatorname{Res}\left(f,-\frac{\mathrm{i}}{3}\right)=\frac{4 \mathrm{i}}{9}$.
2. For all $r<|z-a|<R$,

$$
f(z)=\sum_{-\infty}^{+\infty} a_{n}(z-a)^{n}=\sum_{-\infty}^{-1} a_{n}(z-a)^{n}+\sum_{n=0}^{+\infty} a_{n}(z-a)^{n} .
$$

Define $f_{1}(z)=\sum_{n=0}^{+\infty} a_{n}(z-a)^{n}$ and $f_{2}(z)=\sum_{-\infty}^{-1} a_{n}(z-a)^{n}$.
f_{1} is analytic on $\{z \in \mathbb{C}:|z-a|<R\}$ and f_{2} analytic

$$
\begin{aligned}
& \{z \in \mathbb{C}:|z-a|>r\}, f=f_{1}+f_{2} \text { on the annulus }\{z \in \mathbb{C}: \\
& r<|z-a|<R\} \text { and } \lim _{|z| \rightarrow+\infty} f_{2}(z)=0 .
\end{aligned}
$$

Ph.D Qualifying Examination Analysis (General Paper)

October 2004

Exercise 1 :

For any power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ there exists a number $R, 0 \leq R \leq$ ∞, called the radius of convergence. Prove that

1. The series converges absolutely for every $|z|<R$, if $\rho<R$ the convergence is uniform on $\{z \in \mathbb{C}:|z| \leq \rho\}$.
2. If $|z|>R$ the terms of the series are unbounded, and the series is consequently divergent.
3. The sum of the series is an analytic function on $\{z \in \mathbb{C}$: $|z|<R\}$, the derivative can be obtained by termwise differentiation, and the derived series has the same radius of convergence.

Exercise 2:

1. Evaluate

$$
\int_{0}^{2 \pi} \frac{d \theta}{3-2 \cos \theta+\sin \theta}
$$

2. State the definition of a conformal mapping.
3. Find a function $w=f(z)$ that maps the unit disc $\{z \in \mathbb{C}$: $|z|<1\}$ conformally onto the upper plane $\{w \in \mathbb{C}: \operatorname{Im} w>$ $0\}$.

Answer of Ph.D Qualifying Examination
 Analysis (General Paper)

Solution of the Exercise 1:

Let $\sum_{n \geq 0} a_{n} z^{n}$ be a power series. Define $R=\sup \left\{r>0 ; \sum_{n=1}^{+\infty}\left|a_{n}\right| r^{n}<\right.$ $+\infty\}$. $R \in[0,+\infty]$.

1. If $|x|<R$, the series $\sum_{n \geq 1} a_{n} x^{n}$ is absolutely convergent by definition of R.

Consider $\rho<R$ and the domain $D_{\rho}=\{z \in \mathbb{C} ;|z| \leq \rho\}$. Let $\rho<S<R$ and $z \in D_{\rho}$. Since the series $\sum_{n \geq 1}\left|a_{n}\right| S^{n}$ is convergent, there is $M>0$ such that $\left|a_{n}\right| S^{n} \leq M$ for all $n \in \mathbb{N}$. Then $\left|a_{n} z^{n}\right| \leq \frac{M \rho^{n}}{S^{n}}$ and the series is uniformly convergent on D_{ρ}.
2. If $|x|>R$ and the sequence $\left(a_{n} x^{n}\right)_{n}$ is bounded, then the series $\sum_{n \geq 1}\left|a_{n}\right| r^{n}$ converges for every $R<r<|x|$, which is impossible.
3. Let $f(z)=\sum_{n=0}^{+\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=1}^{+\infty} n a_{n} z^{n-1}$.

We denote R^{\prime} the radius of convergence of the power series $\sum_{n \geq 1} n a_{n} z^{n-1}$. It is obvious that $R^{\prime} \leq R$. Let $r>0$ such that $|z|+r<R$. We have $\left|n a_{n} z^{n-1}\right| \leq \frac{1}{r}\left(2\left|a_{n}\right|(|z|+r)^{n}+\left|a_{n}\right||z|^{n}\right)$ and thus $\sum_{n \geq 1} n a_{n} z^{n-1}$ converges absolutely on $D(0, R)$. Thus the radius of convergence of the series defining g is greater than R. Thus $R=R^{\prime}$.
Moreover $\left|\frac{f(z+h)-f(z)}{h}-g(z)\right| \leq \frac{|h|}{r} \sum_{n=1}^{+\infty}\left|a_{n}\right|(|z|+r)^{n}$, this proves that when h tends to $0, f^{\prime}(z)=g(z)$, for any $z \in D(0, R)$.

Solution of the Exercise 2:
1.

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{3-2 \cos \theta+\sin \theta} & =\int_{\{|z|=1\}} \frac{2 d z}{(1-2 \mathrm{i}) z^{2}+6 \mathrm{i} z-(1+2 \mathrm{i})} \\
& =2 \mathrm{i} \pi \operatorname{Res}\left(f,-\frac{\mathrm{i}}{1-2 \mathrm{i}}\right)=\pi
\end{aligned}
$$

with $f(z)=\frac{2}{(1-2 \mathrm{i}) z^{2}+6 \mathrm{i} z-(1+2 \mathrm{i})}$.
2. A function $f: \Omega \longrightarrow \mathbb{C}$ is conformal if it is holomorphic and its derivative is without zeros in Ω.
3. The function $f(z)=\mathrm{i} \frac{1+z}{1-z}$ maps the unit disc $|z|<1$ conformally onto the upper half plane $\{z \in \mathbb{C} ; \operatorname{Im} z>0\}$.

Ph.D Qualifying Examination Analysis (General Paper)
 December 2014

Exercise 1: [Note that parts 1) and 2) are independent]

1. Compute the following integrals $\int_{0}^{+\infty} \frac{d x}{1+x^{3}}$ and $\int_{0}^{+\infty} \frac{\ln (x)}{1+x^{3}} d x$.
2. Consider the function defined by the power series

$$
f(z)=\sum_{n=1}^{+\infty} z^{n!}
$$

(a) Prove that f is holomorphic on the unit disc $D=\{z \in$ $\mathbb{C} ;|z|<1\}$.
(b) Let $\alpha \in \mathbb{C}$ such that $\alpha^{m}=1$, for some $m \in \mathbb{N}$. (α is called a root of unity).
Prove that $\lim _{r \rightarrow 1, r<1}|f(r \alpha)|=+\infty$.
(c) Deduce that f can not be extended to a holomorpic function on an open set U such that $D \subset U$ and $D \neq U$.

Exercise 2: [Note that parts 1) and 2) are independent]

1. Let f be a holomorphic function on $D \backslash\{0\}$ and $|f(z)| \leq$ $\ln \left(\frac{1}{|z|}\right)$, for all $z \in D \backslash\{0\}$, where D is the unit disc.
(a) Prove that 0 is a removable singularity of f. (Hint: you can consider the function $z f(z)$ and calculate its limit at $0)$.
(b) Deduce that $f=0$.
2. Let $\left(f_{n}\right)$ be a sequence of holomorphic functions on the unit disc D such that $f_{n}(D) \subset D$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow+\infty} f_{n}(0)=1$.
(a) Prove that there is a subsequence $\left(f_{n_{j}}\right)_{j}$ which converges uniformly on any compact to a holomorphic function g on the unit disc D and $g(0)=1$.
(b) We assume that g is not constant.
i. Prove that there exists $R>0$ such that $g-1$ is without zeros in $D(0, R) \backslash\{0\}$.
ii. Prove that for j sufficiently large and $|z|=r<R$, we have

$$
\left|\left(f_{n_{j}}(z)-1\right)-(g(z)-1)\right|<\inf \{|g(z)-1| ;|z|=r\}
$$

iii. Deduce that $f_{n_{j}}(z)-1$ has the same number of zeros as $g-1$ in $D(0, r)$.
iv. Prove that $f_{n_{j}}(z)-1$ is without zero on $D(0, r)$.
v. Deduce that $g(z)=1$ for all $z \in D$.
(c) Prove that $\left(f_{n}\right)_{n}$ converges uniformly to 1 on any compact.

Solution of Ph.D Qualifying Examination Analysis (General Paper)
 December 2014

Solution of the Exercise 1:

1. Let $f(z)=\frac{\log ^{2}(z)}{1+z^{3}}, I=\int_{0}^{+\infty} \frac{d x}{1+x^{3}}$ and $J=\int_{0}^{+\infty} \frac{\ln (x)}{1+x^{3}} d x$.

By Residue Theorem

$$
-4 \mathrm{i} \pi J+4 \pi^{2} I=2 \mathrm{i} \pi\left(\operatorname{Res}(f,-1)+\operatorname{Res}\left(f, e^{\mathrm{i} \pi}\right)+\operatorname{Res}\left(f, e^{\frac{5 \mathrm{i} \pi}{3}}\right)\right)
$$

$\operatorname{Res}(f,-1)=-\frac{\pi^{2}}{3}$.
$\operatorname{Res}\left(f, e^{\mathrm{i} \pi}\right)=\frac{\pi^{2}}{27}\left(\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}\right)$.
$\operatorname{Res}\left(f, e^{\frac{5 \mathrm{i} \pi}{3}}\right)=\frac{25 \pi^{2}}{27}\left(\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}\right)$.
Then $-4 \mathrm{i} \pi J+4 \pi^{2} I=\frac{8 \mathrm{i} \pi^{3}}{27}+\frac{8 \pi^{3} \sqrt{3}}{9}, I=\frac{2 \pi \sqrt{3}}{9}$ and $J=$ $-\frac{2 \pi^{2}}{27}$.
2. Let f be a holomorphic function on $D \backslash\{0\}$ and $|f(z)| \leq$ $\ln \left(\frac{1}{|z|}\right)$, for all $z \in D \backslash\{0\}$, where D is the unit disc.
(a) $\lim _{z \rightarrow 0} z f(z)=0$, then 0 is a removable singularity of f.
(b) For all $z \in D(0,1-r),|f(z)| \leq \sup _{|w|=1-r}|f(w)| \ln \left(\frac{1}{1-r}\right)$.
(c) It results that for all $z \in D,|f(z)| \leq \lim _{r \rightarrow 0} \ln \left(\frac{1}{1-r}\right)=$ 0 , then $f=0$.

Solution of the Exercise 2:

1. (a) For all $z \in D,\left|z^{n!}\right| \leq|z|^{n}$ and the series $\sum_{n>1}|z|^{n}$ is convergent. Then f is holomorphic on the unit disc $D=$ $\{z \in \mathbb{C} ;|z|<1\}$.
(b) $f(r \alpha)=\sum_{n=1}^{m-1} r^{n!} \alpha^{n!}+\sum_{n=m}^{+\infty} r^{n!}$. Then $\lim _{r \rightarrow 1, r<1}|f(r \alpha)|=$ $+\infty .\left(\sum_{n=m}^{+\infty} r^{n!} \geq \sum_{n=m}^{p} r^{n!}\right.$ for all $\left.p>m.\right)$
(c) Let U be an open set such that $D \subset U$ and $D \neq U$. There is α a root of unity in U. But $\lim _{r \rightarrow 1}|f(r \alpha)|=\infty$, which is absurd. The function f can not be extended to a holomorpic function on an open set U such that $D \subset U$ and $D \neq U$.
2. Let $\left(f_{n}\right)$ be a sequence of holomorphic functions on the unit disc D such that $f_{n}(D) \subset D$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow+\infty} f_{n}(0)=1$.
(a) The sequence $\left(f_{n}\right)$ is bounded, then by Montel Theorem, there is a subsequence $\left(f_{n_{j}}\right)_{j}$ which converges uniformly on any compact to a holomorphic function g on the unit disc D. Since $\lim _{n \rightarrow+\infty} f_{n}(0)=1$, then $g(0)=1$.
(b) We assume that g is not constant.
i. By Theorem of isolated zero of non constant holomorphic function, there exists $R>0$ such that $g(z)-$ $1 \neq 0$ for all $z \in D(0, R) \backslash\{0\}$.
ii. The convergence of the sequence $\left(f_{n_{j}}\right)_{j}$ is uniform on the compact $\{z \in \mathbb{C} ;|z|=r<R\}$. Then for j large enough

$$
\begin{aligned}
\left|f_{n_{j}}(z)-g(z)\right| & =\left|\left(f_{n_{j}}(z)-1\right)-(g(z)-1)\right| \\
& <\inf \{|g(z)-1| ;|z|=r\} .
\end{aligned}
$$

iii. By Theorem $f_{n_{j}}-1$ and $g-1$ have the same number of zeros on $D(0, r)$.
iv. $f_{n_{j}}(z)-1 \neq 0$ for all $z \in D(0, r)$ since $f_{n}(D) \subset D$, which is absurd since $g(0)=1$.
v. We deduce that g is constant, then $g(z)=1$ for all $z \in D$.
(c) Since the sequence $\left(f_{n}\right)_{n}$ is bounded and any subsequence converges to 0 in the space of holomorphic functions, then $\left(f_{n}\right)_{n}$ converges uniformly to 1 on any compact.

Ph.D Qualifying Examination Analysis (General Paper)

1424-1425

Exercise 1 :

1. Let f be analytic on a domain Ω and suppose that for $z_{0} \in \Omega$, $f^{(n)}\left(z_{0}\right)=0, \forall n \in \mathbb{N}$.
Show that f is constant.
2. Let f be an analytic function on the unit disc and continuous on $|z| \leq 1$. If $|f(z)| \leq 1-|z|^{2}$ for $|z|<1$. Show that $f \equiv 0$.

Exercise 2:

1. Let $E \mathrm{~b}$ the ellipse $x^{2}+4 y^{2}=4$. Use the residue theorem to find the value of $\int_{E} \frac{d z}{(z-3)(2 z-1)^{3}}$.
2. Define a conformal mapping.

Show that the most general linear transformation from the unit disc to the unit disc can be represented as

$$
w=e^{\mathrm{i} \lambda} \frac{z-\alpha}{\bar{\alpha} z-1},|\alpha|<1 \text { and } \lambda \text { real. }
$$

Answer of Ph.D Qualifying Examination Analysis (General Paper)

1424-1425
Solution of the Exercise 1:

1. f is analytic, then there is $r>0$ such that

$$
f(z)=\sum_{n=0}^{+\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}=f\left(z_{0}\right), \forall z \in D\left(z_{0}, r\right)
$$

Let $A=\left\{z \in \Omega ; f \equiv f\left(z_{0}\right)\right.$ on a neighborhood of z$\} . z_{0} \in A$ and A is an open subset. Let $\left(z_{n}\right)_{n}$ be a convergent sequence of A and $a \in \Omega$ its limit. Since $z_{n} \in A$, then $f^{(k)}\left(z_{n}\right)=0$ for any $k \in \mathbb{N}$ and by continuity $f^{(k)}(a)=0 . f$ is analytic, this yields that f is constant on a neighborhood of a. This proves that A closed and open, then $A=\Omega$ and f is constant.
2. $\lim _{|z| \rightarrow 1} f(z)=0$, then by Maximum principle, $f=0$.

Solution of the Exercise 2:

1. $\int_{E} \frac{d z}{(z-3)(2 z-1)^{3}}=2 \mathrm{i} \pi \operatorname{Res}\left(f, \frac{1}{2}\right)=\frac{-2 \mathrm{i} \pi}{125}$, with $f(z)=$ $\frac{1}{(z-3)(2 z-1)^{3}}$.
2. A function $f: \Omega \longrightarrow \mathbb{C}$ is conformal if and only if it is holomorphic and its derivative is without zeros on Ω.
Let f be a linear transformation from the unit disc \mathbb{D} to the unit disc \mathbb{D}. There is $\alpha \in \mathbb{D}$ such that $f(\alpha)=0$. By symmetry $f\left(\frac{1}{\bar{\alpha}}\right)=\infty$. Then there is $\lambda \in \mathbb{C}$ such that $f(z)=\lambda \frac{z-\alpha}{\bar{\alpha} z-1}$.
Since $\left|\frac{z-\alpha}{\bar{\alpha} z-1}\right|=1$ for $|z|=1$, then $|\lambda|=1$ and

$$
f(z)=e^{\mathrm{i} \theta} \frac{z-\alpha}{\bar{\alpha} z-1},|\alpha|<1 \text { and } \theta \text { real. }
$$

Ph.D Comprehensive Examination Analysis

1425-1426

Exercise 1 :

1. Show that $w=\mathrm{i} \frac{1-z}{1+z}$ maps the domain $\{z \in \mathbb{C} ;|z|>1\}$ conformally onto the lower half plane $\{w \in \mathbb{C} ; \operatorname{Im} z<0\}$.
2. Find the number of zeros of $f(z)=z^{8}-5 z^{5}-2 z+1$ in the region $\{z \in \mathbb{C} ; 1<|z|<2\}$.

Exercise 2:

1. Evaluate the integral $\int_{0}^{\infty} \frac{\sin \alpha x}{x} d x, \alpha$ real.
2. Find the Laurent series of $f(z)=\frac{1}{z(z-1)(z-2)}$ in the region $\{z \in \mathbb{C} ; 1<|z|<2\}$.

Answer Ph.D Comprehensive Examination Analysis

1425-1426

Solution of the Exercise 1:

1. The Möbius transformation $f(z)=\mathrm{i} \frac{1-z}{1+z}$ transforms the unit circle onto the real axis. $(f(1)=0, f(-1)=\infty$ and $f(\mathrm{i})=1)$. Since $f(0)=\mathrm{i}$, then f transforms the unit disc onto the upper halph plane and transforms the domain $\{z \in \mathbb{C} ;|z|>1\}$ onto the lower half plane $\{w \in \mathbb{C} ; \operatorname{Im} z<0\}$.
2. Let $g(z)=-5 z^{5}$. For $|z|=1,|f(z)-g(z)|=\left|z^{8}-2 z+1\right| \leq$ $4<|g(z)|=5$, the by Rouché's Theorem, f has exactly 5 roots in the unit disc.

We consider the function $h(z)=z^{8}$. For $|z|=2, \mid h(z)-$ $f(z)\left|=\left|-5 z^{5}-2 z+1\right| \leq 165<|h(z)|=256\right.$, then by Rouché's Theorem, f has 8 roots in the disc of center 0 and radius 2. Then f has 3 roots in the annulus $\{z \in \mathbb{C} ; 1<$ $|z|<2\}$.

Solution of the Exercise 2:

1. Let $I(\alpha)=\int_{0}^{\infty} \frac{\sin \alpha x}{x} d x$.

The mapping $\alpha \longmapsto I(\alpha)$ is odd and $I(0)=0$. We compute $I(\alpha)$ for $\alpha>0$. For a change of variable $t=\alpha x, I(\alpha)=I(1)$ for $\alpha>0$.
$I(1)=\int_{-\infty}^{+\infty} \frac{\sin x}{x}$. We set $f(z)=\frac{\mathrm{e}^{\mathrm{i} z}}{z}$. We integrate the function f on the following closed path

By residue theorem, we have:

$$
\begin{aligned}
& \int_{-R}^{-r} f(x) d x-\int_{\gamma_{r}} f(z) d z+\int_{r}^{R} f(x) d x+\int_{\gamma_{R}} f(z) d z=0 . \\
& \left|\int_{\gamma_{R}} f(z) d z\right|=\mid \int_{0}^{\pi} \mathrm{e}^{\mathrm{i} R \mathrm{e}^{\mathrm{i} \theta} \mathrm{i} d \theta \mid \leq \int_{0}^{\pi} \mathrm{e}^{-R \sin \theta} d \theta \underset{R \rightarrow+\infty}{\longrightarrow} 0 .} \\
& \int_{\gamma_{r}} f(z) d z \underset{r \rightarrow 0}{\longrightarrow} \mathrm{i} \pi, \text { thus } I=\pi .
\end{aligned}
$$

2. $f(z)=\frac{1}{z(z-1)(z-2)}=\frac{1}{2 z}-\frac{1}{z-1}+\frac{1}{2(z-2)}$.

$$
\begin{gathered}
-\frac{1}{z-1}=-\frac{1}{z} \frac{1}{1-\frac{1}{z}}=-\frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^{n}}=-\sum_{n=0}^{+\infty} \frac{1}{z^{n+1}}, \quad \forall|z|>1 . \\
\frac{1}{2(z-2)}=-\frac{1}{4} \frac{1}{1-\frac{z}{2}}=-\frac{1}{4} \sum_{n=0}^{+\infty} \frac{z^{n}}{2^{n}}, \quad \forall|z|<2 .
\end{gathered}
$$

Then

$$
f(z)=\frac{1}{z(z-1)(z-2)}=\frac{1}{2 z}-\sum_{n=0}^{+\infty} \frac{1}{z^{n+1}}-\frac{1}{4} \sum_{n=0}^{+\infty} \frac{z^{n}}{2^{n}}
$$

in the region $\{z \in \mathbb{C} ; 1<|z|<2\}$.

Ph.D Comprehensive Examination Analysis

1425-1426- Second semester

Exercise 1 :

1. (a) Let f be a analytic function on \mathbb{C}. Prove that for any $a, b \in \mathbb{C}, a \neq b$ we have for $R>\sup (|a|,|b|)$

$$
\frac{1}{2 \mathrm{i} \pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z=\frac{f(a)-f(b)}{a-b}
$$

(b) Prove that if in addition, f is bounded on \mathbb{C}, then

$$
\frac{1}{2 \mathrm{i} \pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z \longrightarrow 0, \quad \text { when } R \longrightarrow+\infty
$$

deduce that any bounded analytic function on \mathbb{C} is constant.
2. Prove that the function $f(z)=\frac{z-1}{z+1}$ is a conformal mapping from the half-plane $\{z \in \mathbb{C} ; \operatorname{Re} z>0\}$ into the unit disc $\{z \in \mathbb{C} ;|z|<1\}$.

Exercise 2:

For $R>1$, let γ_{R} be the half-circle defined by $\gamma_{R}(t)=R e^{i t}, t \in$ $[0, \pi]$. We consider the function $f(z)=\frac{z e^{3 \mathrm{i} z}}{\left(z^{2}+1\right)^{2}}$.

1. Prove that the integral $\int_{\gamma_{R}} f(z) d z \longrightarrow 0, \quad$ when $R \longrightarrow+\infty$.
2. Use the residue theorem to find the value of the integral $\int_{0}^{+\infty} \frac{x \sin (3 z)}{\left(x^{2}+1\right)^{2}} d x$.

Answer of Ph.D Comprehensive Examination Analysis

1425-1426- Second semester

Solution of the Exercise 1:

1. (a) For R large enough $(\max (|a|,|b|)<R)$,

$$
\begin{aligned}
\frac{1}{2 \mathrm{i} \pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z & =\frac{1}{2 \mathrm{i} \pi} \int_{|z|=R} \frac{1}{a-b}\left[\frac{f(z)}{(z-a)}-\frac{f(z)}{(z-b)}\right] d z \\
& =\frac{1}{a-b}(f(a)-f(b))
\end{aligned}
$$

(b) If $|f(z)| \leq M$, for any $z \in \mathbb{C}$, then $\left|\frac{f(a)-f(b)}{a-b}\right| \leq$

$$
\frac{M R}{(R-|a|)(R-|b|)} . \text { Since } \lim _{R \rightarrow+\infty} \frac{M R}{(R-|a|)(R-|b|)}=0
$$

$$
\text { then } f(a)=f(b) \text {. }
$$

Then if f is a bounded analytic function on $\mathbb{C}, f(a)=f(b)$ for all $a, b \in \mathbb{C}$ and f is constant.
2. f is a Möbius transformation, $|f(\mathrm{i} t)|=\left|\frac{\mathrm{i} t-1}{\mathrm{i} t+1}\right|=1$ and $f(1)=0, f$ is a conformal mapping from the half-plane $\{z \in$ $\mathbb{C} ; \operatorname{Re} z>0\}$ into the unit disc $\{z \in \mathbb{C} ;|z|<1\}$.

Solution of the Exercise 2:

For $R>1$, let γ_{R} be the half-circle defined by $\gamma_{R}(t)=R e^{i t}, t \in$ $[0, \pi]$. We consider the function $f(z)=\frac{z e^{3 \mathrm{i} z}}{\left(z^{2}+1\right)^{2}}$.
1.

$$
\begin{aligned}
\left|\int_{\gamma_{R}} f(z) d z\right| & =\left|\int_{0}^{\pi} \frac{\mathrm{i} R^{2} e^{2 i \theta} e^{3 i R \cos \theta} e^{-3 R \sin \theta}}{\left(R^{2} e^{2 i} \theta+1\right)^{2}} d \theta\right| \\
& \leq \int_{0}^{\pi} \frac{R^{2}}{\left(R^{2}-1\right)^{2}} d \theta=\frac{\pi R^{2}}{\left(R^{2}-1\right)^{2}} \underset{R \rightarrow+\infty}{\longrightarrow} 0
\end{aligned}
$$

2.

$$
\begin{aligned}
\int_{0}^{+\infty} \frac{x \sin (3 z)}{\left(x^{2}+1\right)^{2}} d x & =\lim _{R \rightarrow+\infty}\left(-\mathrm{i} \int_{-R}^{R} f(x) d x+\int_{\gamma_{R}} f(z) d z\right) \\
& =2 \pi \operatorname{Res}(f, \mathrm{i})=\frac{3 \pi}{2 e^{3}}
\end{aligned}
$$

Ph.D Comprehensive Examination Analysis (General Paper)

First semester 1426-1427

Exercise 1 :

1. The aim of this question is to prove Liouville's theorem.

Let f be a holomorphic function on \mathbb{C}. Use the Cauchy's theorem to prove that

$$
\frac{1}{2 \mathrm{i} \pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z=\frac{f(a)-f(b)}{a-b} \quad \text { for } R \text { large. }
$$

Prove that if f is bounded $\lim _{R \rightarrow+\infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z=0$ and hence f is constant.
2. We consider the polynomial $P(z)=z^{7}+5 z^{4}+z^{3}-z+1$.

Prove that P has exactly 4 roots in the unit disc and 3 roots in the annulus $\{z \in \mathbb{C} ; 1<|z|<2\}$.

Exercise 2:

Let f be a holomorphic function on a domain $\Omega \subset \mathbb{C}$. We suppose that $\Omega \supset \overline{D(0,1)}$ and

$$
\begin{equation*}
\left|f\left(e^{\mathrm{i} \theta}\right)\right|=1 \quad \forall \theta \in \mathbb{R} \tag{P}
\end{equation*}
$$

1. Let $a \in D(0,1)$. Prove that the function $h_{a}(z)=\frac{a-z}{1-\bar{a} z}$ verifies the property (P).
2. Prove that if f is without zeros in the unit disc $D(0,1)$, then f is constant in Ω.
3. (a) Prove that the set of zeros of f in $D(0,1)$ is finite.
(b) Deduce that if f is not constant, there exist z_{1}, \ldots, z_{n} in $D(0,1)$ and $p_{1}, \ldots, p_{n} \in \mathbb{N}$ such that

$$
f(z)=\lambda \prod_{j=1}^{n}\left(\frac{z-z_{j}}{1-\overline{z_{j}} z}\right)^{p_{j}} \quad \text { with }|\lambda|=1
$$

Answer of Ph.D Comprehensive Examination Analysis (General Paper)

First semester 1426-1427
Solution of the Exercise 1:

1. For R large enough $(\max (|a|,|b|)<R)$,

$$
\begin{aligned}
\frac{1}{2 \mathrm{i} \pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z & =\frac{1}{2 \mathrm{i} \pi} \int_{|z|=R} \frac{1}{a-b}\left[\frac{f(z)}{(z-a)}-\frac{f(z)}{(z-b)}\right] d z \\
& =\frac{1}{a-b}(f(a)-f(b)) .
\end{aligned}
$$

If $|f(z)| \leq M$, for all $z \in \mathbb{C}$, then $\left|\frac{f(a)-f(b)}{a-b}\right| \leq \frac{M R}{(R-|a|)(R-|b|)}$.
Since $\lim _{R \rightarrow+\infty} \frac{M R}{(R-|a|)(R-|b|)}=0$, then $f(a)=f(b)$ and f is constant.
2. Let $f(z)=5 z^{4}$. For $|z|=1,|f(z)-P(z)|=\left|z^{7}+z^{3}-z+1\right| \leq$ $4<|f(z)|$, the by Rouché's Theorem, P has exactly 4 roots in the unit disc.
We consider the function $g(z)=z^{7}$. For $|z|=2, \mid g(z)-$ $P(z)\left|=\left|5 z^{4}+z^{3}-z+1\right| \leq 91<|g(z)|=128\right.$, then by Rouché's Theorem, P has 7 roots in the disc of center 0 and
radius 2. Then P has 3 roots in the annulus $\{z \in \mathbb{C} ; 1<$ $|z|<2\}$.

Solution of the Exercise 2:

1. $h_{a}(a)=0, h_{a}(0)=a$ and $\left|h_{a}\left(e^{\mathrm{i} \theta}\right)\right|=\left|\frac{a-e^{\mathrm{i} \theta}}{1-\bar{a} e^{\mathrm{i} \theta}}\right|=\left|\frac{a-e^{\mathrm{i} \theta}}{e^{-\mathrm{i} \theta}-\bar{a}}\right|=$
2. Then h_{a} fulfills the property (P).
3. If f is without zeros in the unit disc D, then $\frac{1}{f}$ is holomorphic on a neighborhood of \bar{D}. Since $\left|f\left(e^{\mathrm{i} \theta}\right)\right|=1$ and $\left|\frac{1}{f\left(e^{\mathrm{i} \theta}\right)}\right|=1$ for any $\theta \in \mathbb{R}$, then from the Maximum Principle applied to f and $\frac{1}{f}$, we have $|f| \leq 1$ and $\frac{1}{|f|} \leq 1$ on D, thus f is constant on Ω.
4. (a) \bar{D} is compact, thus the number of zeros of f in D is finite.
(b) If z_{1}, \ldots, z_{n} are the zeros of f in D and $p_{1}, \ldots, p_{n} \in \mathbb{N}$ their multiplicities respective, then $g(z)=\frac{f(z)}{\prod_{j=1}^{n}\left(\frac{z-z_{j}}{1-\overline{z_{j}} z}\right)^{p_{j}}}$ is holomorphic on a neighborhood of \bar{D}, without zeros in D and $\left|g\left(e^{\mathrm{i} \theta}\right)\right|=1$ for any $\theta \in \mathbb{R}$. From the above question g is constant, which yields that

$$
f(z)=\lambda \prod_{j=1}^{n}\left(\frac{z-z_{j}}{1-\overline{z_{j}} z}\right)^{p_{j}}, \quad \text { with }|\lambda|=1 .
$$

Ph.D Comprehensive Examination Analysis (Spacial Paper)

First semester 1429-1430 H

Exercise 1 :

1. Justify the non existence of a conformal transformation from \mathbb{C} into the half plane $\{z \in \mathbb{C} ; \operatorname{Re} z>0\}$.
2. (a) State the maximum principle.
(b) Let Ω be the square region $\{z \in \mathbb{C} ;|\operatorname{Re} z|<1,|\operatorname{Im} z|<$ $1\}$. Suppose that f is continuous on $\bar{\Omega}$, holomorphic on Ω and $f(z)=0$ whenever $\operatorname{Re} z=1$. Prove that f is identiquely 0 on $\bar{\Omega}$. (Hint: consider the function $g(z)=f(z) f(-z) f(\mathrm{i} z) f(-\mathrm{i} z))$.
3. Let $a, b, c \in D(0,1)$. Prove that the function

$$
f(z)=z\left(\frac{z-a}{1-\bar{a} z}\right)^{n}\left(\frac{z-b}{1-\bar{b} z}\right)^{p}-c, \quad n, p \in \mathbb{N}
$$

has exactly $n+p+1$ roots in $D(0,1)$.

Exercise 2:

1. Let g be an entire function and assume that there exists a constant $M>0$ such that

$$
|g(z)| \leq M\left|z^{2} e^{z}\right|, \quad \forall z \in \mathbb{C}
$$

Prove that there exists a constant $K \in \mathbb{C}$ such that $g(z)=$ $K z^{2} e^{z}, \forall z \in \mathbb{C}$ with $|K| \leq M$.
2. (a) Prove that the integral $\int_{0}^{+\infty} \frac{\ln x}{1+x^{2}} d x$ is convergent and use Cauchy's residue theorem to prove that $\int_{0}^{+\infty} \frac{\ln x}{1+x^{2}} d x=$ 0 .
(b) Using a suitable variable change, show that $\int_{0}^{+\infty} \frac{\ln x}{1+x^{2}} d x=$ 0.
3. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be an analytic automorphism.
(a) Prove that $\lim _{|z| \rightarrow+\infty}|f(z)|=+\infty$ and that 0 is a pole for the function $f\left(\frac{1}{z}\right)$.
Deduce that f is a polynomial function.
(b) b) Deduce that $f(z)=a z+b$ for some $a, b \in \mathbb{C}, a \neq 0$.

Answer of Ph.D Comprehensive Examination Analysis (Spacial Paper)

First semester 1429-1430 H

Solution of the Exercise 1:

1. By Riemann Theorem there is a conformal transformation from the half plane $\{z \in \mathbb{C} ; \operatorname{Re} z>0\}$ into the unit disc. Then if there is a conformal transformation from \mathbb{C} into the half plane $\{z \in \mathbb{C} ; \operatorname{Re} z>0\}$, there is a conformal transformation from \mathbb{C} into the unit disc, which is impossible by Liouville Theorem.
Second proof: If $f=U+\mathrm{i} V$ is a conformal transformation from \mathbb{C} into the half plane $\{z \in \mathbb{C} ; \operatorname{Re} z>0\}$, then $V \geq 0$ and V is harmonic on \mathbb{R}^{2}, then V is constant and f is constant.
2. (a) The maximum principle: Let Ω be a bounded domain and f a continuous function on $\bar{\Omega}$ and holomorphic on Ω. If $M=\sup _{z \in \bar{\Omega} \backslash \Omega}|f(z)|$, then $|f(z)| \leq M$ for every $z \in \Omega$, and if there exists $a \in \Omega$ such that $|f(a)|=M$, then f is constant on Ω. (Furthermore, $|f|$ does not attains a maximum at an interior point unless f is constant.)
(b) the function $g(z)=f(z) f(-z) f(\mathrm{i} z) f(-\mathrm{i} z)$ is continuous on $\bar{\Omega}$, holomorphic on Ω. Moreover $g=0$ on $\partial \Omega$, then $g=0$ and $f=0$.
(c) Let g be the function defined by $g(z)=z\left(\frac{z-a}{1-\bar{a} z}\right)^{n}\left(\frac{z-b}{1-\bar{b} z}\right)^{p}$. For $|z|=1,|g(z)|=1$ and $|f(z)-g(z)|=|c|<1=$ $|g(z)|$. Then f and g have the same number of zeros on the unit disc. Then f has exactly $n+p+1$ roots in $D(0,1)$.

Solution of the Exercise

 2 :1. Consider the function $f(z)=g(z) e^{-z}$. For all $z \in \mathbb{C},|f(z)| \leq$ $M\left|z^{2}\right|$, then f is a polynomial of degree ≤ 2. But $f(0)=0$ and $f^{\prime}(0)=0$. Then there exists $K \in \mathbb{C}$ such that $f(z)=K z^{2}$, $\forall z \in \mathbb{C}$ and $|K| \leq M$.
2. (a) In a neighborhood of $0, \frac{\ln x}{1+x^{2}} \approx \ln x$ which is integrable.

For $x>1, \frac{\ln x}{1+x^{2}} \leq \frac{\ln x}{x^{2}}$ which is integrable on $[1,+\infty[$.
By residue theorem

$$
\begin{aligned}
& 2 \mathrm{i} \pi\left(\operatorname{Res}\left(\frac{\log ^{2} z}{1+z^{2}}, \mathrm{i}\right)+\operatorname{Res}\left(\frac{\log ^{2} z}{1+z^{2}},-\mathrm{i}\right)\right)=4 \pi^{2} \int_{0}^{+\infty} \frac{d x}{1+x^{2}}-4 \mathrm{i} \pi \int_{0}^{+\infty} \\
& \operatorname{Res}\left(\frac{\log ^{2} z}{1+z^{2}}, \mathrm{i}\right)=-\frac{\pi^{2}}{8 \mathrm{i}}, \operatorname{Res}\left(\frac{\log ^{2} z}{1+z^{2}},-\mathrm{i}\right)=\frac{9 \pi^{2}}{8 \mathrm{i}} . \text { Then } \\
& \int_{0}^{+\infty} \frac{\ln x}{1+x^{2}} d x=0 \text { and } \int_{0}^{+\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2} .
\end{aligned}
$$

(b) $\int_{0}^{+\infty} \frac{\ln x}{1+x^{2}} d x \stackrel{t=\frac{1}{x}}{=}-\int_{0}^{1} \frac{\ln x}{1+t^{2}} d t$. Then $\int_{0}^{+\infty} \frac{\ln x}{1+x^{2}} d x=$
3. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be an analytic automorphism.
(a) f^{-1} is continuous, then for all $R>0, f^{-1}(\overline{\overline{D(0, R)}})$ is a compact. There is $R^{\prime}>0$ such that $f^{-1}(\overline{D(0, R)}) \subset$ $D\left(0, R^{\prime}\right)$. This is equivalent to

$$
\forall R>0, \exists R^{\prime}>0 \text { such that if }|z| \geq R^{\prime},|f(z)| \geq R
$$

Then $\lim _{|z| \rightarrow+\infty}|f(z)|=+\infty$.
Since $\lim _{z \rightarrow 0}\left|f\left(\frac{1}{z}\right)\right|=+\infty$, then 0 is a pole for the function $f\left(\frac{1}{z}\right)$.
(b) Since f is injective, 0 is a simple pole of the function $f\left(\frac{1}{z}\right)$ and f is a polynomial function of degree 1 .

Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1429-1430 H

Exercise 3 :

1. Let $\Omega=\{z=x+\mathrm{i} y \in \mathbb{C}, a<x<b, y>0\}$ and $g: \bar{\Omega} \longrightarrow \mathbb{C}$ be a continuous function and holomorphic on Ω. Assume that $g(x) \in \mathbb{R}$, for all $a<x<b$.
(a) Prove that the function \tilde{g} defined on the strip $\{z=x+$ $\mathrm{i} y \in \mathbb{C}, a<x<b\}$ by

$$
\tilde{g}(z)=\left\{\begin{array}{cl}
g(z) & \text { if } z \in \bar{\Omega} \\
g(z)=\overline{g(\bar{z})} & \text { if } \bar{z} \in \Omega
\end{array}\right.
$$

is holomorphic.
(b) Deduce that if $g(x)=0$ for all $a<x<b$, then $g \equiv 0$ on Ω.
2. Let h be the holomorphic function defined on a neighborhood of the closed unit disc \bar{D} by: $h(z)=\mathrm{i} \frac{1-z}{1+z}$.
(a) Prove that h is a conformal mapping from the unit disc D onto the upper half-plane $\mathcal{H}=\{x+\mathrm{i} y \in \mathbb{C} ; y>0\}$.
(b) Find the image of $\left\{e^{\mathrm{it}} ; 0<t<\frac{\pi}{2}\right\}$ by h.
3. Let f be a holomorphic function on the unit disc D and continuous on \bar{D}. Assume that $f\left(e^{\mathrm{i} t}\right)=0$, for all $t \in\left[0, \frac{\pi}{2}\right]$. Prove that $f \circ h^{-1} \equiv 0$ and that $f \equiv 0$.
4. We can prove the same result otherwise. Define the function F by: $F(z)=f(z) f(\mathrm{i} z) f(-z) f(-\mathrm{i} z)$.
Prove that $F \equiv 0$, and deduce that $f \equiv 0$.

Exercise 4 :

Let P be a polynomial of degree $n \geq 1$ and let $R>0$.

1. Let h be an entire function (i.e. holomorphic on \mathbb{C}). Assume that $|h(z)| \leq|P(z)|$, for all $|z| \geq R$.
Prove that h is a polynomial of degree at least n.
2. Prove that $\lim _{|z| \longrightarrow+\infty}|P(z)|=+\infty$.
3. Let $\left(z_{n}\right)_{n}$ be a sequence of complex numbers such that the sequence $\left(P\left(z_{n}\right)\right)_{n}$ is convergent.
Prove that the sequence $\left(z_{n}\right)_{n}$ is bounded.
4. Prove that $P(\mathbb{C})$ is an open and closed subset of \mathbb{C} and deduce D'Alembert's theorem, namely: Every non constant polynomial has at least one zero in \mathbb{C}.
5. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a holomorphic function such that $\lim _{|z| \rightarrow+\infty}|f(z)|=$ $+\infty$.
(a) Prove that f has a finite number of zeros in \mathbb{C}.
(b) Prove that there exists a polynomial P such that the function $h=\frac{P}{f}$ is holomorphic in \mathbb{C} and $h(z) \neq 0$, for all $z \in \mathbb{C}$.
(c) Prove that there exists an $R>0$ such that $|h(z)| \leq$ $|P(z)|$, for all $|z| \geq R$.
(d) Deduce that there exists a constant C such that $f=C P$.
6. Now let $g: \mathbb{C} \longrightarrow \mathbb{C}$ be a conformal mapping.
(a) Prove that $\lim _{|z| \rightarrow+\infty}|g(z)|=+\infty$.
(b) Deduce that $g(z)=a z+b$, with $a, b \in \mathbb{C}$ and $a \neq 0$.

Answer Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1429-1430 H

Solution of the Exercise 3:

1. (a) \tilde{g} is holomorphic on Ω and on $\Omega^{-}=\{z=x+\mathrm{i} y \in \mathbb{C}, a<$ $x<b, y<0\}$ and \tilde{g} is continuous on $\{z=x+\mathrm{i} y \in \mathbb{C} ; a<$ $x<b\}$.
If $g(z)=U(x, y)+\mathrm{i} V(x, y)$ on Ω, then $\tilde{g}(z)=U(x,-y)-$ $\mathrm{i} V(x,-y)=U_{1}(x, y)+\mathrm{i} V_{1}(x, y)$ on Ω^{-}.

$$
\left\{\begin{array}{c}
\frac{\partial U_{1}}{\partial x}(x, y)=\frac{\partial U}{\partial x}(x,-y)=\frac{\partial V}{\partial y}(x,-y)=\frac{\partial V_{1}}{\partial y}(x, y) \\
\frac{\partial U_{1}}{\partial y}(x, y)=-\frac{\partial U}{\partial y}(x,-y)=\frac{\partial V}{\partial x}(x,-y)=-\frac{\partial V_{1}}{\partial x}(x, y)
\end{array}\right.
$$

Then \tilde{g} is holomorphic on Ω^{-}. Moreover \tilde{g} is continuous on $\{z=x+\mathrm{i} y \in \mathbb{C}, a<x<b\}$. To show that \tilde{g} is holomorphic on $\{z=x+\mathrm{i} y \in \mathbb{C}, a<x<b\}$, we use Morera's theorem and we prove that for all triangle $\Delta \subset\{z=x+\mathrm{i} y \in \mathbb{C}, a<x<b\}, \int_{\Delta} \tilde{g}(z) d z=0$.
Let $\Delta=(A, B, C)$ be a triangle in $\{z=x+\mathrm{i} y \in \mathbb{C}, a<$ $x<b\}$.
If $\Delta \subset \Omega$ or $\Delta \subset \Omega^{-}$, then $\int_{\partial \Delta} \tilde{g}(z) d z=0$.
If Δ meets the real axis, then we can suppose that $\Delta \cap \Omega$ is a triangle $\Delta_{1}=(A, \alpha, \beta)$ and $\Delta \cap \Omega^{-}$is a polygon (α, B, C, β), (cf figure 1).
Since the triangle $\Delta_{1}=\left(A, A_{1}, A_{2}\right)$ is in Ω and the quadrilateral $R_{1}=\left(B, C, B_{2}, B_{1}\right)$ is in Ω^{-}, then $\int_{\partial \Delta_{1}} \tilde{g}(z) d z=$

Figure 1:
$\int_{\partial R_{1}} f(z) d z=0$, thus $\int_{\partial \Delta} \tilde{g}(z) d z=\int_{\partial R_{2}} \tilde{g}(z) d z=0$, with R_{2} the quadrilateral $\left(A_{1}, B_{1}, B_{2}, A_{2}\right)$.
If the points A_{1} and B_{1} tend to α, then the integral $\int_{\left[A_{1}, B_{1}\right]} \tilde{g}(z) d z$ tends to 0 . The same result for the integral $\int_{\left[B_{2}, A_{2}\right]} \tilde{g}(z) d z$ tends to 0 when the points A_{2} and B_{2} tend to β.
It follows from Morera's Theorem that \tilde{g} is holomorphic on Ω.
(b) If $g(x)=0$ for all $a<x<b, \tilde{g}(x)=0$ for all $a<x<b$, then $\tilde{g} \equiv 0$ on $\{z=x+\mathrm{i} y \in \mathbb{C}, a<x<b\}$ and then $g \equiv 0$ on Ω.
2. (a) $h^{\prime}(z)=\frac{-2 \mathrm{i}}{(1+z)^{2}}$, then h is a conformal mapping. $h(z)=$ $\frac{2 y+\mathrm{i}\left(1-|z|^{2}\right)}{|1+z|^{2}} \in \mathcal{H}$ with $z=x+\mathrm{i} y \in D$. Moreover $h^{-1}(z)=\frac{1+\mathrm{i} z}{1-\mathrm{i} z}=\frac{1-|z|^{2}+2 \mathrm{i} x}{|1-\mathrm{i} z|^{2}}$, then $\left|h^{-1}(z)\right|^{2}=$ $\frac{1+x^{2}-y^{2}}{(1+y)^{2}+x^{2}} \in D$ if $y>0$.

Otherwise, we can see that h is a möbius transform and the image of the unit circle is the real axis and $h(0)=\mathrm{i}$, then h is a conformal mapping from the unit disc D onto the upper half-plane $\mathcal{H}=\{x+\mathrm{i} y \in \mathbb{C} ; y>0\}$.
(b) The image of $\left\{e^{\mathrm{it}} ; 0<t<\frac{\pi}{2}\right\}$ by h is the interval $] 0,1[$.
3. From the first question $f \circ h^{-1}$ is holomorphic on the open set $\{z=x+\mathrm{i} y \in \mathbb{C}, 0<x<1, y>0\}$ and $f \circ h^{-1}(x)=0$ on the interval $] 0,1\left[\right.$. Then $f \circ h^{-1} \equiv 0$ and $f \equiv 0$.
4. $F \equiv 0$ on the unit circle and from the maximum principle, $F \equiv 0$ on D. Then $f \equiv 0$.

Solution of the Exercise
 4:

If $P(z)=a_{n} z^{n}+\ldots+a_{0}$ with $a_{n} \neq 0$. So

$$
\begin{equation*}
\lim _{|z| \longrightarrow+\infty} \frac{|P(z)|}{\left|a_{n}\right||z|^{n}}=\lim _{|z| \longrightarrow+\infty}\left|1+\frac{a_{n-1}}{a_{n} z}+\ldots+\frac{a_{0}}{a_{n} z^{n}}\right|=1 \tag{0.1}
\end{equation*}
$$

then there exists $R_{1}>0$ such that $|P(z)| \leq 2\left|a_{n}\right||z|^{n}$ for $|z| \geq$ R_{1}.

1. If $h(z)=\sum_{k=0}^{+\infty} b_{k} z^{k}$ and $|h(z)| \leq|P(z)|$, for all $|z| \geq R$. The Cauchy's inequalities gives that for all $m \geq 1$ and $|z| \geq$ $\max \left(R, R_{1}\right),\left|b_{m}\right| \leq 2\left|a_{n}\right||z|^{n-m}$; which gives that $b_{m}=0$ if $m \geq n+1$. Then h is a polynomial of degree at least n.
2. The relation (0.1) proves that $\lim _{|z| \longrightarrow+\infty}|P(z)|=+\infty$.
3. Let $\left(z_{n}\right)_{n}$ be a sequence of complex numbers such that the sequence $\left(P\left(z_{n}\right)\right)_{n}$ is convergent. If the sequence $\left(z_{n}\right)_{n}$ is not bounded, there exists a subsequence $\left(z_{\varphi(n)}\right)_{n}$ such that $\lim _{n \rightarrow+\infty}\left|z_{\varphi(n)}\right|=+\infty$. Then $\lim _{n \rightarrow+\infty}\left|P\left(z_{\varphi(n)}\right)\right|=+\infty$ which is impossible.
4. By the open mapping theorem $P(\mathbb{C})$ is an open subset which deduced from the open mapping theorem.
If there exists a sequence $\left(z_{n}\right)_{n}$ such that the sequence $\left(P\left(z_{n}\right)\right)_{n}$ is convergent, there exists a convergent subsequence $\left(z_{\varphi(n)}\right)_{n}$. Let $a=\lim _{n \rightarrow+\infty} z_{\varphi(n)}$ and $\alpha=\lim _{n \rightarrow+\infty} P\left(z_{n}\right)$. Then $\alpha=P(a)$, and then $P(\mathbb{C})$ is closed. $P(\mathbb{C})$ is connected, then $P(\mathbb{C})=\mathbb{C}$, which proves the D'Alembert's theorem.
5. (a) There exists $R>0$ such that for $|z|>R,|f(z)| \geq 1$, then the set of zeros of f is in the compact $\overline{D(0, R)}$, then f has a finite number of zeros in \mathbb{C}.
(b) It suffices to take $P(z)=\prod_{j=1}^{n}\left(z-z_{j}\right)$, with z_{1}, \ldots, z_{n} the zeros of f cited with their order of multiplicity.
(c) It suffices to take R the same as in the question a).
(d) We deduce from the first question that $\frac{P}{f}$ is a polynomial without zeros, then it is a constant. Then $f=C P$.
6. (a) As g is a conformal mapping, then g^{-1} is continuous, then for all $R>0, g^{-1} \overline{D(0, R)}$ is a compact subset, then is bounded. It follows that there exists $R^{\prime}>0$ such that $g^{-1}\left(\overline{D(0, R)} \subset D\left(0, R^{\prime}\right)\right.$. Then for all $R>0$, there exists $R^{\prime}>0$ such that for $|z| \geq R^{\prime},|g(z)| \geq R$, which proves that $\lim _{|z| \rightarrow+\infty}|g(z)|=+\infty$.
(b) From the above question g is a polynomial, but it has only one zero, then $g(z)=a z+b$, with $a, b \in \mathbb{C}$ and $a \neq 0$.

Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1996

Exercise 1 :

1. (a) Let f be analytic in $\mathbb{C}, z=x+\mathrm{i} y$. If $\operatorname{Re} f(z)=$ $e^{x}(x \cos y-y \sin y)$ when $|z|<1$, find the general form of $f(z) \in \mathbb{C}$.
(b) Map the region between $|z-1|=1$ and $|z-2|=2$ conformally onto $\operatorname{Re} z>0$.
2. (a) Calculate $\int_{|z-1|=3}\left(z^{2}-z+1\right) d \bar{z}$.
(b) Let $f(z)$ be analytic in $|z|<1$. Show that $\left|f^{n}(0)\right| \leq n!n^{n}$ for some integer n.
(c) By the method of contour integration show that $\int_{0}^{+\infty} \frac{x^{\alpha-1}}{1+x} d x=$ $\frac{\pi}{\sin \pi \alpha}, 0<\alpha<l$.
3. (a) Find the number of zeros of $2 z^{2}-e^{\frac{z}{2}}$ in $|z|<1$.
(b) Expand $f(z)=\frac{1}{z(z-1)(z-2)}$ as a Laurent series in the annulus $1<|z|<2$.

Answer of Ph.D Comprehensive Examination
 Analysis (General Paper)

Second semester 1996
Solution of the Exercise 1:

1. If $f=U+\mathrm{i} V, U(x, y)=e^{x}(x \cos y-y \sin y)$. $\frac{\partial U}{\partial x}=e^{x}(x \cos y-$ $y \sin y+\cos y)=\frac{\partial V}{\partial y}$. Then $V(x, y)=e^{x}(x \sin y+y \cos y)+$ $h(y)$. Moreover $\frac{\partial U}{\partial y}=e^{x}(-x \sin y-y \cos y-\sin y)=-\frac{\partial V}{\partial x}=$ $e^{x}(-x \sin y-y \cos y-\sin y)-h^{\prime}(y)$. Then $h=C$ and
$f(z)=e^{x}(x \cos y-y \sin y)+\mathrm{i} e^{x}(x \sin y+y \cos y)+\mathrm{i} C=z e^{z}+\mathrm{i} C$.
2. We denote Ω the region between $|z-1|=1$ and $|z-2|=2$. The function $z \longmapsto f_{1}(z)=\frac{1}{z}$ maps conformally Ω onto the strip $\Omega_{1}=\left\{z \in \mathbb{C} ; \frac{1}{4}<\operatorname{Re}^{z} z<\frac{1}{2}\right\}$. The function $z \longmapsto$ $f_{2}(z)=4 \mathrm{i} \pi z-\frac{3 \mathrm{i} \pi}{2}$ maps conformally Ω_{1} onto the strip $\Omega_{2}=$ $\left\{z \in \mathbb{C} ;-\frac{\pi}{2}<\operatorname{Im} z<\frac{\pi}{2}\right\}$. The function $z \longmapsto f_{3}(z)=e^{z}$ maps conformally Ω_{2} onto the half plane $\{z \in \mathbb{C} ; \operatorname{Re} z>$ $0\}$. Then the function $z \longmapsto f(z)=f_{3} \circ f_{2} \circ f_{1}(z)$ maps conformally Ω onto the half plane $\{z \in \mathbb{C} ; \operatorname{Re} z>0\}$.
3. (a) $\int_{|z-1|=3}\left(z^{2}-z+1\right) d \bar{z}=-\mathrm{i} \int_{0}^{2 \pi}\left(\left(1+3 e^{\mathrm{i} \theta}\right)^{2}-1-3 e^{\mathrm{i} \theta}-\right.$ 1) $e^{-\mathrm{i} \theta} d \theta=-6 \mathrm{i} \pi$.
(b) The power series $\sum_{n \geq 1} n!n^{n} z^{n}$ has 0 as radius of convergence. Then if $\left|f^{n}(0)\right| \geq n!n^{n}$ for all integers n, the function f can not be analytic on the unit disc.
(c) Let $f(z)=\frac{z^{\alpha-1}}{1+z}$, with $z^{\alpha-1}=\mathrm{e}^{(\alpha-1) \log z}, \log z$ is the branch of $\log z$ such that $\log z=\ln |z|+\mathrm{i} \theta, 0<\theta<2 \pi$. We take the closed curve defined by the figure (2).
$\operatorname{Res}(f,-1)=-\mathrm{e}^{\mathrm{i} \pi \alpha}$. Then by the residue theorem $\int_{0}^{+\infty} \frac{x^{\alpha-1}}{1+x} d x=$ $\frac{\pi}{\sin \pi \alpha}, 0<\alpha<l$.

Figure 2:
4. (a) Let $f(z)=2 z^{2}-e^{\frac{z}{2}}$ and $g(z)=2 z^{2}$. For $|z|=1$, $|f(z)-g(z)|=\left|e^{\frac{z}{2}}\right| \leq \sqrt{e}<1<|g(z)|$. Then the number of zeros of $2 z^{2}-e^{\frac{z}{2}}$ in $|z|<1$ is 2 .
(b)

$$
\begin{aligned}
f(z) & =\frac{1}{2 z}-\frac{1}{z-1}+\frac{1}{2(z-2)}=\frac{1}{2 z}-\frac{1}{z} \frac{1}{1-\frac{1}{z}}-\frac{1}{4} \frac{1}{1-\frac{z}{2}} \\
& =\frac{1}{2 z}-\sum_{n=0}^{+\infty} \frac{1}{z^{n+1}}-\sum_{n=0}^{+\infty} \frac{z^{n}}{2^{n+2}} .
\end{aligned}
$$

Ph.D Comprehensive Examination Analysis (General Paper)

Autumn 1997

Exercise 1 :

1. (a) Let f be an analytic function in a domain Ω. If the $\arg f$ is constant, show that f is a constant.
(b) Map the region between $\{z \in \mathbb{C} ;|z|=1\}$ and $\{z \in$ $\mathbb{C} ;|2 z-1|=1\}$ conformally onto the half-plane $\{z \in$ $\mathbb{C} ; \operatorname{Re} z>0\}$.
2. (a) Evaluate $\int_{0}^{2 \pi} \frac{\cos ^{2} \theta}{5+3 \cos \theta} d \theta$.
(b) State Rouche's theorem and use it to prove the fundamental theorem of algebra about the zeros of a polynomial.
3. (a) Let $\left(f_{n}\right)_{n}$ be a sequence of analytic functions in a domain D. Suppose $f_{n}(z) \neq 0$ for any n and any $z \in D$. Suppose $\left(f_{n}\right)_{n}$ converges to f uniformly on every compact subset of D. Show that if $f\left(z_{0}\right)=0$ for some $z \in D$, then $f(z)=0$ for all $z \in D$.
(b) Let $f(z)=\frac{\cos z}{z^{2} \log (1+z)}$. Use the Laurent series to find the residue of f at $z=0$.

Answer of Ph.D Comprehensive Examination Analysis (General Paper)

Autumn 1997

Solution of the Exercise 1:

1. (a) Let f be an analytic function in a domain Ω. If the $\arg f$ is constant, show that f is a constant.
(b) Map the region between $\{z \in \mathbb{C} ;|z|=1\}$ and $\{z \in$ $\mathbb{C} ;|2 z-1|=1\}$ conformally onto the half-plane $\{z \in$ $\mathbb{C} ; \operatorname{Re} z>0\}$.
2. (a)

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\cos ^{2} \theta}{5+3 \sin \theta} d \theta & =\int_{|z|=1} \frac{\left(z^{2}+1\right)^{2}}{4 z^{2}\left(5+3 \frac{z^{2}-1}{2 \mathrm{i} z}\right)} \frac{d z}{\mathrm{i} z} \\
& =\int_{|z|=1} \frac{\left(z^{2}+1\right)^{2}}{2 z^{2}\left(3 z^{2}+10 \mathrm{i} z-3\right)} d z \\
& =2 \mathrm{i} \pi\left(\operatorname{Res}(f, 0)+\operatorname{Res}\left(f,-\frac{\mathrm{i}}{3}\right)\right)=-2 \mathrm{i} \pi\left(\frac{\mathrm{i}}{9}\right)=\frac{2 \pi}{9}
\end{aligned}
$$

where $f(z)=\frac{\left(z^{2}+1\right)^{2}}{2 z^{2}\left(3 z^{2}+10 \mathrm{i} z-3\right)}$.
$\operatorname{Res}(f, 0)=-\frac{5 \mathrm{i}}{9}$ and $\operatorname{Res}\left(f,-\frac{\mathrm{i}}{3}\right)=\frac{4 \mathrm{i}}{9}$.
(b) The Rouché's Theorem: Let f and g be two holomorphic functions on a neighborhood of the disc $\{z \in \mathbb{C} ;|z-a| \leq$ $r\}$ and $|f(z)-g(z)|<|f(z)| ; \forall z \in \mathscr{C}(a, r)=\{z \in$ $\mathbb{C} ;|z-a|=r\}$, then f and g have the same number of zeros inside the disc $D(a, r)$. (The zeros are counted according to their order or multiplicity.)
The Fundamental Theorem of Algebra: If $P(z)=a_{n} z^{n}+$ $\ldots+a_{0}$, then for $|z|$ large enough, $\left|P(z)-a_{n} z^{n}\right|<$ $\left|a_{n}\right|\left|z^{n}\right|$, because $\lim _{|z| \rightarrow+\infty}\left|\frac{P(z)-a_{n} z^{n}}{a_{n} z^{n}}\right|=0$. It results that P has the same number of zeros that the polynomial $Q(z)=a_{n} z^{n}$.
3. (a) Since the sequence $\left(f_{n}\right)_{n}$ is uniformly convergent on any compact subset of Ω, then f is holomorphic. We assume that $f\left(z_{0}\right)=0$ and z_{0} is a zero of multiplicity $k \geq 1$ of f and f is not identically 0 . Let $r>0$ such that $f(z) \neq 0$ for any $z \in \overline{D\left(z_{0}, r\right)} \backslash\left\{z_{0}\right\}$ and let γ be the
closed curve defined by the circle of radius r and centered at z_{0} traversed in the clockwise direction. Then $\frac{1}{2 i \pi} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=k$. Since f never vanishing on γ, the sequence $\left(\frac{f_{n}^{\prime}}{f_{n}}\right)_{n}$ converges uniformly on γ to $\frac{f^{\prime}}{f}$, thus

$$
k=\frac{1}{2 i \pi} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\lim _{n \rightarrow+\infty} \frac{1}{2 i \pi} \int_{\gamma} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} d z=0
$$

which is absurd.
(b) Let $f(z)=\frac{\cos z}{z^{2} \log (1+z)}$. Use the Laurent series to find the residue of f at $z=0$.

Ph.D Qualifying Examination Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014
Exercise 1 : [Note that parts 1) and 2) are independent]

1. Compute the following integrals $\int_{0}^{+\infty} \frac{d x}{1+x^{3}}$ and $\int_{0}^{+\infty} \frac{\ln (x)}{1+x^{3}} d x$.
2. Let f be a holomorphic function on $D \backslash\{0\}$ and $|f(z)| \leq$ $\ln \left(\frac{1}{|z|}\right)$, for all $z \in D \backslash\{0\}$, where D is the unit disc.
(a) Prove that 0 is a removable singularity of f. (Hint: you can consider the function $z f(z)$ and calculate its limit at $0)$.
(b) Prove that for all $0<r<1,|f(z)| \leq \ln \left(\frac{1}{1-r}\right)$, for all $z \in D(0,1-r)$.
(c) Deduce that $f=0$.

Exercise 2: [Note that parts 1) and 2) are independent]

1. Consider the function defined by the power series

$$
f(z)=\sum_{n=1}^{+\infty} z^{n!}
$$

(a) Prove that f is holomorphic on the unit disc $D=\{z \in$ $\mathbb{C} ;|z|<1\}$.
(b) Let $\alpha \in \mathbb{C}$ such that $\alpha^{m}=1$, for some $m \in \mathbb{N}$. (α is called a root of unity).
Prove that $\lim _{r \rightarrow 1, r<1}|f(r \alpha)|=+\infty$.
(c) Deduce that f can not be extended to a holomorpic function on an open set U such that $D \subset U$ and $D \neq U$.
2. Let $\left(f_{n}\right)$ be a sequence of holomorphic functions on the unit disc D such that $f_{n}(D) \subset D$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow+\infty} f_{n}(0)=1$.
(a) Prove that there is a subsequence $\left(f_{n_{j}}\right)_{j}$ which converges uniformly on any compact to a holomorphic function g on the unit disc D and $g(0)=1$.
(b) We assume that g is not constant.
i. Prove that there exists $R>0$ such that $g-1$ is without zeros in $D(0, R) \backslash\{0\}$.
ii. Prove that for j sufficiently large and $|z|=r<R$, we have

$$
\left|\left(f_{n_{j}}(z)-1\right)-(g(z)-1)\right|<\inf \{|g(z)-1| ;|z|=r\} .
$$

iii. Deduce that $f_{n_{j}}(z)-1$ has the same number of zeros as $g-1$ in $D(0, r)$.
iv. Prove that $f_{n_{j}}(z)-1$ is without zero on $D(0, r)$.
v. Deduce that $g(z)=1$ for all $z \in D$.
(c) Prove that $\left(f_{n}\right)_{n}$ converges uniformly to 1 on any compact.

Answer of Ph.D Qualifying Examination Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014
Solution of the Exercise 1:

1. Let $f(z)=\frac{\log ^{2}(z)}{1+z^{3}}, I=\int_{0}^{+\infty} \frac{d x}{1+x^{3}}$ and $J=\int_{0}^{+\infty} \frac{\ln (x)}{1+x^{3}} d x$.

By Residue Theorem
$-4 \mathrm{i} \pi J+4 \pi^{2} I=2 \mathrm{i} \pi\left(\operatorname{Res}(f,-1)+\operatorname{Res}\left(f, e^{\frac{\mathrm{i} \pi}{3}}\right)+\operatorname{Res}\left(f, e^{\frac{5 \mathrm{i} \pi}{3}}\right)\right)$.
$\operatorname{Res}(f,-1)=-\frac{\pi^{2}}{3}$.
$\operatorname{Res}\left(f, e^{\frac{\mathrm{i} \pi}{3}}\right)=\frac{\pi^{2}}{27}\left(\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}\right)$.
$\operatorname{Res}\left(f, e^{\frac{5 \mathrm{in} \pi}{3}}\right)=\frac{25 \pi^{2}}{27}\left(\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}\right)$.
Then $-4 \mathrm{i} \pi J+4 \pi^{2} I=\frac{8 \mathrm{i} \pi^{3}}{27}+\frac{8 \pi^{3} \sqrt{3}}{9}, I=\frac{2 \pi \sqrt{3}}{9}$ and $J=$ $-\frac{2 \pi^{2}}{27}$.
2. (a) For all $z \in D,\left|z^{n!}\right| \leq|z|^{n}$ and the series $\sum_{n \geq 1}|z|^{n}$ is convergent. Then f is holomorphic on the unit disc $D=$ $\{z \in \mathbb{C} ;|z|<1\}$.
(b) $f(r \alpha)=\sum_{n=1}^{m-1} r^{n!} \alpha^{n!}+\sum_{n=m}^{+\infty} r^{n!}$. Then $\lim _{r \rightarrow 1, r<1}|f(r \alpha)|=$
$+\infty .\left(\sum_{n=m}^{+\infty} r^{n!} \geq \sum_{n=m}^{p} r^{n!}\right.$ for all $\left.p>m.\right)$
(c) Let U be an open set such that $D \subset U$ and $D \neq U$. There is α a root of unity in U. But $\lim _{r \rightarrow 1}|f(r \alpha)|=+\infty$, which is absurd. The function f can not be extended to a holomorpic function on an open set U such that $D \subset U$ and $D \neq U$.

1. (a) $\lim _{z \rightarrow 0} z f(z)=0$, then 0 is a removable singularity of f.
(b) For all $z \in D(0,1-r),|f(z)| \leq \sup _{|w|=1-r}|f(w)| \ln \left(\frac{1}{1-r}\right)$.
(c) It results that for all $z \in D,|f(z)| \leq \lim _{r \rightarrow 0} \ln \left(\frac{1}{1-r}\right)=$ 0 , then $f=0$.
2. (a) The sequence $\left(f_{n}\right)$ is bounded, then by Montel Theorem, there is a subsequence $\left(f_{n_{j}}\right)_{j}$ which converges uniformly on any compact to a holomorphic function g on the unit disc D. Since $\lim _{n \rightarrow+\infty} f_{n}(0)=1$, then $g(0)=1$.
(b) We assume that g is not constant.
i. By Theorem of isolated zero of non constant holomorphic function, there exists $R>0$ such that $g(z)-$ $1 \neq 0$ for all $z \in D(0, R) \backslash\{0\}$.
ii. The convergence of the sequence $\left(f_{n_{j}}\right)_{j}$ is uniform on the compact $\{z \in \mathbb{C} ;|z|=r<R\}$. Then for j large enough

$$
\left|f_{n_{j}}(z)-g(z)\right|=\left|\left(f_{n_{j}}(z)-1\right)-(g(z)-1)\right|<\inf \{|g(z)-1| ;|z|=
$$

iii. By Theorem $f_{n_{j}}-1$ and $g-1$ have the same number of zeros on $D(0, r)$.
iv. $f_{n_{j}}(z)-1 \neq 0$ for all $z \in D(0, r)$ since $f_{n}(D) \subset D$, which is absurd since $g(0)=1$.
v. We deduce that g is constant, then $g(z)=1$ for all $z \in D$.
(c) Since the sequence $\left(f_{n}\right)_{n}$ is bounded and any subsequence converges to 0 in the space of holomorphic functions, then $\left(f_{n}\right)_{n}$ converges uniformly to 1 on any compact.

Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 27-28

Exercise 1 :

1. Precise the image of the line $\{z \in \mathbb{C} ; \operatorname{Re} z=0\}$ by the möbius transformation $f(z)=\frac{1}{1-z}$. Deduce the image of the halfplane $\{z \in \mathbb{C} ; \operatorname{Re} z>0\}$ by the function f.
2. If Ω is a simply connected domain in \mathbb{C} different from \mathbb{C}, justify the non existence of a conformal transformation from \mathbb{C} to Ω.
3. Let $\left(a_{n}\right)_{n}$ be a sequence of complex numbers such that $\sum_{n=1}^{+\infty} \frac{1}{\left|a_{n}\right|}<$ $+\infty$. Construct an entire function such that its set of zeros is equal to $\left\{a_{n} ; n \geq 1\right\}$.

Question 2

For $a \in \mathbb{C}$ and $s>0$, we consider the set \mathcal{F} of family of analytic functions on a domain $\Omega \subset \mathbb{C}$ satisfying to $|f(z)-a|>s$ for all $z \in \Omega$ and all $f \in \mathcal{F}$. We consider the family

$$
\mathcal{G}=\left\{g ; g(z)=\frac{1}{f(z)-a}, f \in \mathcal{F}\right\}
$$

1. State the definition of a normal family and prove that \mathcal{G} is normal.
2. Deduce that for any sequence $\left(g_{n}\right)_{n}$ of \mathcal{G}, we can extract a sub-sequence that converges to a function g which is either identically equal to zero or without zero on Ω.
3. \mathcal{F} is it a normal family?

Answer of Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 27-28
Solution of the Exercise 1:

1. $f(0)=1, f(\mathrm{i})=\frac{1+\mathrm{i}}{2}$ and $f(\infty)=0$, then the image of the line $\{z \in \mathbb{C} ; \operatorname{Re} z=0\}$ by f is the circle of center $\frac{1}{2}$ and radius $\frac{1}{2}$. Since $f(1)=\infty$ then the image of the half-plane $\{z \in \mathbb{C} ; \operatorname{Re} z>0\}$ by the function f is the complement of the disc of center $\frac{1}{2}$ and radius $\frac{1}{2}$.
2. Ω is a simply connected domain in \mathbb{C} different from \mathbb{C}, then there is a conformal transformation from Ω into the unit disc. If there is a conformal transformation from \mathbb{C} to Ω, we find a conformal transformation from \mathbb{C} into the unit disc, which is impossible by Liouville theorem.
3. The function $f(z)=\prod_{n=1}^{+\infty}\left(1-\frac{z}{a_{n}}\right)$ is an entire function and its set of zeros is equal to $\left\{a_{n} ; n \geq 1\right\}$.

Solution of the Exercise 2:

1. A family $\mathcal{F} \subset \mathcal{O}(\Omega)$ is called a normal family if from any sequence $\left(f_{n}\right)_{n} \in \mathcal{F}$, we can extract a convergent sub-sequence. By Montel's theorem, \mathcal{G} is normal since \mathcal{G} is bounded.
2. Let $\left(g_{n}\right)_{n}$ be a sequence of \mathcal{G}, we can extract a sub-sequence that converges to a function g. Since the functions g_{n} are without zeros, then g is either identically equal to zero or without zero on Ω.
3. \mathcal{F} is not a normal family. We can take the sequence $\left(f_{n}=\right.$ $n+a+s)_{n}$.

Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 28-29

Exercise 1 :

1. (a) Prove that the principal determination (branch) of the argument is a continuous function on $\mathbb{C} \backslash \mathbb{R}^{-}$. Verify that it can not be extended continuously at any point of \mathbb{R}^{-}.
(b) We denote by Log the principal determination (branch) of the logarithmic function and by log the determination of the logarithm defined on $\mathbb{C} \backslash i \mathbb{R}^{+},(\theta \in] \frac{\pi}{2}, \frac{5 \pi}{2}[)$. On which domain of $\mathbb{C}, \log =\log$.
2. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be an entire function such that $\lim _{|z| \rightarrow+\infty}|f(z)|=$ $+\infty$.
(a) Prove that the set of zeros of f is non empty and is a finite set.
(b) We denote by z_{1}, \ldots, z_{p} the zeros of f counted with order of multiplicity. Let $P(z)=\prod_{j=1}^{p}\left(z-z_{j}\right)$ and $g(z)=$ $\frac{P(z)}{f(z)}$.
Prove that g extends analytically on \mathbb{C} and $g(z) \neq 0$ for all $z \in \mathbb{C}$.
(c) Use the Cauchy inequalities to prove that g is a polynomial function.
(d) Deduce that f is a polynomial function.
3. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a proper analytic function on \mathbb{C}. Deduce from 2) that f is a polynomial function. (Proper means the pre-image of any compact is a compact).

Exercise 2 :

1. Let f be a holomorphic function on $D(a, r) \backslash\{a\}$. Assume that $\alpha>0$ such that $f(D(a, r) \backslash\{a\}) \cap D(0, \alpha)=\emptyset$. Prove that either a is a removable singularity or a pole.
2. Determine the singularities of the function $\frac{z}{\sin \pi z}$ and find its corresponding residues.
3. Determine all möbius mappings transforming the half-plane $\{z \in \mathbb{C} ; \operatorname{Im} z>0\}$ onto the unit disc.
4. Evaluate the following integral $\int_{-\infty}^{+\infty} \frac{e^{\mathrm{i} a x}}{x-\mathrm{i}} d x$, with $a \neq 0$.

Answer of Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 28-29

Solution of the Exercise 1:

1. (a) $z=r(\cos \theta+\mathrm{i} \sin \theta)=x+\mathrm{i} y$, with $\theta \in]-\pi, \pi[$.
$x=r \cos \theta=2 r \cos ^{2}\left(\frac{\theta}{2}\right)-r, y=r \sin \theta=2 r \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)$.
$x+r=2 r \cos ^{2}\left(\frac{\theta}{2}\right)$ and $y=2 r \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)$. Then
$\frac{y}{x+\sqrt{x^{2}+y^{2}}}=\tan \left(\frac{\theta}{2}\right) \Rightarrow \theta=2 \tan ^{-1}\left(\frac{y}{x+\sqrt{x^{2}+y^{2}}}\right)$,
which is a continuous function.
For $a<0, \lim _{(x, y) \rightarrow\left(a, 0^{+}\right)} \theta(x, y)=\pi$ and $\lim _{(x, y) \rightarrow\left(a, 0^{-}\right)} \theta(x, y)=$
$-\pi$. Then θ can not be extended continuously at any point $(a, 0)$.
(b) $\log (z)=\log (z)$ for all $z \in \mathbb{C}$ such that $\operatorname{Im} z>0$ and $\operatorname{Re} z<0$.
2. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be an entire function such that $\lim _{|z| \rightarrow+\infty}|f(z)|=$ $+\infty$.
(a) If $f(z) \neq 0$ for all $z \in \mathbb{C}$, the function $\frac{1}{f}$ is an entire function and $\lim _{|z| \rightarrow+\infty} \frac{1}{|f(z)|}=0$. Then $\frac{1}{f}$ is the null function, which is absurd. Moreover there is $R>0$ such that $|f(z)| \geq 1$ for all $|z| \geq R$. Then the set of zeros of f is in the compact $\overline{D(0, R)}$, then it is finite.
(b) The function g is analytic on $\mathbb{C} \backslash\left\{z_{1}, \ldots, z_{p}\right\}$ and each point z_{j} is a removable singularity of g, then g can be extended analytically on \mathbb{C}. Moreover by definition of the points $z_{j}, g(z) \neq 0$ for all $z \in \mathbb{C}$.
(c) For $|z| \geq R,|g(z)| \leq|P(z)|$. Since $\lim _{|z| \rightarrow+\infty} \frac{|P(z)|}{|z|^{p}}=$ $C<+\infty$, there exists a constant $C^{\prime}>0$ such that $|g(z)| \leq C(1+|z|)^{p}$. From the Cauchy's inequalities, g is a polynomial of degree less or equal then p.
(d) Since g is zero free, thus $\operatorname{deg} g=0$, this which yields that f is a polynomial.
3. Since f is proper, then $\lim _{|z| \rightarrow+\infty}|f(z)|=+\infty$. (For all $R>0$, $f^{-1}(D(0, R))$ is bounded. Then there is $R^{\prime}>0$ such that $f^{-1}(D(0, R)) \subset D\left(0, R^{\prime}\right)$. This is equivalent to: for all $R>0$ there is $R^{\prime}>0$ such that for all $|z| \geq R^{\prime},|f(z)| \geq R$.) From 2) f is a polynomial function.

Solution of the Exercise 2:

1. Since $f(D(a, r) \backslash\{a\})$ is not dense, then a is not an essential singularity.
2. The singularities of the function $f(z)=\frac{z}{\sin \pi z}$ are $n \in \mathbb{Z} .0$ is a removable singularity. $\operatorname{Res}(f, n)=\frac{n(-1)^{n}}{\pi}$, for $n \neq 0$.
3. Let f be such Möbius transformation and $\alpha \in \mathcal{H}^{+}=\{z \in$ $\mathbb{C} ; \operatorname{Im} z>0\}$ such that $f(\alpha)=0$, thus $f(\bar{\alpha})=\infty$ and $f(z)=$ $e^{\mathrm{i} \theta} \frac{z-\alpha}{z-\bar{\alpha}}$, with $\theta \in \mathbb{R}$.
4. $\int_{-\infty}^{+\infty} \frac{e^{\mathrm{i} a x}}{x-\mathrm{i}} d x=2 \mathrm{i} \pi(\operatorname{Res} f, \mathrm{i})=2 \mathrm{i} \pi e^{-a}$, with $f(z)=\frac{e^{\mathrm{i} a z}}{z-\mathrm{i}}$.

Ph.D Comprehensive Examination Analysis (Special Paper)

First semester 29-30
$\mathcal{O}(D)$ denotes the space of holomorphic functions on unit disc $D=D(0,1)$ and $D^{*}=D \backslash\{0\}$.

Exercise 1 :

1. Let h be a holomorphic function on D.
(a) Assume that h is injective on D. Justify that if $h(a)=0$ for some $a \in D$, then a is a simple zero of h.
(b) Now, assume that h is injective on D^{*}. Prove that $h^{\prime}(0) \neq 0$ and h is necessary injective on the disc D.
2. Let f be an injective holomorphic function on D^{*}, a be a point in D^{*} and $r>0$ be a positive real number such that $D(a, r) \subset D^{*}$.
(a) Prove that there exists $\alpha>0$ such that for all $z \in D^{*} \backslash$ $D(a, r)$

$$
|f(z)-f(a)| \geq \alpha
$$

(b) Deduce that either f extends as a holomorphic function, injective on the disc $D(0,1)$, or 0 is a simple pole of f. Give an example of a such function.
3. Let $\left(a_{n}\right)_{n}$ be a sequence of complex numbers such that the series $\sum_{n \geq 1} \frac{1}{\left|a_{n}\right|}$ is convergent. Prove that $f(z)=\prod_{n \geq 1}\left(1-\frac{z}{a_{n}}\right)$ is holomorphic on \mathbb{C}.

Exercise 2 :

1. Let D be a bounded domain in \mathbb{C} containing the origin and f be a holomorphic function on D with $f(D) \subset D$ and $f(0)=0$.
(a) Prove that the sequence $\left(f_{n}^{\prime}(0)\right)_{n}$ is bounded, where $f_{n}=$ $f \circ \ldots f$ denotes the n-th iteration of f. Deduce that $\left|f_{n}^{\prime}(0)\right| \leq 1$. (Hint: express $f_{n}^{\prime}(0)$ as a function of $f^{\prime}(0)$).
(b) Prove that if $f^{\prime}(0)=1$, then $f=\mathrm{id}$. (Cartan's theorem).
2. Assume that $f_{k}^{\prime}(0)=1$ for some $k \geq 1$. Prove that f is an automorphism of D.
3. Let $\mathcal{F}=\{f \in \mathcal{O}(D) ; f(D) \subset D$ and $f(0)=0\}$.
(a) Prove that \mathcal{F} is closed in $\mathcal{O}(D)$.
(b) Justify that \mathcal{F} is a normal family of $\mathcal{O}(D)$.

Answer of Ph.D Comprehensive Examination Analysis (Special Paper)

First semester 29-30
Solution of the Exercise 1:

1. (a) If h is injective on D, then $h^{\prime}(z) \neq 0$ for all $z \in D$. Then if $h(a)=0, a$ is a simple zero of h.
(b) If $h^{\prime}(0)=0, h$ can not be injective in any neighborhood of 0 . If h is injective on D^{*}, then there is a sequence $z_{n} \neq 0$ and $z_{n} \neq z_{m}$ for $m \neq n$ such that $h\left(z_{n}\right)=h(0)$, which is absurd. Then $h^{\prime}(0) \neq 0$ and h is injective in a neighborhood of 0 . With the same arguments h is necessary injective on the disc D.
2. Let f be a holomorphic function on D^{*}, a be a point in D^{*} and $r>0$ be a positive real number such that $D(a, r) \subset D^{*}$.
(a) f is a holomorphic function and injective on $D^{*}, f(D(a, r))$ is a neighborhood of $f(a)$, thus there exists $\alpha>0$ such that $D(f(a), \alpha) \subset f(D(a, r))$. Since f is injective, then $\forall z \notin D(a, r), f(z) \notin D(f(a), \alpha)$, i.e. $|f(z)-f(a)| \geq$ $\alpha, \forall z \in D^{*} \backslash D(a, r)$.
(b) We deduce that 0 can not be an essential singularity of f. Then either f extends as a holomorphic function, injective on the disc $D(0,1)$, or 0 is a pole of f. In use the function $h=\frac{1}{f}$ and the previous question, we deduce that 0 is a simple pole of f.
As example, we take the function $f(z)=\frac{1}{z}$.
3. If the series $\sum_{n \geq 1} \frac{1}{\left|a_{n}\right|}$ is convergent, the series $\sum_{n \geq 1} \frac{z}{a_{n}}$ is uniformly convergent on any compact of \mathbb{C}, then $f(z)=\prod_{n \geq 1}(1-$ $\left.\frac{z}{a_{n}}\right)$ is holomorphic on \mathbb{C}.

Solution of the Exercise 2:

1. (a) If $D \subset D(0, R)$ and $D(0, r) \subset D$, with $r>0$, we have:

$$
f^{\prime}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)}{r \mathrm{e}^{\mathrm{i} \theta}} d \theta
$$

Thus $\left|f^{\prime}(0)\right| \leq \frac{R}{r}$.
We prove by induction that $f_{n}^{\prime}(0)=\left(f^{\prime}(0)\right)^{n}$. Since the sequence $\left(f_{n}^{\prime}(0)\right)_{n}$ is bounded, then $\left|f^{\prime}(0)\right| \leq 1$.
(b) If $f^{\prime}(0)=1$, then $f_{n}^{\prime}(0)=1$ for all $n \in \mathbb{N}$. We assume that the expansion in power series of f is $f(z)=z+$ $\sum_{n=m}^{+\infty} a_{n} z^{n}$ for $|z|<r$, with $m \geq 2$. We assume that the expansion in power series of $f^{[k]}$ is $f^{[k]}(z)=z+k a_{m} z^{m}+$

$$
\begin{aligned}
& \sum_{n=m+1}^{+\infty} a_{n, k} z^{n} \text { and let proves the expansion in power series } \\
& \text { of } f^{[k+1]} \text { is } f^{[k+1]}(z)=z+(k+1) a_{m} z^{m}+\sum_{n=m+1}^{+\infty} a_{n, k+1} z^{n} .
\end{aligned}
$$

$f \circ f^{[k]}(z)=f^{[k]}(z)+a_{m}\left(f^{[k]}\right)^{m}(z)+z^{m+1} g(z)$, with g a holomorphic function on $D(0, r)$. The first term of the function $a_{m}\left(f^{[k]}\right)^{m}(z)$ is $a_{m} z^{m}$ and the first term of $f^{[k]}(z)-z$ is $k a_{m} z^{m}$, thus the expansion in power series of $f^{[k+1]}$ is $f^{[k+1]}(z)=z+(k+1) a_{m} z^{m}+\sum_{n=m+1}^{+\infty} a_{n, k+1} z^{n}$.

$$
k a_{m} z^{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{[k]}\left(e^{\mathrm{i} \theta} z\right) e^{-\mathrm{i} m \theta} d \theta, \quad \text { for }|z|<r
$$

Since $f^{[k]}$ is a holomorphic function from D in D, then $\left|f^{[k]}\left(e^{\mathrm{i} \theta} z\right)\right|<$ R. Thus for any $k \in \mathbb{N}, k\left|a_{m}\right| r^{m}<R$. Then it results that $a_{m}=0$ and $f(z)=z$.
2. If $f_{k}^{\prime}(0)=1$, then $f_{k}=$ id. If $k=1, f$ is an automorphism of D. If $k \geq 2, f \circ f_{k-1}=f_{k-1} \circ f=\mathrm{id}$. Then f is an automorphism of D.
3. (a) If $\left(f_{n}\right)_{n}$ is a sequence in \mathcal{F} and convergent to f. Since $f_{n}(D) \subset D$ and $f_{n}(0)=0$, then $f(D) \subset D$ and $f(0)=0$. Then \mathcal{F} is closed in $\mathcal{O}(D)$.
(b) Since \mathcal{F} is bounded, then it is a normal family of $\mathcal{O}(D)$.

[^0]: ${ }^{1}$ This document is free. Prepared by:
 Professor Mongi BLEL, King Saud University, Department of Mathematics . mblel@ksu.edu.sa ,

