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Exercise 1 :

1. Let Ω be a bounded domain in the complex plane. Suppose
that f is continuous on Ω̄ and analytic on Ω. Let α ≥ 0 be a
constant such that |f(z)| = α for all z on the boundary of Ω.
Show that f is a constant function or f has a zero on Ω.

2. Show that the most general linear transformation from the
upper half-plane to the unit disc is of the form

W = eiα
z − β

z − β̄
.

where α is real and Im β > 0.

3. Let Ω be a domain in the complex plane. Let (fn)n be a se-
quence of analytic functions on Ω, is without zeros and con-
verging uniformly to f on compact sets in Ω. Show that f is
analytic on Ω and f ≡ 0 or f is without zeros in Ω.

Exercise 2 :

1. Show that

∫ 2π

0

cos2 θ

5 + 3 sin θ
dθ =

2π

9
.

2. Let f be an analytic function defined on the annulus r <
|z − a| < R. Show that there exists two uniquely determined

1This document is free. Prepared by:
Professor Mongi BLEL, King Saud University, Department of Mathematics .
mblel@ksu.edu.sa ,



2

analytic functions f1 on |z − a| < R and f2 on |z − a| > r
such that lim

|z|→+∞
f2(z) = 0 and f = f1 + f2 on the annulus

r < |z − a| < R.

Answer of Ph.D Qualifying Examination
Analysis (General Paper)

March 2003

Solution of the Exercise 1:

1. If f is without zeros on Ω, the function
1

f
is analytic on Ω

and
1

|f(z)|
=

1

α
for all z on the boundary of Ω. Then by the

maximum principle |f | ≤ α and
1

|f |
≤ 1

α
on Ω. Then |f | = α

on Ω, which proves that f is constant.

2. Show that the most general linear transformation from the
upper half-plane to the unit disc is of the form Im β > 0
and f(β) = 0. Moreover by symmetry, f(β) = ∞, then
f(z) = λ z−β

z−β̄
. The function f transforms the real axis to the

unit circle, then for all x ∈ R,
∣∣∣∣λx− β

x− β̄

∣∣∣∣ = |λ| = 1, then

f(z) = eiα
z − β

z − β̄
,

where α ∈ R and Im β > 0.

3. Since the sequence (fn)n is uniformly convergent on any com-
pact subset of Ω, then f is holomorphic. We assume that f
is not identically zero and there exists a ∈ Ω a zero of mul-
tiplicity k ≥ 1 of f . Let r > 0 such that f(z) ̸= 0 for any
z ∈ D(a, r) \ {a} and let γ be the closed curve defined by the
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circle of radius r and centered at a traversed in the clockwise

direction. Then
1

2iπ

∫
γ

f ′(z)

f(z)
dz = k. Since f never vanishing

on γ, the sequence
(f ′

n

fn

)
n
converges uniformly on γ to

f ′

f
,

thus

k =
1

2iπ

∫
γ

f ′(z)

f(z)
dz = lim

n→+∞

1

2iπ

∫
γ

f ′
n(z)

fn(z)
dz = 0,

which is absurd.

Solution of the Exercise 2:

1. ∫ 2π

0

cos2 θ

5 + 3 sin θ
dθ =

∫
|z|=1

(z2 + 1)2

4z2(5 + 3 z2−1
2iz

)

dz

iz

=

∫
|z|=1

(z2 + 1)2

2z2(3z2 + 10iz − 3)
dz

= 2iπ

(
Res(f, 0) + Res(f,− i

3
)

)
= −2iπ(

i

9
) =

2π

9
,

where f(z) =
(z2 + 1)2

2z2(3z2 + 10iz − 3)
.

Res(f, 0) = −5i

9
and Res(f,− i

3
) =

4i

9
.

2. For all r < |z − a| < R,

f(z) =
+∞∑
−∞

an(z − a)n =
−1∑
−∞

an(z − a)n +
+∞∑
n=0

an(z − a)n.

Define f1(z) =
+∞∑
n=0

an(z − a)n and f2(z) =
−1∑
−∞

an(z − a)n.

f1 is analytic on {z ∈ C : |z − a| < R} and f2 analytic
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{z ∈ C : |z − a| > r}, f = f1 + f2 on the annulus {z ∈ C :
r < |z − a| < R} and lim

|z|→+∞
f2(z) = 0.
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Ph.D Qualifying Examination
Analysis (General Paper)

October 2004

Exercise 1 :

For any power series
∞∑
n=0

anz
n there exists a number R, 0 ≤ R ≤

∞, called the radius of convergence. Prove that

1. The series converges absolutely for every |z| < R, if ρ < R
the convergence is uniform on {z ∈ C : |z| ≤ ρ}.

2. If |z| > R the terms of the series are unbounded, and the
series is consequently divergent.

3. The sum of the series is an analytic function on {z ∈ C :
|z| < R}, the derivative can be obtained by termwise dif-
ferentiation, and the derived series has the same radius of
convergence.

Exercise 2 :

1. Evaluate ∫ 2π

0

dθ

3− 2 cos θ + sin θ

2. State the definition of a conformal mapping.

3. Find a function w = f(z) that maps the unit disc {z ∈ C :
|z| < 1} conformally onto the upper plane {w ∈ C : Imw >
0}.

Answer of Ph.D Qualifying Examination
Analysis (General Paper)
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October 2004

Solution of the Exercise 1:
Let

∑
n≥0

anz
n be a power series. DefineR = sup{r > 0;

∑+∞
n=1 |an|rn <

+∞}. R ∈ [0,+∞].

1. If |x| < R, the series
∑
n≥1

anx
n is absolutely convergent by

definition of R.

Consider ρ < R and the domain Dρ = {z ∈ C; |z| ≤ ρ}.
Let ρ < S < R and z ∈ Dρ. Since the series

∑
n≥1

|an|Sn is

convergent, there is M > 0 such that |an|Sn ≤ M for all

n ∈ N. Then |anzn| ≤ Mρn

Sn
and the series is uniformly

convergent on Dρ.

2. If |x| > R and the sequence (anx
n)n is bounded, then the

series
∑
n≥1

|an|rn converges for every R < r < |x|, which is

impossible.

3. Let f(z) =
+∞∑
n=0

anz
n and g(z) =

+∞∑
n=1

nanz
n−1.

We denote R′ the radius of convergence of the power series∑
n≥1

nanz
n−1. It is obvious that R′ ≤ R. Let r > 0 such that

|z|+ r < R. We have |nanzn−1| ≤ 1

r

(
2|an|(|z|+ r)n + |an||z|n

)
and

thus
∑
n≥1

nanz
n−1 converges absolutely on D(0, R). Thus the radius

of convergence of the series defining g is greater than R. Thus
R = R′.

Moreover |f(z + h)− f(z)

h
− g(z)| ≤ |h|

r

+∞∑
n=1

|an|(|z| + r)n, this

proves that when h tends to 0, f ′(z) = g(z), for any z ∈ D(0, R).
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Solution of the Exercise 2:

1. ∫ 2π

0

dθ

3− 2 cos θ + sin θ
=

∫
{|z|=1}

2dz

(1− 2i)z2 + 6iz − (1 + 2i)

= 2iπRes(f,− i

1− 2i
) = π.

with f(z) =
2

(1− 2i)z2 + 6iz − (1 + 2i)
.

2. A function f : Ω −→ C is conformal if it is holomorphic and
its derivative is without zeros in Ω.

3. The function f(z) = i
1 + z

1− z
maps the unit disc |z| < 1 con-

formally onto the upper half plane {z ∈ C; Im z > 0}.
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Ph.D Qualifying Examination
Analysis (General Paper)

December 2014

Exercise 1 : [Note that parts 1) and 2) are independent]

1. Compute the following integrals

∫ +∞

0

dx

1 + x3
and

∫ +∞

0

ln(x)

1 + x3
dx.

2. Consider the function defined by the power series

f(z) =
+∞∑
n=1

zn!.

(a) Prove that f is holomorphic on the unit disc D = {z ∈
C; |z| < 1}.

(b) Let α ∈ C such that αm = 1, for some m ∈ N. (α is
called a root of unity).

Prove that lim
r→1,r<1

|f(rα)| = +∞.

(c) Deduce that f can not be extended to a holomorpic func-
tion on an open set U such that D ⊂ U and D ̸= U .

Exercise 2 : [Note that parts 1) and 2) are independent]

1. Let f be a holomorphic function on D \ {0} and |f(z)| ≤

ln

(
1

|z|

)
, for all z ∈ D \ {0}, where D is the unit disc.

(a) Prove that 0 is a removable singularity of f . (Hint: you
can consider the function zf(z) and calculate its limit at
0).

(b) Deduce that f = 0.
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2. Let (fn) be a sequence of holomorphic functions on the unit
discD such that fn(D) ⊂ D for all n ∈ N and lim

n→+∞
fn(0) = 1.

(a) Prove that there is a subsequence (fnj
)j which converges

uniformly on any compact to a holomorphic function g
on the unit disc D and g(0) = 1.

(b) We assume that g is not constant.

i. Prove that there exists R > 0 such that g − 1 is
without zeros in D(0, R) \ {0}.

ii. Prove that for j sufficiently large and |z| = r < R,
we have

∣∣(fnj
(z)− 1)− (g(z)− 1)

∣∣ < inf{|g(z)−1|; |z| = r}.

iii. Deduce that fnj
(z)−1 has the same number of zeros

as g − 1 in D(0, r).

iv. Prove that fnj
(z)− 1 is without zero on D(0, r).

v. Deduce that g(z) = 1 for all z ∈ D.

(c) Prove that (fn)n converges uniformly to 1 on any com-
pact.

Solution of Ph.D Qualifying Examination
Analysis (General Paper)

December 2014

Solution of the Exercise 1:

1. Let f(z) =
log2(z)

1 + z3
, I =

∫ +∞

0

dx

1 + x3
and J =

∫ +∞

0

ln(x)

1 + x3
dx.

By Residue Theorem

−4iπJ+4π2I = 2iπ
(
Res(f,−1) + Res(f, eiπ) + Res(f, e

5iπ
3 )

)
.
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Res(f,−1) = −π2

3
.

Res(f, eiπ) =
π2

27
(
1

2
+ i

√
3

2
).

Res(f, e
5iπ
3 ) =

25π2

27
(
1

2
− i

√
3

2
).

Then −4iπJ + 4π2I =
8iπ3

27
+

8π3
√
3

9
, I =

2π
√
3

9
and J =

−2π2

27
.

2. Let f be a holomorphic function on D \ {0} and |f(z)| ≤

ln

(
1

|z|

)
, for all z ∈ D \ {0}, where D is the unit disc.

(a) lim
z→0

zf(z) = 0, then 0 is a removable singularity of f .

(b) For all z ∈ D(0, 1−r), |f(z)| ≤ sup
|w|=1−r

|f(w)| ln
(

1

1− r

)
.

(c) It results that for all z ∈ D, |f(z)| ≤ lim
r→0

ln

(
1

1− r

)
=

0, then f = 0.

Solution of the Exercise 2:

1. (a) For all z ∈ D, |zn!| ≤ |z|n and the series
∑
n≥1

|z|n is

convergent. Then f is holomorphic on the unit disc D =
{z ∈ C; |z| < 1}.

(b) f(rα) =
m−1∑
n=1

rn!αn! +
+∞∑
n=m

rn!. Then lim
r→1,r<1

|f(rα)| =

+∞. (
+∞∑
n=m

rn! ≥
p∑

n=m

rn! for all p > m.)



11

(c) Let U be an open set such that D ⊂ U and D ̸= U .
There is α a root of unity in U . But lim

r→1
|f(rα)| = ∞,

which is absurd. The function f can not be extended to
a holomorpic function on an open set U such thatD ⊂ U
and D ̸= U .

2. Let (fn) be a sequence of holomorphic functions on the unit
discD such that fn(D) ⊂ D for all n ∈ N and lim

n→+∞
fn(0) = 1.

(a) The sequence (fn) is bounded, then by Montel Theorem,
there is a subsequence (fnj

)j which converges uniformly
on any compact to a holomorphic function g on the unit
disc D. Since lim

n→+∞
fn(0) = 1, then g(0) = 1.

(b) We assume that g is not constant.

i. By Theorem of isolated zero of non constant holo-
morphic function, there existsR > 0 such that g(z)−
1 ̸= 0 for all z ∈ D(0, R) \ {0}.

ii. The convergence of the sequence (fnj
)j is uniform

on the compact {z ∈ C; |z| = r < R}. Then for j
large enough

∣∣fnj
(z)− g(z)

∣∣ =
∣∣(fnj

(z)− 1)− (g(z)− 1)
∣∣

< inf{|g(z)− 1|; |z| = r}.

iii. By Theorem fnj
−1 and g−1 have the same number

of zeros on D(0, r).

iv. fnj
(z) − 1 ̸= 0 for all z ∈ D(0, r) since fn(D) ⊂ D,

which is absurd since g(0) = 1.

v. We deduce that g is constant, then g(z) = 1 for all
z ∈ D.

(c) Since the sequence (fn)n is bounded and any subsequence
converges to 0 in the space of holomorphic functions,
then (fn)n converges uniformly to 1 on any compact.
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Ph.D Qualifying Examination
Analysis (General Paper)

1424-1425

Exercise 1 :

1. Let f be analytic on a domain Ω and suppose that for z0 ∈ Ω,
f (n)(z0) = 0, ∀n ∈ N.
Show that f is constant.

2. Let f be an analytic function on the unit disc and continuous
on |z| ≤ 1. If |f(z)| ≤ 1− |z|2 for |z| < 1. Show that f ≡ 0.

Exercise 2 :

1. Let E b the ellipse x2 + 4y2 = 4. Use the residue theorem to

find the value of

∫
E

dz

(z − 3)(2z − 1)3
.

2. Define a conformal mapping.

Show that the most general linear transformation from the
unit disc to the unit disc can be represented as

w = eiλ
z − α

ᾱz − 1
, |α| < 1 and λ real.

Answer of Ph.D Qualifying Examination
Analysis (General Paper)

1424-1425

Solution of the Exercise 1:

1. f is analytic, then there is r > 0 such that

f(z) =
+∞∑
n=0

f (n)(z0)

n!
(z − z0)

n = f(z0), ∀z ∈ D(z0, r).
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Let A = {z ∈ Ω; f ≡ f(z0) on a neighborhood of z}. z0 ∈ A
and A is an open subset. Let (zn)n be a convergent sequence
of A and a ∈ Ω its limit. Since zn ∈ A, then f (k)(zn) = 0 for
any k ∈ N and by continuity f (k)(a) = 0. f is analytic, this
yields that f is constant on a neighborhood of a. This proves
that A closed and open, then A = Ω and f is constant.

2. lim
|z|−→1

f(z) = 0, then by Maximum principle, f = 0.

Solution of the Exercise 2:

1.

∫
E

dz

(z − 3)(2z − 1)3
= 2iπRes(f,

1

2
) =

−2iπ

125
, with f(z) =

1

(z − 3)(2z − 1)3
.

2. A function f : Ω −→ C is conformal if and only if it is holo-
morphic and its derivative is without zeros on Ω.

Let f be a linear transformation from the unit disc D to the
unit disc D. There is α ∈ D such that f(α) = 0. By symmetry

f(
1

ᾱ
) = ∞. Then there is λ ∈ C such that f(z) = λ

z − α

ᾱz − 1
.

Since

∣∣∣∣ z − α

ᾱz − 1

∣∣∣∣ = 1 for |z| = 1, then |λ| = 1 and

f(z) = eiθ
z − α

ᾱz − 1
, |α| < 1 and θ real.
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Ph.D Comprehensive Examination
Analysis

1425-1426

Exercise 1 :

1. Show that w = i1−z
1+z

maps the domain {z ∈ C; |z| > 1}
conformally onto the lower half plane {w ∈ C; Im z < 0}.

2. Find the number of zeros of f(z) = z8 − 5z5 − 2z + 1 in the
region {z ∈ C; 1 < |z| < 2}.

Exercise 2 :

1. Evaluate the integral

∫ ∞

0

sinαx

x
dx, α real.

2. Find the Laurent series of f(z) =
1

z(z − 1)(z − 2)
in the re-

gion {z ∈ C; 1 < |z| < 2}.

Answer Ph.D Comprehensive Examination
Analysis

1425-1426

Solution of the Exercise 1:

1. The Möbius transformation f(z) = i
1− z

1 + z
transforms the unit

circle onto the real axis. (f(1) = 0, f(−1) = ∞ and f(i) = 1).
Since f(0) = i, then f transforms the unit disc onto the upper
halph plane and transforms the domain {z ∈ C; |z| > 1} onto
the lower half plane {w ∈ C; Im z < 0}.

2. Let g(z) = −5z5. For |z| = 1, |f(z)− g(z)| = |z8 − 2z + 1| ≤
4 < |g(z)| = 5, the by Rouché’s Theorem, f has exactly 5
roots in the unit disc.
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We consider the function h(z) = z8. For |z| = 2, |h(z) −
f(z)| = | − 5z5 − 2z + 1| ≤ 165 < |h(z)| = 256, then by
Rouché’s Theorem, f has 8 roots in the disc of center 0 and
radius 2. Then f has 3 roots in the annulus {z ∈ C; 1 <
|z| < 2}.

Solution of the Exercise 2:

1. Let I(α) =

∫ ∞

0

sinαx

x
dx.

The mapping α 7−→ I(α) is odd and I(0) = 0. We compute
I(α) for α > 0. For a change of variable t = αx, I(α) = I(1)
for α > 0.

I(1) =

∫ +∞

−∞

sinx

x
. We set f(z) =

eiz

z
. We integrate the

function f on the following closed path

x

y
γR

γr

R−R r−r 0

By residue theorem, we have:

∫ −r

−R

f(x) dx−
∫
γr

f(z) dz +

∫ R

r

f(x) dx+

∫
γR

f(z) dz = 0.

|
∫
γR

f(z) dz| = |
∫ π

0

eiReiθ i dθ| ≤
∫ π

0

e−R sin θ dθ −→
R→+∞

0.∫
γr

f(z) dz −→
r→0

iπ, thus I = π.
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2. f(z) =
1

z(z − 1)(z − 2)
=

1

2z
− 1

z − 1
+

1

2(z − 2)
.

− 1

z − 1
= −1

z

1

1− 1
z

= −1

z

+∞∑
n=0

1

zn
= −

+∞∑
n=0

1

zn+1
, ∀|z| > 1.

1

2(z − 2)
= −1

4

1

1− z
2

= −1

4

+∞∑
n=0

zn

2n
, ∀|z| < 2.

Then

f(z) =
1

z(z − 1)(z − 2)
=

1

2z
−

+∞∑
n=0

1

zn+1
− 1

4

+∞∑
n=0

zn

2n

in the region {z ∈ C; 1 < |z| < 2}.
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Ph.D Comprehensive Examination
Analysis

1425-1426- Second semester

Exercise 1 :

1. (a) Let f be a analytic function on C. Prove that for any
a, b ∈ C, a ̸= b we have for R > sup(|a|, |b|)

1

2iπ

∫
|z|=R

f(z)

(z − a)(z − b)
dz =

f(a)− f(b)

a− b
.

(b) Prove that if in addition, f is bounded on C, then

1

2iπ

∫
|z|=R

f(z)

(z − a)(z − b)
dz −→ 0, when R −→ +∞.

deduce that any bounded analytic function on C is constant.

2. Prove that the function f(z) =
z − 1

z + 1
is a conformal mapping

from the half-plane {z ∈ C; Re z > 0} into the unit disc
{z ∈ C; |z| < 1}.

Exercise 2 :
For R > 1, let γR be the half-circle defined by γR(t) = Reit, t ∈

[0, π]. We consider the function f(z) =
ze3iz

(z2 + 1)2
.

1. Prove that the integral

∫
γR

f(z)dz −→ 0, when R −→ +∞.

2. Use the residue theorem to find the value of the integral∫ +∞

0

x sin(3z)

(x2 + 1)2
dx.
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Answer of Ph.D Comprehensive Examination
Analysis

1425-1426- Second semester

Solution of the Exercise 1:

1. (a) For R large enough (max(|a|, |b|) < R),

1

2iπ

∫
|z|=R

f(z)

(z − a)(z − b)
dz =

1

2iπ

∫
|z|=R

1

a− b

[ f(z)

(z − a)
− f(z)

(z − b)

]
dz

=
1

a− b
(f(a)− f(b)).

(b) If |f(z)| ≤ M , for any z ∈ C, then
∣∣∣f(a)− f(b)

a− b

∣∣∣ ≤
MR

(R− |a|)(R− |b|)
. Since lim

R→+∞

MR

(R− |a|)(R− |b|)
= 0,

then f(a) = f(b).

Then if f is a bounded analytic function on C, f(a) = f(b)
for all a, b ∈ C and f is constant.

2. f is a Möbius transformation, |f(it)| =

∣∣∣∣ it− 1

it+ 1

∣∣∣∣ = 1 and

f(1) = 0, f is a conformal mapping from the half-plane {z ∈
C; Re z > 0} into the unit disc {z ∈ C; |z| < 1}.

Solution of the Exercise 2:
For R > 1, let γR be the half-circle defined by γR(t) = Reit, t ∈

[0, π]. We consider the function f(z) =
ze3iz

(z2 + 1)2
.

1. ∣∣∣∣∫
γR

f(z)dz

∣∣∣∣ =

∣∣∣∣∫ π

0

iR2e2iθe3iR cos θe−3R sin θ

(R2e2iθ + 1)2
dθ

∣∣∣∣
≤

∫ π

0

R2

(R2 − 1)2
dθ =

πR2

(R2 − 1)2
−→

R→+∞
0.
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2. ∫ +∞

0

x sin(3z)

(x2 + 1)2
dx = lim

R→+∞

(
−i

∫ R

−R

f(x)dx+

∫
γR

f(z)dz

)
= 2πRes(f, i) =

3π

2e3
.
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Ph.D Comprehensive Examination
Analysis (General Paper)

First semester 1426-1427

Exercise 1 :

1. The aim of this question is to prove Liouville’s theorem.

Let f be a holomorphic function on C. Use the Cauchy’s
theorem to prove that

1

2iπ

∫
|z|=R

f(z)

(z − a)(z − b)
dz =

f(a)− f(b)

a− b
for R large.

Prove that if f is bounded lim
R→+∞

∫
|z|=R

f(z)

(z − a)(z − b)
dz = 0

and hence f is constant.

2. We consider the polynomial P (z) = z7 + 5z4 + z3 − z + 1.

Prove that P has exactly 4 roots in the unit disc and 3 roots
in the annulus {z ∈ C; 1 < |z| < 2}.

Exercise 2 :
Let f be a holomorphic function on a domain Ω ⊂ C. We suppose
that Ω ⊃ D(0, 1) and

(P ) |f(eiθ)| = 1 ∀ θ ∈ R.

1. Let a ∈ D(0, 1). Prove that the function ha(z) =
a− z

1− āz
verifies the property (P).

2. Prove that if f is without zeros in the unit disc D(0, 1), then
f is constant in Ω.
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3. (a) Prove that the set of zeros of f in D(0, 1) is finite.

(b) Deduce that if f is not constant, there exist z1, . . . , zn
in D(0, 1) and p1, . . . , pn ∈ N such that

f(z) = λ
n∏

j=1

(
z − zj
1− zjz

)pj with |λ| = 1

Answer of Ph.D Comprehensive Examination
Analysis (General Paper)

First semester 1426-1427

Solution of the Exercise 1:

1. For R large enough (max(|a|, |b|) < R),

1

2iπ

∫
|z|=R

f(z)

(z − a)(z − b)
dz =

1

2iπ

∫
|z|=R

1

a− b

[ f(z)

(z − a)
− f(z)

(z − b)

]
dz

=
1

a− b
(f(a)− f(b)).

If |f(z)| ≤ M , for all z ∈ C, then
∣∣∣f(a)− f(b)

a− b

∣∣∣ ≤ MR

(R− |a|)(R− |b|)
.

Since lim
R→+∞

MR

(R− |a|)(R− |b|)
= 0, then f(a) = f(b) and f

is constant.

2. Let f(z) = 5z4. For |z| = 1, |f(z)−P (z)| = |z7+z3−z+1| ≤
4 < |f(z)|, the by Rouché’s Theorem, P has exactly 4 roots
in the unit disc.

We consider the function g(z) = z7. For |z| = 2, |g(z) −
P (z)| = |5z4 + z3 − z + 1| ≤ 91 < |g(z)| = 128, then by
Rouché’s Theorem, P has 7 roots in the disc of center 0 and
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radius 2. Then P has 3 roots in the annulus {z ∈ C; 1 <
|z| < 2}.

Solution of the Exercise 2:

1. ha(a) = 0, ha(0) = a and |ha(e
iθ)| =

∣∣∣∣ a− eiθ

1− āeiθ

∣∣∣∣ = ∣∣∣∣ a− eiθ

e−iθ − ā

∣∣∣∣ =
1. Then ha fulfills the property (P ).

2. If f is without zeros in the unit disc D, then
1

f
is holomorphic

on a neighborhood of D. Since |f(eiθ)| = 1 and
∣∣∣ 1

f(eiθ)

∣∣∣ = 1

for any θ ∈ R, then from the Maximum Principle applied to f

and
1

f
, we have |f | ≤ 1 and

1

|f |
≤ 1 on D, thus f is constant

on Ω.

3. (a) D is compact, thus the number of zeros of f in D is
finite.

(b) If z1, . . . , zn are the zeros of f in D and p1, . . . , pn ∈ N

their multiplicities respective, then g(z) =
f(z)∏n

j=1(
z−zj
1−zjz

)pj

is holomorphic on a neighborhood of D, without zeros
in D and |g(eiθ)| = 1 for any θ ∈ R. From the above
question g is constant, which yields that

f(z) = λ
n∏

j=1

(
z − zj
1− zjz

)pj , with |λ| = 1.
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Ph.D Comprehensive Examination
Analysis (Spacial Paper)

First semester 1429-1430 H

Exercise 1 :

1. Justify the non existence of a conformal transformation from
C into the half plane {z ∈ C; Re z > 0}.

2. (a) State the maximum principle.

(b) Let Ω be the square region {z ∈ C; |Re z| < 1, | Im z| <
1}. Suppose that f is continuous on Ω, holomorphic
on Ω and f(z) = 0 whenever Re z = 1. Prove that
f is identiquely 0 on Ω. (Hint: consider the function
g(z) = f(z)f(−z)f(iz)f(−iz)).

3. Let a, b, c ∈ D(0, 1). Prove that the function

f(z) = z

(
z − a

1− āz

)n(
z − b

1− b̄z

)p

− c, n, p ∈ N,

has exactly n+ p+ 1 roots in D(0, 1).

Exercise 2 :

1. Let g be an entire function and assume that there exists a
constant M > 0 such that

|g(z)| ≤ M |z2ez|, ∀z ∈ C.

Prove that there exists a constant K ∈ C such that g(z) =
Kz2ez, ∀z ∈ C with |K| ≤ M .

2. (a) Prove that the integral

∫ +∞

0

lnx

1 + x2
dx is convergent and

use Cauchy’s residue theorem to prove that

∫ +∞

0

lnx

1 + x2
dx =

0.
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(b) Using a suitable variable change, show that

∫ +∞

0

lnx

1 + x2
dx =

0.

3. Let f : C −→ C be an analytic automorphism.

(a) Prove that lim
|z|→+∞

|f(z)| = +∞ and that 0 is a pole for

the function f(1
z
).

Deduce that f is a polynomial function.

(b) b) Deduce that f(z) = az + b for some a, b ∈ C, a ̸= 0.

Answer of Ph.D Comprehensive Examination
Analysis (Spacial Paper)

First semester 1429-1430 H

Solution of the Exercise 1:

1. By Riemann Theorem there is a conformal transformation
from the half plane {z ∈ C; Re z > 0} into the unit disc. Then
if there is a conformal transformation from C into the half
plane {z ∈ C; Re z > 0}, there is a conformal transformation
from C into the unit disc, which is impossible by Liouville
Theorem.

Second proof: If f = U + iV is a conformal transformation
from C into the half plane {z ∈ C; Re z > 0}, then V ≥ 0 and
V is harmonic on R2, then V is constant and f is constant.

2. (a) The maximum principle: Let Ω be a bounded domain
and f a continuous function on Ω and holomorphic on
Ω. If M = sup

z∈Ω\Ω
|f(z)|, then |f(z)| ≤ M for every z ∈ Ω,

and if there exists a ∈ Ω such that |f(a)| = M , then f
is constant on Ω. (Furthermore, |f | does not attains a
maximum at an interior point unless f is constant.)
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(b) the function g(z) = f(z)f(−z)f(iz)f(−iz) is continuous
on Ω, holomorphic on Ω. Moreover g = 0 on ∂Ω, then
g = 0 and f = 0.

(c) Let g be the function defined by g(z) = z

(
z − a

1− āz

)n(
z − b

1− b̄z

)p

.

For |z| = 1, |g(z)| = 1 and |f(z) − g(z)| = |c| < 1 =
|g(z)|. Then f and g have the same number of zeros on
the unit disc. Then f has exactly n + p + 1 roots in
D(0, 1).

Solution of the Exercise 2:

1. Consider the function f(z) = g(z)e−z. For all z ∈ C, |f(z)| ≤
M |z2|, then f is a polynomial of degree≤ 2. But f(0) = 0 and
f ′(0) = 0. Then there exists K ∈ C such that f(z) = Kz2,
∀z ∈ C and |K| ≤ M .

2. (a) In a neighborhood of 0, lnx
1+x2 ≈ lnx which is integrable.

For x > 1,
lnx

1 + x2
≤ lnx

x2
which is integrable on [1,+∞[.

By residue theorem

2iπ

(
Res(

log2 z

1 + z2
, i) + Res(

log2 z

1 + z2
,−i)

)
= 4π2

∫ +∞

0

dx

1 + x2
−4iπ

∫ +∞

0

lnx

1 + x2
dx.

Res(
log2 z

1 + z2
, i) = −π2

8i
, Res(

log2 z

1 + z2
,−i) =

9π2

8i
. Then∫ +∞

0

lnx

1 + x2
dx = 0 and

∫ +∞

0

dx

1 + x2
=

π

2
.

(b)

∫ +∞

1

lnx

1 + x2
dx

t= 1
x= −

∫ 1

0

lnx

1 + t2
dt. Then

∫ +∞

0

lnx

1 + x2
dx =

0.

3. Let f : C −→ C be an analytic automorphism.
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(a) f−1 is continuous, then for all R > 0, f−1(D(0, R)) is
a compact. There is R′ > 0 such that f−1(D(0, R)) ⊂
D(0, R′). This is equivalent to

∀R > 0,∃R′ > 0 such that if|z| ≥ R′, |f(z)| ≥ R.

Then lim
|z|→+∞

|f(z)| = +∞.

Since lim
z→0

|f(1
z
)| = +∞, then 0 is a pole for the function

f(1
z
).

(b) Since f is injective, 0 is a simple pole of the function
f(1

z
) and f is a polynomial function of degree 1.
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Ph.D Comprehensive Examination
Analysis (General Paper)

Second semester 1429-1430 H

Exercise 3 :

1. Let Ω = {z = x+ iy ∈ C, a < x < b, y > 0} and g : Ω −→ C
be a continuous function and holomorphic on Ω. Assume that
g(x) ∈ R, for all a < x < b.

(a) Prove that the function g̃ defined on the strip {z = x+
iy ∈ C, a < x < b} by

g̃(z) =

{
g(z) if z ∈ Ω

g(z) = g(z) if z ∈ Ω

is holomorphic.

(b) Deduce that if g(x) = 0 for all a < x < b, then g ≡ 0 on
Ω.

2. Let h be the holomorphic function defined on a neighborhood

of the closed unit disc D by: h(z) = i
1− z

1 + z
.

(a) Prove that h is a conformal mapping from the unit disc
D onto the upper half-plane H = {x+ iy ∈ C; y > 0}.

(b) Find the image of {eit; 0 < t < π
2
} by h.

3. Let f be a holomorphic function on the unit disc D and con-
tinuous on D. Assume that f(eit) = 0, for all t ∈ [0, π

2
]. Prove

that f ◦ h−1 ≡ 0 and that f ≡ 0.

4. We can prove the same result otherwise. Define the function
F by: F (z) = f(z)f(iz)f(−z)f(−iz).

Prove that F ≡ 0, and deduce that f ≡ 0.
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Exercise 4 :
Let P be a polynomial of degree n ≥ 1 and let R > 0.

1. Let h be an entire function (i.e. holomorphic on C). Assume
that |h(z)| ≤ |P (z)|, for all |z| ≥ R.

Prove that h is a polynomial of degree at least n.

2. Prove that lim
|z|−→+∞

|P (z)| = +∞.

3. Let (zn)n be a sequence of complex numbers such that the
sequence (P (zn))n is convergent.

Prove that the sequence (zn)n is bounded.

4. Prove that P (C) is an open and closed subset of C and de-
duce D’Alembert’s theorem, namely: Every non constant
polynomial has at least one zero in C.

5. Let f : C −→ C be a holomorphic function such that lim
|z|→+∞

|f(z)| =
+∞.

(a) Prove that f has a finite number of zeros in C.
(b) Prove that there exists a polynomial P such that the

function h =
P

f
is holomorphic in C and h(z) ̸= 0, for

all z ∈ C.
(c) Prove that there exists an R > 0 such that |h(z)| ≤

|P (z)|, for all |z| ≥ R.

(d) Deduce that there exists a constant C such that f = CP .

6. Now let g : C −→ C be a conformal mapping.

(a) Prove that lim
|z|→+∞

|g(z)| = +∞.

(b) Deduce that g(z) = az + b, with a, b ∈ C and a ̸= 0.
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Answer Ph.D Comprehensive Examination
Analysis (General Paper)

Second semester 1429-1430 H

Solution of the Exercise 3:

1. (a) g̃ is holomorphic on Ω and on Ω− = {z = x+iy ∈ C, a <
x < b, y < 0} and g̃ is continuous on {z = x+iy ∈ C; a <
x < b}.
If g(z) = U(x, y)+iV (x, y) on Ω, then g̃(z) = U(x,−y)−
iV (x,−y) = U1(x, y) + iV1(x, y) on Ω−.


∂U1

∂x
(x, y) =

∂U

∂x
(x,−y) =

∂V

∂y
(x,−y) =

∂V1

∂y
(x, y)

∂U1

∂y
(x, y) = −∂U

∂y
(x,−y) =

∂V

∂x
(x,−y) = −∂V1

∂x
(x, y)

Then g̃ is holomorphic on Ω−. Moreover g̃ is continuous
on {z = x + iy ∈ C, a < x < b}. To show that g̃
is holomorphic on {z = x + iy ∈ C, a < x < b}, we
use Morera’s theorem and we prove that for all triangle

∆ ⊂ {z = x+ iy ∈ C, a < x < b},
∫
∆

g̃(z)dz = 0.

Let ∆ = (A,B,C) be a triangle in {z = x+ iy ∈ C, a <
x < b}.

If ∆ ⊂ Ω or ∆ ⊂ Ω−, then

∫
∂∆

g̃(z)dz = 0.

If ∆ meets the real axis, then we can suppose that ∆∩Ω
is a triangle ∆1 = (A,α, β) and ∆ ∩ Ω− is a polygon
(α,B,C, β), (cf figure 1 ).

Since the triangle ∆1 = (A,A1, A2) is in Ω and the

quadrilateralR1 = (B,C,B2, B1) is in Ω−, then

∫
∂∆1

g̃(z)dz =
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x

y

Ω

B

C

A

B1

A1 A2

B2

α β

Figure 1:∫
∂R1

f(z)dz = 0, thus

∫
∂∆

g̃(z)dz =

∫
∂R2

g̃(z)dz = 0,

with R2 the quadrilateral (A1, B1, B2, A2).

If the points A1 and B1 tend to α, then the integral∫
[A1,B1]

g̃(z)dz tends to 0. The same result for the inte-

gral

∫
[B2,A2]

g̃(z)dz tends to 0 when the points A2 and

B2 tend to β.

It follows from Morera’s Theorem that g̃ is holomorphic
on Ω.

(b) If g(x) = 0 for all a < x < b, g̃(x) = 0 for all a < x < b,
then g̃ ≡ 0 on {z = x + iy ∈ C, a < x < b} and then
g ≡ 0 on Ω.

2. (a) h′(z) =
−2i

(1 + z)2
, then h is a conformal mapping. h(z) =

2y + i(1− |z|2)
|1 + z|2

∈ H with z = x + iy ∈ D. More-

over h−1(z) =
1 + iz

1− iz
=

1− |z|2 + 2ix

|1− iz|2
, then |h−1(z)|2 =

1 + x2 − y2

(1 + y)2 + x2
∈ D if y > 0.
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Otherwise, we can see that h is a möbius transform and
the image of the unit circle is the real axis and h(0) = i,
then h is a conformal mapping from the unit disc D onto
the upper half-plane H = {x+ iy ∈ C; y > 0}.

(b) The image of {eit; 0 < t < π
2
} by h is the interval ]0, 1[.

3. From the first question f ◦ h−1 is holomorphic on the open
set {z = x+ iy ∈ C, 0 < x < 1, y > 0} and f ◦ h−1(x) = 0 on
the interval ]0, 1[. Then f ◦ h−1 ≡ 0 and f ≡ 0.

4. F ≡ 0 on the unit circle and from the maximum principle,
F ≡ 0 on D. Then f ≡ 0.

Solution of the Exercise 4:
If P (z) = anz

n + . . .+ a0 with an ̸= 0. So

lim
|z|−→+∞

|P (z)|
|an||z|n

= lim
|z|−→+∞

∣∣∣∣1 + an−1

anz
+ . . .+

a0
anzn

∣∣∣∣ = 1, (0.1)

then there exists R1 > 0 such that |P (z)| ≤ 2|an||z|n for |z| ≥
R1.

1. If h(z) =
+∞∑
k=0

bkz
k and |h(z)| ≤ |P (z)|, for all |z| ≥ R. The

Cauchy’s inequalities gives that for all m ≥ 1 and |z| ≥
max(R,R1), |bm| ≤ 2|an||z|n−m; which gives that bm = 0
if m ≥ n+ 1. Then h is a polynomial of degree at least n.

2. The relation (0.1) proves that lim
|z|−→+∞

|P (z)| = +∞.

3. Let (zn)n be a sequence of complex numbers such that the
sequence (P (zn))n is convergent. If the sequence (zn)n is
not bounded, there exists a subsequence (zφ(n))n such that
lim

n→+∞
|zφ(n)| = +∞. Then lim

n→+∞
|P (zφ(n))| = +∞ which is

impossible.
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4. By the open mapping theorem P (C) is an open subset which
deduced from the open mapping theorem.

If there exists a sequence (zn)n such that the sequence (P (zn))n
is convergent, there exists a convergent subsequence (zφ(n))n.
Let a = lim

n→+∞
zφ(n) and α = lim

n→+∞
P (zn). Then α = P (a),

and then P (C) is closed. P (C) is connected, then P (C) = C,
which proves the D’Alembert’s theorem.

5. (a) There exists R > 0 such that for |z| > R, |f(z)| ≥ 1,
then the set of zeros of f is in the compact D(0, R), then
f has a finite number of zeros in C.

(b) It suffices to take P (z) =
n∏

j=1

(z−zj), with z1, . . . , zn the

zeros of f cited with their order of multiplicity.

(c) It suffices to take R the same as in the question a).

(d) We deduce from the first question that
P

f
is a polynomial

without zeros, then it is a constant. Then f = CP .

6. (a) As g is a conformal mapping, then g−1 is continuous,
then for all R > 0, g−1(D(0, R) is a compact subset,
then is bounded. It follows that there exists R′ > 0 such
that g−1(D(0, R) ⊂ D(0, R′). Then for all R > 0, there
exists R′ > 0 such that for |z| ≥ R′, |g(z)| ≥ R, which
proves that lim

|z|→+∞
|g(z)| = +∞.

(b) From the above question g is a polynomial, but it has
only one zero, then g(z) = az + b, with a, b ∈ C and
a ̸= 0.
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Ph.D Comprehensive Examination
Analysis (General Paper)

Second semester 1996

Exercise 1 :

1. (a) Let f be analytic in C, z = x + iy. If Re f(z) =
ex(x cos y − y sin y) when |z| < 1, find the general form
of f(z) ∈ C.

(b) Map the region between |z − 1| = 1 and |z − 2| = 2
conformally onto Re z > 0.

2. (a) Calculate

∫
|z−1|=3

(z2 − z + 1)dz̄.

(b) Let f(z) be analytic in |z| < 1. Show that |fn(0)| ≤ n!nn

for some integer n.

(c) By the method of contour integration show that

∫ +∞

0

xα−1

1 + x
dx =

π

sin πα
, 0 < α < l.

3. (a) Find the number of zeros of 2z2 − e
z
2 in |z| < 1.

(b) Expand f(z) =
1

z(z − 1)(z − 2)
as a Laurent series in

the annulus 1 < |z| < 2.

Answer of Ph.D Comprehensive Examination
Analysis (General Paper)

Second semester 1996

Solution of the Exercise 1:
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1. If f = U+iV , U(x, y) = ex(x cos y−y sin y).
∂U

∂x
= ex(x cos y−

y sin y + cos y) =
∂V

∂y
. Then V (x, y) = ex(x sin y + y cos y) +

h(y). Moreover
∂U

∂y
= ex(−x sin y−y cos y− sin y) = −∂V

∂x
=

ex(−x sin y − y cos y − sin y)− h′(y). Then h = C and

f(z) = ex(x cos y−y sin y)+iex(x sin y+y cos y)+iC = zez+iC.

2. We denote Ω the region between |z − 1| = 1 and |z − 2| = 2.
The function z 7−→ f1(z) =

1
z
maps conformally Ω onto the

strip Ω1 = {z ∈ C; 1
4
< Re z < 1

2
}. The function z 7−→

f2(z) = 4iπz − 3iπ
2

maps conformally Ω1 onto the strip Ω2 =
{z ∈ C;−π

2
< Im z < π

2
}. The function z 7−→ f3(z) = ez

maps conformally Ω2 onto the half plane {z ∈ C; Re z >
0}. Then the function z 7−→ f(z) = f3 ◦ f2 ◦ f1(z) maps
conformally Ω onto the half plane {z ∈ C; Re z > 0}.

3. (a)

∫
|z−1|=3

(z2 − z + 1)dz̄ = −i

∫ 2π

0

((1 + 3eiθ)2 − 1− 3eiθ −

1)e−iθdθ = −6iπ.

(b) The power series
∑
n≥1

n!nnzn has 0 as radius of conver-

gence. Then if |fn(0)| ≥ n!nn for all integers n, the
function f can not be analytic on the unit disc.

(c) Let f(z) =
zα−1

1 + z
, with zα−1 = e(α−1) log z, log z is the

branch of log z such that log z = ln |z|+ iθ, 0 < θ < 2π.
We take the closed curve defined by the figure (2).

Res(f,−1) = −eiπα. Then by the residue theorem

∫ +∞

0

xα−1

1 + x
dx =

π

sin πα
, 0 < α < l.
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x

y

R

γR

γε

Figure 2:

4. (a) Let f(z) = 2z2 − e
z
2 and g(z) = 2z2. For |z| = 1,

|f(z) − g(z)| = |e z
2 | ≤

√
e < 1 < |g(z)|. Then the

number of zeros of 2z2 − e
z
2 in |z| < 1 is 2.

(b)

f(z) =
1

2z
− 1

z − 1
+

1

2(z − 2)
=

1

2z
− 1

z

1

1− 1
z

− 1

4

1

1− z
2

=
1

2z
−

+∞∑
n=0

1

zn+1
−

+∞∑
n=0

zn

2n+2
.
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Ph.D Comprehensive Examination
Analysis (General Paper)

Autumn 1997

Exercise 1 :

1. (a) Let f be an analytic function in a domain Ω. If the argf
is constant, show that f is a constant.

(b) Map the region between {z ∈ C; |z| = 1} and {z ∈
C; |2z − 1| = 1} conformally onto the half-plane {z ∈
C; Re z > 0}.

2. (a) Evaluate

∫ 2π

0

cos2 θ

5 + 3 cos θ
dθ.

(b) State Rouche’s theorem and use it to prove the funda-
mental theorem of algebra about the zeros of a polyno-
mial.

3. (a) Let (fn)n be a sequence of analytic functions in a domain
D. Suppose fn(z) ̸= 0 for any n and any z ∈ D. Suppose
(fn)n converges to f uniformly on every compact subset
of D. Show that if f(z0) = 0 for some z ∈ D, then
f(z) = 0 for all z ∈ D.

(b) Let f(z) =
cos z

z2 log(1 + z)
. Use the Laurent series to find

the residue of f at z = 0.

Answer of Ph.D Comprehensive Examination
Analysis (General Paper)

Autumn 1997

Solution of the Exercise 1:

1. (a) Let f be an analytic function in a domain Ω. If the argf
is constant, show that f is a constant.
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(b) Map the region between {z ∈ C; |z| = 1} and {z ∈
C; |2z − 1| = 1} conformally onto the half-plane {z ∈
C; Re z > 0}.

2. (a) ∫ 2π

0

cos2 θ

5 + 3 sin θ
dθ =

∫
|z|=1

(z2 + 1)2

4z2(5 + 3 z2−1
2iz

)

dz

iz

=

∫
|z|=1

(z2 + 1)2

2z2(3z2 + 10iz − 3)
dz

= 2iπ

(
Res(f, 0) + Res(f,− i

3
)

)
= −2iπ(

i

9
) =

2π

9
,

where f(z) =
(z2 + 1)2

2z2(3z2 + 10iz − 3)
.

Res(f, 0) = −5i

9
and Res(f,− i

3
) =

4i

9
.

(b) The Rouché’s Theorem: Let f and g be two holomorphic
functions on a neighborhood of the disc {z ∈ C; |z−a| ≤
r} and |f(z) − g(z)| < |f(z)|; ∀ z ∈ C(a, r) = {z ∈
C; |z − a| = r}, then f and g have the same number
of zeros inside the disc D(a, r). (The zeros are counted
according to their order or multiplicity.)

The Fundamental Theorem of Algebra: If P (z) = anz
n+

. . . + a0, then for |z| large enough, |P (z) − anz
n| <

|an||zn|, because lim
|z|→+∞

∣∣∣P (z)− anz
n

anzn

∣∣∣ = 0. It results

that P has the same number of zeros that the polyno-
mial Q(z) = anz

n.

3. (a) Since the sequence (fn)n is uniformly convergent on any
compact subset of Ω, then f is holomorphic. We assume
that f(z0) = 0 and z0 is a zero of multiplicity k ≥ 1
of f and f is not identically 0. Let r > 0 such that
f(z) ̸= 0 for any z ∈ D(z0, r) \ {z0} and let γ be the
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closed curve defined by the circle of radius r and cen-
tered at z0 traversed in the clockwise direction. Then
1

2iπ

∫
γ

f ′(z)

f(z)
dz = k. Since f never vanishing on γ, the

sequence
(f ′

n

fn

)
n
converges uniformly on γ to

f ′

f
, thus

k =
1

2iπ

∫
γ

f ′(z)

f(z)
dz = lim

n→+∞

1

2iπ

∫
γ

f ′
n(z)

fn(z)
dz = 0,

which is absurd.

(b) Let f(z) =
cos z

z2 log(1 + z)
. Use the Laurent series to find

the residue of f at z = 0.
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Ph.D Qualifying Examination
Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014

Exercise 1 : [Note that parts 1) and 2) are independent]

1. Compute the following integrals

∫ +∞

0

dx

1 + x3
and

∫ +∞

0

ln(x)

1 + x3
dx.

2. Let f be a holomorphic function on D \ {0} and |f(z)| ≤

ln

(
1

|z|

)
, for all z ∈ D \ {0}, where D is the unit disc.

(a) Prove that 0 is a removable singularity of f . (Hint: you
can consider the function zf(z) and calculate its limit at
0).

(b) Prove that for all 0 < r < 1, |f(z)| ≤ ln

(
1

1− r

)
, for all

z ∈ D(0, 1− r).

(c) Deduce that f = 0.

Exercise 2 : [Note that parts 1) and 2) are independent]

1. Consider the function defined by the power series

f(z) =
+∞∑
n=1

zn!.

(a) Prove that f is holomorphic on the unit disc D = {z ∈
C; |z| < 1}.

(b) Let α ∈ C such that αm = 1, for some m ∈ N. (α is
called a root of unity).

Prove that lim
r→1,r<1

|f(rα)| = +∞.
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(c) Deduce that f can not be extended to a holomorpic func-
tion on an open set U such that D ⊂ U and D ̸= U .

2. Let (fn) be a sequence of holomorphic functions on the unit
discD such that fn(D) ⊂ D for all n ∈ N and lim

n→+∞
fn(0) = 1.

(a) Prove that there is a subsequence (fnj
)j which converges

uniformly on any compact to a holomorphic function g
on the unit disc D and g(0) = 1.

(b) We assume that g is not constant.

i. Prove that there exists R > 0 such that g − 1 is
without zeros in D(0, R) \ {0}.

ii. Prove that for j sufficiently large and |z| = r < R,
we have

∣∣(fnj
(z)− 1)− (g(z)− 1)

∣∣ < inf{|g(z)−1|; |z| = r}.

iii. Deduce that fnj
(z)−1 has the same number of zeros

as g − 1 in D(0, r).

iv. Prove that fnj
(z)− 1 is without zero on D(0, r).

v. Deduce that g(z) = 1 for all z ∈ D.

(c) Prove that (fn)n converges uniformly to 1 on any com-
pact.

Answer of Ph.D Qualifying Examination
Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014

Solution of the Exercise 1:
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1. Let f(z) =
log2(z)

1 + z3
, I =

∫ +∞

0

dx

1 + x3
and J =

∫ +∞

0

ln(x)

1 + x3
dx.

By Residue Theorem

−4iπJ+4π2I = 2iπ
(
Res(f,−1) + Res(f, e

iπ
3 ) + Res(f, e

5iπ
3 )

)
.

Res(f,−1) = −π2

3
.

Res(f, e
iπ
3 ) =

π2

27
(
1

2
+ i

√
3

2
).

Res(f, e
5iπ
3 ) =

25π2

27
(
1

2
− i

√
3

2
).

Then −4iπJ + 4π2I =
8iπ3

27
+

8π3
√
3

9
, I =

2π
√
3

9
and J =

−2π2

27
.

2. (a) For all z ∈ D, |zn!| ≤ |z|n and the series
∑
n≥1

|z|n is

convergent. Then f is holomorphic on the unit disc D =
{z ∈ C; |z| < 1}.

(b) f(rα) =
m−1∑
n=1

rn!αn! +
+∞∑
n=m

rn!. Then lim
r→1,r<1

|f(rα)| =

+∞. (
+∞∑
n=m

rn! ≥
p∑

n=m

rn! for all p > m.)

(c) Let U be an open set such that D ⊂ U and D ̸= U .
There is α a root of unity in U . But lim

r→1
|f(rα)| = +∞,

which is absurd. The function f can not be extended to
a holomorpic function on an open set U such thatD ⊂ U
and D ̸= U .

Solution of the Exercise 2:
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1. (a) lim
z→0

zf(z) = 0, then 0 is a removable singularity of f .

(b) For all z ∈ D(0, 1−r), |f(z)| ≤ sup
|w|=1−r

|f(w)| ln
(

1

1− r

)
.

(c) It results that for all z ∈ D, |f(z)| ≤ lim
r→0

ln

(
1

1− r

)
=

0, then f = 0.

2. (a) The sequence (fn) is bounded, then by Montel Theorem,
there is a subsequence (fnj

)j which converges uniformly
on any compact to a holomorphic function g on the unit
disc D. Since lim

n→+∞
fn(0) = 1, then g(0) = 1.

(b) We assume that g is not constant.

i. By Theorem of isolated zero of non constant holo-
morphic function, there existsR > 0 such that g(z)−
1 ̸= 0 for all z ∈ D(0, R) \ {0}.

ii. The convergence of the sequence (fnj
)j is uniform

on the compact {z ∈ C; |z| = r < R}. Then for j
large enough

∣∣fnj
(z)− g(z)

∣∣ = ∣∣(fnj
(z)− 1)− (g(z)− 1)

∣∣ < inf{|g(z)−1|; |z| = r}.

iii. By Theorem fnj
−1 and g−1 have the same number

of zeros on D(0, r).

iv. fnj
(z) − 1 ̸= 0 for all z ∈ D(0, r) since fn(D) ⊂ D,

which is absurd since g(0) = 1.

v. We deduce that g is constant, then g(z) = 1 for all
z ∈ D.

(c) Since the sequence (fn)n is bounded and any subsequence
converges to 0 in the space of holomorphic functions,
then (fn)n converges uniformly to 1 on any compact.
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Ph.D Comprehensive Examination
Analysis (Special Paper)

Second semester 27-28

Exercise 1 :

1. Precise the image of the line {z ∈ C; Re z = 0} by the möbius

transformation f(z) =
1

1− z
. Deduce the image of the half-

plane {z ∈ C; Re z > 0} by the function f .

2. If Ω is a simply connected domain in C different from C,
justify the non existence of a conformal transformation from
C to Ω.

3. Let (an)n be a sequence of complex numbers such that
∑+∞

n=1
1

|an| <
+∞. Construct an entire function such that its set of zeros
is equal to {an; n ≥ 1}.

Question 2
For a ∈ C and s > 0, we consider the set F of family of analytic

functions on a domain Ω ⊂ C satisfying to |f(z) − a| > s for all
z ∈ Ω and all f ∈ F . We consider the family

G = {g; g(z) =
1

f(z)− a
, f ∈ F}.

1. State the definition of a normal family and prove that G is
normal.

2. Deduce that for any sequence (gn)n of G, we can extract a
sub-sequence that converges to a function g which is either
identically equal to zero or without zero on Ω.

3. F is it a normal family?
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Answer of Ph.D Comprehensive Examination
Analysis (Special Paper)

Second semester 27-28

Solution of the Exercise 1:

1. f(0) = 1, f(i) =
1 + i

2
and f(∞) = 0, then the image of the

line {z ∈ C; Re z = 0} by f is the circle of center 1
2
and

radius 1
2
. Since f(1) = ∞ then the image of the half-plane

{z ∈ C; Re z > 0} by the function f is the complement of
the disc of center 1

2
and radius 1

2
.

2. Ω is a simply connected domain in C different from C, then
there is a conformal transformation from Ω into the unit disc.
If there is a conformal transformation from C to Ω, we find a
conformal transformation from C into the unit disc, which is
impossible by Liouville theorem.

3. The function f(z) =
+∞∏
n=1

(1− z

an
) is an entire function and its

set of zeros is equal to {an; n ≥ 1}.

Solution of the Exercise 2:

1. A family F ⊂ O(Ω) is called a normal family if from any se-
quence (fn)n ∈ F , we can extract a convergent sub-sequence.

By Montel’s theorem, G is normal since G is bounded.

2. Let (gn)n be a sequence of G, we can extract a sub-sequence
that converges to a function g. Since the functions gn are
without zeros, then g is either identically equal to zero or
without zero on Ω.

3. F is not a normal family. We can take the sequence (fn =
n+ a+ s)n.
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Ph.D Comprehensive Examination
Analysis (Special Paper)

Second semester 28-29

Exercise 1 :

1. (a) Prove that the principal determination (branch) of the
argument is a continuous function on C\R−. Verify that
it can not be extended continuously at any point of R−.

(b) We denote by Log the principal determination (branch)
of the logarithmic function and by log the determination
of the logarithm defined on C \ iR+, (θ ∈]π

2
, 5π

2
[). On

which domain of C, log = Log.

2. Let f : C −→ C be an entire function such that lim
|z|→+∞

|f(z)| =
+∞.

(a) Prove that the set of zeros of f is non empty and is a
finite set.

(b) We denote by z1, . . . , zp the zeros of f counted with

order of multiplicity. Let P (z) =

p∏
j=1

(z − zj) and g(z) =

P (z)

f(z)
.

Prove that g extends analytically on C and g(z) ̸= 0 for
all z ∈ C.

(c) Use the Cauchy inequalities to prove that g is a polyno-
mial function.

(d) Deduce that f is a polynomial function.

3. Let f : C −→ C be a proper analytic function on C. Deduce
from 2) that f is a polynomial function. (Proper means the
pre-image of any compact is a compact).
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Exercise 2 :

1. Let f be a holomorphic function on D(a, r) \ {a}. Assume
that α > 0 such that f(D(a, r) \ {a}) ∩ D(0, α) = ∅. Prove
that either a is a removable singularity or a pole.

2. Determine the singularities of the function
z

sin πz
and find its

corresponding residues.

3. Determine all möbius mappings transforming the half-plane
{z ∈ C; Im z > 0} onto the unit disc.

4. Evaluate the following integral

∫ +∞

−∞

eiax

x− i
dx, with a ̸= 0.

Answer of Ph.D Comprehensive Examination
Analysis (Special Paper)

Second semester 28-29

Solution of the Exercise 1:

1. (a) z = r(cos θ + i sin θ) = x+ iy, with θ ∈]− π, π[.

x = r cos θ = 2r cos2(
θ

2
)−r, y = r sin θ = 2r cos(

θ

2
) sin(

θ

2
).

x+ r = 2r cos2(
θ

2
) and y = 2r cos(

θ

2
) sin(

θ

2
). Then

y

x+
√

x2 + y2
= tan(

θ

2
) ⇒ θ = 2 tan−1(

y

x+
√
x2 + y2

),

which is a continuous function.

For a < 0, lim
(x,y)→(a,0+)

θ(x, y) = π and lim
(x,y)→(a,0−)

θ(x, y) =

−π. Then θ can not be extended continuously at any
point (a, 0).

(b) log(z) = Log(z) for all z ∈ C such that Im z > 0 and
Re z < 0.
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2. Let f : C −→ C be an entire function such that lim
|z|→+∞

|f(z)| =
+∞.

(a) If f(z) ̸= 0 for all z ∈ C, the function
1

f
is an entire

function and lim
|z|→+∞

1

|f(z)|
= 0. Then

1

f
is the null func-

tion, which is absurd. Moreover there is R > 0 such that
|f(z)| ≥ 1 for all |z| ≥ R. Then the set of zeros of f is
in the compact D(0, R), then it is finite.

(b) The function g is analytic on C \ {z1, . . . , zp} and each
point zj is a removable singularity of g, then g can be
extended analytically on C. Moreover by definition of
the points zj, g(z) ̸= 0 for all z ∈ C.

(c) For |z| ≥ R, |g(z)| ≤ |P (z)|. Since lim
|z|→+∞

|P (z)|
|z|p

=

C < +∞, there exists a constant C ′ > 0 such that
|g(z)| ≤ C(1 + |z|)p. From the Cauchy’s inequalities, g
is a polynomial of degree less or equal then p.

(d) Since g is zero free, thus deg g = 0, this which yields
that f is a polynomial.

3. Since f is proper, then lim
|z|→+∞

|f(z)| = +∞. (For all R > 0,

f−1(D(0, R)) is bounded. Then there is R′ > 0 such that
f−1(D(0, R)) ⊂ D(0, R′). This is equivalent to: for all R > 0
there is R′ > 0 such that for all |z| ≥ R′, |f(z)| ≥ R.) From
2) f is a polynomial function.

Solution of the Exercise 2:

1. Since f(D(a, r) \ {a}) is not dense, then a is not an essential
singularity.

2. The singularities of the function f(z) =
z

sin πz
are n ∈ Z. 0

is a removable singularity. Res(f, n) =
n(−1)n

π
, for n ̸= 0.
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3. Let f be such Möbius transformation and α ∈ H+ = {z ∈
C; Im z > 0} such that f(α) = 0, thus f(ᾱ) = ∞ and f(z) =

eiθ
z − α

z − ᾱ
, with θ ∈ R.

4.

∫ +∞

−∞

eiax

x− i
dx = 2iπ(Resf, i) = 2iπe−a, with f(z) =

eiaz

z − i
.
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Ph.D Comprehensive Examination
Analysis (Special Paper)

First semester 29-30
O(D) denotes the space of holomorphic functions on unit disc

D = D(0, 1) and D∗ = D \ {0}.
Exercise 1 :

1. Let h be a holomorphic function on D.

(a) Assume that h is injective on D. Justify that if h(a) = 0
for some a ∈ D, then a is a simple zero of h.

(b) Now, assume that h is injective on D∗. Prove that
h′(0) ̸= 0 and h is necessary injective on the disc D.

2. Let f be an injective holomorphic function on D∗, a be a
point in D∗ and r > 0 be a positive real number such that
D(a, r) ⊂ D∗.

(a) Prove that there exists α > 0 such that for all z ∈ D∗ \
D(a, r)

|f(z)− f(a)| ≥ α.

(b) Deduce that either f extends as a holomorphic function,
injective on the disc D(0, 1), or 0 is a simple pole of f .
Give an example of a such function.

3. Let (an)n be a sequence of complex numbers such that the

series
∑
n≥1

1

|an|
is convergent. Prove that f(z) =

∏
n≥1

(1 − z

an
)

is holomorphic on C.

Exercise 2 :
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1. Let D be a bounded domain in C containing the origin and f
be a holomorphic function onD with f(D) ⊂ D and f(0) = 0.

(a) Prove that the sequence (f ′
n(0))n is bounded, where fn =

f ◦ . . . f denotes the n-th iteration of f . Deduce that
|f ′

n(0)| ≤ 1. (Hint: express f ′
n(0) as a function of f ′(0)).

(b) Prove that if f ′(0) = 1, then f = id. (Cartan’s theorem).

2. Assume that f ′
k(0) = 1 for some k ≥ 1. Prove that f is an

automorphism of D.

3. Let F = {f ∈ O(D); f(D) ⊂ D and f(0) = 0}.

(a) Prove that F is closed in O(D).

(b) Justify that F is a normal family of O(D).

Answer of Ph.D Comprehensive Examination
Analysis (Special Paper)

First semester 29-30

Solution of the Exercise 1:

1. (a) If h is injective on D, then h′(z) ̸= 0 for all z ∈ D. Then
if h(a) = 0, a is a simple zero of h.

(b) If h′(0) = 0, h can not be injective in any neighborhood
of 0. If h is injective on D∗, then there is a sequence
zn ̸= 0 and zn ̸= zm for m ̸= n such that h(zn) = h(0),
which is absurd. Then h′(0) ̸= 0 and h is injective in
a neighborhood of 0. With the same arguments h is
necessary injective on the disc D.

2. Let f be a holomorphic function on D∗, a be a point in D∗

and r > 0 be a positive real number such that D(a, r) ⊂ D∗.
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(a) f is a holomorphic function and injective onD∗, f(D(a, r))
is a neighborhood of f(a), thus there exists α > 0 such
that D(f(a), α) ⊂ f(D(a, r)). Since f is injective, then
∀z ̸∈ D(a, r), f(z) ̸∈ D(f(a), α), i.e. |f(z) − f(a)| ≥
α, ∀z ∈ D∗ \D(a, r).

(b) We deduce that 0 can not be an essential singularity of
f . Then either f extends as a holomorphic function,
injective on the disc D(0, 1), or 0 is a pole of f . In use
the function h = 1

f
and the previous question, we deduce

that 0 is a simple pole of f .

As example, we take the function f(z) = 1
z
.

3. If the series
∑
n≥1

1

|an|
is convergent, the series

∑
n≥1

z

an
is uni-

formly convergent on any compact of C, then f(z) =
∏
n≥1

(1−

z

an
) is holomorphic on C.

Solution of the Exercise 2:

1. (a) If D ⊂ D(0, R) and D(0, r) ⊂ D, with r > 0, we have:

f ′(0) =
1

2π

∫ 2π

0

f(reiθ)

reiθ
dθ.

Thus |f ′(0)| ≤ R
r
.

We prove by induction that f ′
n(0) = (f ′(0))n. Since the

sequence (f ′
n(0))n is bounded, then |f ′(0)| ≤ 1.

(b) If f ′(0) = 1, then f ′
n(0) = 1 for all n ∈ N. We assume

that the expansion in power series of f is f(z) = z +
+∞∑
n=m

anz
n for |z| < r, with m ≥ 2. We assume that the

expansion in power series of f [k] is f [k](z) = z+kamz
m+
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+∞∑
n=m+1

an,kz
n and let proves the expansion in power series

of f [k+1] is f [k+1](z) = z+(k+1)amz
m+

+∞∑
n=m+1

an,k+1z
n.

f ◦ f [k](z) = f [k](z) + am(f
[k])m(z) + zm+1g(z), with g a holo-

morphic function on D(0, r). The first term of the func-
tion am(f

[k])m(z) is amz
m and the first term of f [k](z) − z

is kamz
m, thus the expansion in power series of f [k+1] is

f [k+1](z) = z + (k + 1)amz
m +

+∞∑
n=m+1

an,k+1z
n.

kamz
m =

1

2π

∫ π

−π

f [k](eiθz)e−imθdθ, for |z| < r.

Since f [k] is a holomorphic function fromD inD, then |f [k](eiθz)| <
R. Thus for any k ∈ N, k|am|rm < R. Then it results that
am = 0 and f(z) = z.

2. If f ′
k(0) = 1, then fk = id. If k = 1, f is an automorphism

of D. If k ≥ 2, f ◦ fk−1 = fk−1 ◦ f = id. Then f is an
automorphism of D.

3. (a) If (fn)n is a sequence in F and convergent to f . Since
fn(D) ⊂ D and fn(0) = 0, then f(D) ⊂ D and f(0) = 0.
Then F is closed in O(D).

(b) Since F is bounded, then it is a normal family of O(D).


