Ph.D Qualifying Examination ¹ Analysis (General Paper)

2003

Exercise 1 :

- 1. Let Ω be a bounded domain in the complex plane. Suppose that f is continuous on $\overline{\Omega}$ and analytic on Ω . Let $\alpha \geq 0$ be a constant such that $|f(z)| = \alpha$ for all z on the boundary of Ω . Show that f is a constant function or f has a zero on Ω .
- 2. Show that the most general linear transformation from the upper half-plane to the unit disc is of the form

$$W = e^{\mathbf{i}\alpha} \frac{z - \beta}{z - \bar{\beta}}.$$

where α is real and $\text{Im }\beta > 0$.

3. Let Ω be a domain in the complex plane. Let $(f_n)_n$ be a sequence of analytic functions on Ω , is without zeros and converging uniformly to f on compact sets in Ω . Show that f is analytic on Ω and $f \equiv 0$ or f is without zeros in Ω .

Exercise 2:

1. Show that

$$\int_0^{2\pi} \frac{\cos^2\theta}{5+3\sin\theta} d\theta = \frac{2\pi}{9}.$$

2. Let f be an analytic function defined on the annulus r < |z-a| < R. Show that there exists two uniquely determined

¹This document is free. Prepared by:

Professor Mongi BLEL, King Saud University, Department of Mathematics . mblel@ksu.edu.sa ,

analytic functions f_1 on |z - a| < R and f_2 on |z - a| > rsuch that $\lim_{|z| \to +\infty} f_2(z) = 0$ and $f = f_1 + f_2$ on the annulus r < |z - a| < R.

Answer of Ph.D Qualifying Examination Analysis (General Paper)

March 2003

Solution of the Exercise 1:

- 1. If f is without zeros on Ω , the function $\frac{1}{f}$ is analytic on Ω and $\frac{1}{|f(z)|} = \frac{1}{\alpha}$ for all z on the boundary of Ω . Then by the maximum principle $|f| \leq \alpha$ and $\frac{1}{|f|} \leq \frac{1}{\alpha}$ on Ω . Then $|f| = \alpha$ on Ω , which proves that f is constant.
- 2. Show that the most general linear transformation from the upper half-plane to the unit disc is of the form $\operatorname{Im} \beta > 0$ and $f(\beta) = 0$. Moreover by symmetry, $f(\overline{\beta}) = \infty$, then $f(z) = \lambda \frac{z-\beta}{z-\beta}$. The function f transforms the real axis to the unit circle, then for all $x \in \mathbb{R}$, $\left|\lambda \frac{x-\beta}{x-\overline{\beta}}\right| = |\lambda| = 1$, then $f(z) = e^{i\alpha} \frac{z-\beta}{z-\overline{\beta}}$,

where $\alpha \in \mathbb{R}$ and $\operatorname{Im} \beta > 0$.

3. Since the sequence $(f_n)_n$ is uniformly convergent on any compact subset of Ω , then f is holomorphic. We assume that fis not identically zero and there exists $a \in \Omega$ a zero of multiplicity $k \geq 1$ of f. Let r > 0 such that $f(z) \neq 0$ for any $z \in \overline{D(a,r)} \setminus \{a\}$ and let γ be the closed curve defined by the circle of radius r and centered at a traversed in the clockwise direction. Then $\frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} dz = k$. Since f never vanishing on γ , the sequence $\left(\frac{f'_n}{f_n}\right)_n$ converges uniformly on γ to $\frac{f'}{f}$, thus

$$k = \frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz = \lim_{n \to +\infty} \frac{1}{2i\pi} \int_{\gamma} \frac{f'_n(z)}{f_n(z)} \, dz = 0,$$

which is absurd.

Solution of the Exercise 2:

1.

$$\begin{split} \int_{0}^{2\pi} \frac{\cos^{2}\theta}{5+3\sin\theta} d\theta &= \int_{|z|=1} \frac{(z^{2}+1)^{2}}{4z^{2}(5+3\frac{z^{2}-1}{2iz})} \frac{dz}{iz} \\ &= \int_{|z|=1} \frac{(z^{2}+1)^{2}}{2z^{2}(3z^{2}+10iz-3)} dz \\ &= 2i\pi \left(\operatorname{Res}(f,0) + \operatorname{Res}(f,-\frac{i}{3}) \right) = -2i\pi(\frac{i}{9}) = \frac{2\pi}{9} \end{split}$$

where
$$f(z) = \frac{(z^2 + 1)^2}{2z^2(3z^2 + 10iz - 3)}$$
.
 $\operatorname{Res}(f, 0) = -\frac{5i}{9}$ and $\operatorname{Res}(f, -\frac{i}{3}) = \frac{4i}{9}$

2. For all r < |z - a| < R,

$$f(z) = \sum_{-\infty}^{+\infty} a_n (z-a)^n = \sum_{-\infty}^{-1} a_n (z-a)^n + \sum_{n=0}^{+\infty} a_n (z-a)^n.$$

Define $f_1(z) = \sum_{-\infty}^{+\infty} a_n (z-a)^n$ and $f_2(z) = \sum_{-\infty}^{-1} a_n (z-a)^n$

Define $f_1(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ and $f_2(z) = \sum_{-\infty}^{\infty} a_n (z-a)^n$. f_1 is analytic on $\{z \in \mathbb{C} : |z-a| < R\}$ and f_2 analytic

$$\{z \in \mathbb{C} : |z-a| > r\}, f = f_1 + f_2 \text{ on the annulus } \{z \in \mathbb{C} : r < |z-a| < R\} \text{ and } \lim_{|z| \to +\infty} f_2(z) = 0.$$

Ph.D Qualifying Examination Analysis (General Paper)

October 2004

Exercise 1 :

For any power series $\sum_{n=0}^{\infty} a_n z^n$ there exists a number $R, 0 \le R \le \infty$, called the radius of convergence. Prove that

- 1. The series converges absolutely for every |z| < R, if $\rho < R$ the convergence is uniform on $\{z \in \mathbb{C} : |z| \le \rho\}$.
- 2. If |z| > R the terms of the series are unbounded, and the series is consequently divergent.
- 3. The sum of the series is an analytic function on $\{z \in \mathbb{C} : |z| < R\}$, the derivative can be obtained by termwise differentiation, and the derived series has the same radius of convergence.

Exercise 2:

1. Evaluate

$$\int_0^{2\pi} \frac{d\theta}{3 - 2\cos\theta + \sin\theta}$$

- 2. State the definition of a conformal mapping.
- 3. Find a function w = f(z) that maps the unit disc $\{z \in \mathbb{C} : |z| < 1\}$ conformally onto the upper plane $\{w \in \mathbb{C} : \operatorname{Im} w > 0\}$.

Answer of Ph.D Qualifying Examination Analysis (General Paper)

October 2004

Solution of the Exercise 1:

Let $\sum_{n\geq 0} a_n z^n$ be a power series. Define $R = \sup\{r > 0; \sum_{n=1}^{+\infty} |a_n| r^n < +\infty\}$. $R \in [0, +\infty]$.

1. If |x| < R, the series $\sum_{n \ge 1} a_n x^n$ is absolutely convergent by definition of R.

Consider $\rho < R$ and the domain $D_{\rho} = \{z \in \mathbb{C}; |z| \leq \rho\}$. Let $\rho < S < R$ and $z \in D_{\rho}$. Since the series $\sum_{n\geq 1} |a_n|S^n$ is convergent, there is M > 0 such that $|a_n|S^n \leq M$ for all $n \in \mathbb{N}$. Then $|a_n z^n| \leq \frac{M\rho^n}{S^n}$ and the series is uniformly convergent on D_{ρ} .

2. If |x| > R and the sequence $(a_n x^n)_n$ is bounded, then the series $\sum_{n \ge 1} |a_n| r^n$ converges for every R < r < |x|, which is impossible.

3. Let
$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$
 and $g(z) = \sum_{n=1}^{+\infty} n a_n z^{n-1}$

We denote R' the radius of convergence of the power series $\sum_{n\geq 1} na_n z^{n-1}$. It is obvious that $R' \leq R$. Let r > 0 such that |z| + r < R. We have $|na_n z^{n-1}| \leq \frac{1}{r} (2|a_n|(|z|+r)^n + |a_n||z|^n)$ and thus $\sum_{n\geq 1} na_n z^{n-1}$ converges absolutely on D(0, R). Thus the radius of convergence of the series defining g is greater than R. Thus R = R'. Moreover $|\frac{f(z+h) - f(z)}{h} - g(z)| \leq \frac{|h|}{r} \sum_{n=1}^{+\infty} |a_n|(|z|+r)^n$, this proves that when h tends to 0, f'(z) = g(z), for any $z \in D(0, R)$.

Solution of the Exercise 2:

1.

$$\begin{split} \int_{0}^{2\pi} \frac{d\theta}{3 - 2\cos\theta + \sin\theta} &= \int_{\{|z|=1\}} \frac{2dz}{(1 - 2i)z^2 + 6iz - (1 + 2i)} \\ &= 2i\pi \text{Res}(f, -\frac{i}{1 - 2i}) = \pi. \end{split}$$
 with $f(z) = \frac{2}{(1 - 2i)z^2 + 6iz - (1 + 2i)}.$

- 2. A function $f: \Omega \longrightarrow \mathbb{C}$ is conformal if it is holomorphic and its derivative is without zeros in Ω .
- 3. The function $f(z) = i\frac{1+z}{1-z}$ maps the unit disc |z| < 1 conformally onto the upper half plane $\{z \in \mathbb{C}; \text{ Im } z > 0\}.$

Ph.D Qualifying Examination Analysis (General Paper) December 2014

Exercise 1 : [Note that parts 1) and 2) are independent]

- 1. Compute the following integrals $\int_0^{+\infty} \frac{dx}{1+x^3}$ and $\int_0^{+\infty} \frac{\ln(x)}{1+x^3} dx$.
- 2. Consider the function defined by the power series

$$f(z) = \sum_{n=1}^{+\infty} z^{n!}$$

- (a) Prove that f is holomorphic on the unit disc $D = \{z \in \mathbb{C}; |z| < 1\}.$
- (b) Let $\alpha \in \mathbb{C}$ such that $\alpha^m = 1$, for some $m \in \mathbb{N}$. (α is called a root of unity). Prove that $\lim_{r \to 1, r < 1} |f(r\alpha)| = +\infty$.
- (c) Deduce that f can not be extended to a holomorpic function on an open set U such that $D \subset U$ and $D \neq U$.

Exercise 2: [Note that parts 1) and 2) are independent]

- 1. Let f be a holomorphic function on $D \setminus \{0\}$ and $|f(z)| \le \ln\left(\frac{1}{|z|}\right)$, for all $z \in D \setminus \{0\}$, where D is the unit disc.
 - (a) Prove that 0 is a removable singularity of f. (Hint: you can consider the function zf(z) and calculate its limit at 0).
 - (b) Deduce that f = 0.

- 2. Let (f_n) be a sequence of holomorphic functions on the unit disc D such that $f_n(D) \subset D$ for all $n \in \mathbb{N}$ and $\lim_{n \to +\infty} f_n(0) = 1$.
 - (a) Prove that there is a subsequence $(f_{n_j})_j$ which converges uniformly on any compact to a holomorphic function gon the unit disc D and g(0) = 1.
 - (b) We assume that g is not constant.
 - i. Prove that there exists R > 0 such that g 1 is without zeros in $D(0, R) \setminus \{0\}$.
 - ii. Prove that for j sufficiently large and |z| = r < R, we have

$$\left| (f_{n_j}(z) - 1) - (g(z) - 1) \right| < \inf\{ |g(z) - 1|; |z| = r \}.$$

- iii. Deduce that $f_{n_j}(z) 1$ has the same number of zeros as g 1 in D(0, r).
- iv. Prove that $f_{n_j}(z) 1$ is without zero on D(0, r).
- v. Deduce that g(z) = 1 for all $z \in D$.
- (c) Prove that $(f_n)_n$ converges uniformly to 1 on any compact.

Solution of Ph.D Qualifying Examination Analysis (General Paper) December 2014

Solution of the Exercise 1:

1. Let $f(z) = \frac{\log^2(z)}{1+z^3}$, $I = \int_0^{+\infty} \frac{dx}{1+x^3}$ and $J = \int_0^{+\infty} \frac{\ln(x)}{1+x^3} dx$. By Residue Theorem

$$-4i\pi J + 4\pi^2 I = 2i\pi \left(\text{Res}(f, -1) + \text{Res}(f, e^{i\pi}) + \text{Res}(f, e^{\frac{5i\pi}{3}}) \right).$$

$$\begin{aligned} \operatorname{Res}(f,-1) &= -\frac{\pi^2}{3}.\\ \operatorname{Res}(f,e^{\mathrm{i}\pi}) &= \frac{\pi^2}{27}(\frac{1}{2} + \mathrm{i}\frac{\sqrt{3}}{2}).\\ \operatorname{Res}(f,e^{\frac{5\mathrm{i}\pi}{3}}) &= \frac{25\pi^2}{27}(\frac{1}{2} - \mathrm{i}\frac{\sqrt{3}}{2}).\\ \operatorname{Then} &-4\mathrm{i}\pi J + 4\pi^2 I = \frac{8\mathrm{i}\pi^3}{27} + \frac{8\pi^3\sqrt{3}}{9}, \ I = \frac{2\pi\sqrt{3}}{9} \ \text{and} \ J = -\frac{2\pi^2}{27}. \end{aligned}$$

- 2. Let f be a holomorphic function on $D \setminus \{0\}$ and $|f(z)| \le \ln\left(\frac{1}{|z|}\right)$, for all $z \in D \setminus \{0\}$, where D is the unit disc.
 - (a) $\lim_{z\to 0} zf(z) = 0$, then 0 is a removable singularity of f.

(b) For all
$$z \in D(0, 1-r), |f(z)| \le \sup_{|w|=1-r} |f(w)| \ln\left(\frac{1}{1-r}\right)$$
.

(c) It results that for all $z \in D$, $|f(z)| \le \lim_{r \to 0} \ln\left(\frac{1}{1-r}\right) = 0$, then f = 0.

Solution of the Exercise 2:

1. (a) For all $z \in D$, $|z^{n!}| \leq |z|^n$ and the series $\sum_{n\geq 1} |z|^n$ is convergent. Then f is holomorphic on the unit disc $D = \{z \in \mathbb{C}; |z| < 1\}$. (b) $f(r\alpha) = \sum_{n=1}^{m-1} r^{n!} \alpha^{n!} + \sum_{n=m}^{+\infty} r^{n!}$. Then $\lim_{r \to 1, r < 1} |f(r\alpha)| = +\infty$. $(\sum_{n=m}^{+\infty} r^{n!} \geq \sum_{n=m}^{p} r^{n!}$ for all p > m.)

- (c) Let U be an open set such that $D \subset U$ and $D \neq U$. There is α a root of unity in U. But $\lim_{r \to 1} |f(r\alpha)| = \infty$, which is absurd. The function f can not be extended to a holomorpic function on an open set U such that $D \subset U$ and $D \neq U$.
- 2. Let (f_n) be a sequence of holomorphic functions on the unit disc D such that $f_n(D) \subset D$ for all $n \in \mathbb{N}$ and $\lim_{n \to +\infty} f_n(0) = 1$.
 - (a) The sequence (f_n) is bounded, then by Montel Theorem, there is a subsequence $(f_{n_j})_j$ which converges uniformly on any compact to a holomorphic function g on the unit disc D. Since $\lim_{n \to +\infty} f_n(0) = 1$, then g(0) = 1.
 - (b) We assume that g is not constant.
 - i. By Theorem of isolated zero of non constant holomorphic function, there exists R > 0 such that $g(z) - 1 \neq 0$ for all $z \in D(0, R) \setminus \{0\}$.
 - ii. The convergence of the sequence $(f_{n_j})_j$ is uniform on the compact $\{z \in \mathbb{C}; |z| = r < R\}$. Then for jlarge enough

$$\begin{aligned} \left| f_{n_j}(z) - g(z) \right| &= \left| (f_{n_j}(z) - 1) - (g(z) - 1) \right| \\ &< \inf\{ |g(z) - 1|; \ |z| = r \}. \end{aligned}$$

- iii. By Theorem $f_{n_j} 1$ and g 1 have the same number of zeros on D(0, r).
- iv. $f_{n_j}(z) 1 \neq 0$ for all $z \in D(0, r)$ since $f_n(D) \subset D$, which is absurd since g(0) = 1.
- v. We deduce that g is constant, then g(z) = 1 for all $z \in D$.
- (c) Since the sequence $(f_n)_n$ is bounded and any subsequence converges to 0 in the space of holomorphic functions, then $(f_n)_n$ converges uniformly to 1 on any compact.

Ph.D Qualifying Examination Analysis (General Paper)

1424 - 1425

Exercise 1:

1. Let f be analytic on a domain Ω and suppose that for $z_0 \in \Omega$, $f^{(n)}(z_0) = 0, \forall n \in \mathbb{N}.$

Show that f is constant.

2. Let f be an analytic function on the unit disc and continuous on $|z| \leq 1$. If $|f(z)| \leq 1 - |z|^2$ for |z| < 1. Show that $f \equiv 0$.

Exercise 2:

- 1. Let *E* b the ellipse $x^2 + 4y^2 = 4$. Use the residue theorem to find the value of $\int_E \frac{dz}{(z-3)(2z-1)^3}$.
- 2. Define a conformal mapping.

Show that the most general linear transformation from the unit disc to the unit disc can be represented as

$$w = e^{i\lambda} \frac{z - \alpha}{\bar{\alpha}z - 1}, \ |\alpha| < 1 \text{ and } \lambda \text{ real.}$$

Answer of Ph.D Qualifying Examination Analysis (General Paper)

1424-1425

Solution of the Exercise 1:

1. f is analytic, then there is r > 0 such that $f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = f(z_0), \, \forall z \in D(z_0, r).$ Let $A = \{z \in \Omega; f \equiv f(z_0) \text{ on a neighborhood of } z\}$. $z_0 \in A$ and A is an open subset. Let $(z_n)_n$ be a convergent sequence of A and $a \in \Omega$ its limit. Since $z_n \in A$, then $f^{(k)}(z_n) = 0$ for any $k \in \mathbb{N}$ and by continuity $f^{(k)}(a) = 0$. f is analytic, this yields that f is constant on a neighborhood of a. This proves that A closed and open, then $A = \Omega$ and f is constant.

2. $\lim_{|z| \to 1} f(z) = 0$, then by Maximum principle, f = 0.

Solution of the Exercise 2:

1.
$$\int_{E} \frac{dz}{(z-3)(2z-1)^{3}} = 2i\pi \operatorname{Res}(f,\frac{1}{2}) = \frac{-2i\pi}{125}, \text{ with } f(z) = \frac{1}{(z-3)(2z-1)^{3}}.$$

2. A function $f: \Omega \longrightarrow \mathbb{C}$ is conformal if and only if it is holomorphic and its derivative is without zeros on Ω .

Let f be a linear transformation from the unit disc \mathbb{D} to the unit disc \mathbb{D} . There is $\alpha \in \mathbb{D}$ such that $f(\alpha) = 0$. By symmetry $f(\frac{1}{\bar{\alpha}}) = \infty$. Then there is $\lambda \in \mathbb{C}$ such that $f(z) = \lambda \frac{z - \alpha}{\bar{\alpha}z - 1}$. Since $\left| \frac{z - \alpha}{\bar{\alpha}z - 1} \right| = 1$ for |z| = 1, then $|\lambda| = 1$ and

$$f(z) = e^{i\theta} \frac{z - \alpha}{\bar{\alpha}z - 1}, \ |\alpha| < 1 \text{ and } \theta \text{ real.}$$

Ph.D Comprehensive Examination Analysis

1425 - 1426

Exercise 1:

- 1. Show that $w = i\frac{1-z}{1+z}$ maps the domain $\{z \in \mathbb{C}; |z| > 1\}$ conformally onto the lower half plane $\{w \in \mathbb{C}; \operatorname{Im} z < 0\}$.
- 2. Find the number of zeros of $f(z) = z^8 5z^5 2z + 1$ in the region $\{z \in \mathbb{C}; |1 < |z| < 2\}.$

Exercise 2:

- 1. Evaluate the integral $\int_0^\infty \frac{\sin \alpha x}{x} dx$, α real.
- 2. Find the Laurent series of $f(z) = \frac{1}{z(z-1)(z-2)}$ in the region $\{z \in \mathbb{C}; 1 < |z| < 2\}.$

Answer Ph.D Comprehensive Examination Analysis

1425-1426

Solution of the Exercise 1:

- 1. The Möbius transformation $f(z) = i\frac{1-z}{1+z}$ transforms the unit circle onto the real axis. $(f(1) = 0, f(-1) = \infty \text{ and } f(i) = 1)$. Since f(0) = i, then f transforms the unit disc onto the upper halph plane and transforms the domain $\{z \in \mathbb{C}; |z| > 1\}$ onto the lower half plane $\{w \in \mathbb{C}; \text{ Im } z < 0\}$.
- 2. Let $g(z) = -5z^5$. For |z| = 1, $|f(z) g(z)| = |z^8 2z + 1| \le 4 < |g(z)| = 5$, the by Rouché's Theorem, f has exactly 5 roots in the unit disc.

We consider the function $h(z) = z^8$. For |z| = 2, $|h(z) - f(z)| = |-5z^5 - 2z + 1| \le 165 < |h(z)| = 256$, then by Rouché's Theorem, f has 8 roots in the disc of center 0 and radius 2. Then f has 3 roots in the annulus $\{z \in \mathbb{C}; 1 < |z| < 2\}$.

Solution of the Exercise 2:

1. Let $I(\alpha) = \int_0^\infty \frac{\sin \alpha x}{x} dx.$

The mapping $\alpha \mapsto I(\alpha)$ is odd and I(0) = 0. We compute $I(\alpha)$ for $\alpha > 0$. For a change of variable $t = \alpha x$, $I(\alpha) = I(1)$ for $\alpha > 0$.

 $I(1) = \int_{-\infty}^{+\infty} \frac{\sin x}{x}$. We set $f(z) = \frac{e^{iz}}{z}$. We integrate the function f on the following closed path

By residue theorem, we have:

$$\int_{-R}^{-r} f(x) \, dx - \int_{\gamma_r} f(z) \, dz + \int_{r}^{R} f(x) \, dx + \int_{\gamma_R} f(z) \, dz = 0.$$
$$|\int_{\gamma_R} f(z) \, dz| = |\int_{0}^{\pi} e^{iRe^{i\theta}} i \, d\theta| \le \int_{0}^{\pi} e^{-R\sin\theta} \, d\theta \xrightarrow[R \to +\infty]{} 0.$$
$$\int_{\gamma_r} f(z) \, dz \xrightarrow[r \to 0]{} i\pi, \text{ thus } I = \pi.$$

2.
$$f(z) = \frac{1}{z(z-1)(z-2)} = \frac{1}{2z} - \frac{1}{z-1} + \frac{1}{2(z-2)}.$$
$$-\frac{1}{z-1} = -\frac{1}{z}\frac{1}{1-\frac{1}{z}} = -\frac{1}{z}\sum_{n=0}^{+\infty}\frac{1}{z^n} = -\sum_{n=0}^{+\infty}\frac{1}{z^{n+1}}, \quad \forall |z| > 1.$$
$$\frac{1}{2(z-2)} = -\frac{1}{4}\frac{1}{1-\frac{z}{2}} = -\frac{1}{4}\sum_{n=0}^{+\infty}\frac{z^n}{2^n}, \quad \forall |z| < 2.$$

Then

$$f(z) = \frac{1}{z(z-1)(z-2)} = \frac{1}{2z} - \sum_{n=0}^{+\infty} \frac{1}{z^{n+1}} - \frac{1}{4} \sum_{n=0}^{+\infty} \frac{z^n}{2^n}$$

in the region $\{z \in \mathbb{C}; 1 < |z| < 2\}.$

Ph.D Comprehensive Examination Analysis

1425-1426- Second semester

Exercise 1:

1. (a) Let f be a analytic function on \mathbb{C} . Prove that for any $a, b \in \mathbb{C}, a \neq b$ we have for $R > \sup(|a|, |b|)$

$$\frac{1}{2i\pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz = \frac{f(a) - f(b)}{a-b}$$

(b) Prove that if in addition, f is bounded on \mathbb{C} , then

$$\frac{1}{2i\pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz \longrightarrow 0, \quad \text{when } R \longrightarrow +\infty.$$

deduce that any bounded analytic function on $\mathbb C$ is constant.

2. Prove that the function $f(z) = \frac{z-1}{z+1}$ is a conformal mapping from the half-plane $\{z \in \mathbb{C}; \operatorname{Re} z > 0\}$ into the unit disc $\{z \in \mathbb{C}; |z| < 1\}.$

Exercise 2:

For R > 1, let γ_R be the half-circle defined by $\gamma_R(t) = Re^{it}, t \in [0, \pi]$. We consider the function $f(z) = \frac{ze^{3iz}}{(z^2 + 1)^2}$.

- 1. Prove that the integral $\int_{\gamma_R} f(z)dz \longrightarrow 0$, when $R \longrightarrow +\infty$.
- 2. Use the residue theorem to find the value of the integral $\int_0^{+\infty} \frac{x \sin(3z)}{(x^2+1)^2} dx.$

Answer of Ph.D Comprehensive Examination Analysis

1425-1426- Second semester

Solution of the Exercise 1:

1. (a) For R large enough $(\max(|a|, |b|) < R)$,

$$\frac{1}{2i\pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz = \frac{1}{2i\pi} \int_{|z|=R} \frac{1}{a-b} \Big[\frac{f(z)}{(z-a)} - \frac{f(z)}{(z-b)} \Big] dz \\ = \frac{1}{a-b} (f(a) - f(b)).$$
(b) If $|f(z)| \leq M$, for any $z \in \mathbb{C}$, then $\Big| \frac{f(a) - f(b)}{a-b} \Big| \leq$

$$\frac{MR}{(R-|a|)(R-|b|)}. \text{ Since } \lim_{R \to +\infty} \frac{MR}{(R-|a|)(R-|b|)} = 0,$$

then $f(a) = f(b).$

Then if f is a bounded analytic function on \mathbb{C} , f(a) = f(b) for all $a, b \in \mathbb{C}$ and f is constant.

2. f is a Möbius transformation, $|f(it)| = \left|\frac{it-1}{it+1}\right| = 1$ and f(1) = 0, f is a conformal mapping from the half-plane $\{z \in \mathbb{C}; \text{ Re } z > 0\}$ into the unit disc $\{z \in \mathbb{C}; |z| < 1\}$.

Solution of the Exercise 2:

For R > 1, let γ_R be the half-circle defined by $\gamma_R(t) = Re^{it}, t \in [0, \pi]$. We consider the function $f(z) = \frac{ze^{3iz}}{(z^2 + 1)^2}$.

1.

$$\begin{aligned} \left| \int_{\gamma_R} f(z) dz \right| &= \left| \int_0^\pi \frac{\mathrm{i} R^2 e^{2\mathrm{i}\theta} e^{3\mathrm{i} R\cos\theta} e^{-3R\sin\theta}}{(R^2 e^{2\mathrm{i}\theta} + 1)^2} d\theta \right| \\ &\leq \int_0^\pi \frac{R^2}{(R^2 - 1)^2} d\theta = \frac{\pi R^2}{(R^2 - 1)^2} \mathop{\longrightarrow}_{R \to +\infty} 0. \end{aligned}$$

$$\int_{0}^{+\infty} \frac{x \sin(3z)}{(x^{2}+1)^{2}} dx = \lim_{R \to +\infty} \left(-i \int_{-R}^{R} f(x) dx + \int_{\gamma_{R}} f(z) dz \right)$$
$$= 2\pi \operatorname{Res}(f, i) = \frac{3\pi}{2e^{3}}.$$

Ph.D Comprehensive Examination Analysis (General Paper)

First semester 1426-1427

Exercise 1 :

1. The aim of this question is to prove Liouville's theorem.

Let f be a holomorphic function on \mathbb{C} . Use the Cauchy's theorem to prove that

$$\frac{1}{2i\pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz = \frac{f(a) - f(b)}{a-b}$$
 for *R* large.

Prove that if f is bounded $\lim_{R \to +\infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz = 0$ and hence f is constant.

2. We consider the polynomial $P(z) = z^7 + 5z^4 + z^3 - z + 1$. Prove that P has exactly 4 roots in the unit disc and 3 roots in the annulus $\{z \in \mathbb{C}; 1 < |z| < 2\}$.

Exercise 2:

Let f be a holomorphic function on a domain $\Omega \subset \mathbb{C}$. We suppose that $\Omega \supset \overline{D(0,1)}$ and

$$(P) |f(e^{i\theta})| = 1 \quad \forall \ \theta \in \mathbb{R}.$$

- 1. Let $a \in D(0,1)$. Prove that the function $h_a(z) = \frac{a-z}{1-\bar{a}z}$ verifies the property (P).
- 2. Prove that if f is without zeros in the unit disc D(0,1), then f is constant in Ω .

- 3. (a) Prove that the set of zeros of f in D(0, 1) is finite.
 - (b) Deduce that if f is not constant, there exist z_1, \ldots, z_n in D(0, 1) and $p_1, \ldots, p_n \in \mathbb{N}$ such that

$$f(z) = \lambda \prod_{j=1}^{n} \left(\frac{z-z_j}{1-\overline{z_j}z}\right)^{p_j}$$
 with $|\lambda| = 1$

Answer of Ph.D Comprehensive Examination Analysis (General Paper)

First semester 1426-1427

Solution of the Exercise 1:

1. For R large enough $(\max(|a|, |b|) < R)$,

$$\frac{1}{2i\pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz = \frac{1}{2i\pi} \int_{|z|=R} \frac{1}{a-b} \Big[\frac{f(z)}{(z-a)} - \frac{f(z)}{(z-b)} \Big] dz$$
$$= \frac{1}{a-b} (f(a) - f(b)).$$

If
$$|f(z)| \leq M$$
, for all $z \in \mathbb{C}$, then $\left|\frac{f(a) - f(b)}{a - b}\right| \leq \frac{MR}{(R - |a|)(R - |b|)}$.
Since $\lim_{R \to +\infty} \frac{MR}{(R - |a|)(R - |b|)} = 0$, then $f(a) = f(b)$ and f is constant.

2. Let $f(z) = 5z^4$. For |z| = 1, $|f(z) - P(z)| = |z^7 + z^3 - z + 1| \le 4 < |f(z)|$, the by Rouché's Theorem, P has exactly 4 roots in the unit disc.

We consider the function $g(z) = z^7$. For |z| = 2, $|g(z) - P(z)| = |5z^4 + z^3 - z + 1| \le 91 < |g(z)| = 128$, then by Rouché's Theorem, P has 7 roots in the disc of center 0 and

radius 2. Then P has 3 roots in the annulus $\{z \in \mathbb{C}; 1 < |z| < 2\}$.

Solution of the Exercise 2:

- 1. $h_a(a) = 0, h_a(0) = a$ and $|h_a(e^{i\theta})| = \left|\frac{a e^{i\theta}}{1 \bar{a}e^{i\theta}}\right| = \left|\frac{a e^{i\theta}}{e^{-i\theta} \bar{a}}\right| = 1$. Then h_a fulfills the property (P).
- 2. If f is without zeros in the unit disc D, then $\frac{1}{f}$ is holomorphic on a neighborhood of \overline{D} . Since $|f(e^{i\theta})| = 1$ and $\left|\frac{1}{f(e^{i\theta})}\right| = 1$ for any $\theta \in \mathbb{R}$, then from the Maximum Principle applied to f and $\frac{1}{f}$, we have $|f| \leq 1$ and $\frac{1}{|f|} \leq 1$ on D, thus f is constant on Ω .
- 3. (a) \overline{D} is compact, thus the number of zeros of f in D is finite.

(b) If z_1, \ldots, z_n are the zeros of f in D and $p_1, \ldots, p_n \in \mathbb{N}$ their multiplicities respective, then $g(z) = \frac{f(z)}{\prod_{j=1}^n (\frac{z-z_j}{1-\overline{z_j}z})^{p_j}}$ is holomorphic on a neighborhood of \overline{D} , without zeros

in D and $|g(e^{i\theta})| = 1$ for any $\theta \in \mathbb{R}$. From the above question g is constant, which yields that

$$f(z) = \lambda \prod_{j=1}^{n} \left(\frac{z - z_j}{1 - \overline{z_j}z}\right)^{p_j}, \quad \text{with } |\lambda| = 1.$$

Ph.D Comprehensive Examination Analysis (Spacial Paper)

First semester 1429-1430 H

Exercise 1:

- 1. Justify the non existence of a conformal transformation from \mathbb{C} into the half plane $\{z \in \mathbb{C}; \operatorname{Re} z > 0\}.$
- 2. (a) State the maximum principle.
 - (b) Let Ω be the square region $\{z \in \mathbb{C}; |\operatorname{Re} z| < 1, |\operatorname{Im} z| < 1\}$. Suppose that f is continuous on $\overline{\Omega}$, holomorphic on Ω and f(z) = 0 whenever $\operatorname{Re} z = 1$. Prove that f is identiquely 0 on $\overline{\Omega}$. (Hint: consider the function g(z) = f(z)f(-z)f(iz)f(-iz)).
- 3. Let $a, b, c \in D(0, 1)$. Prove that the function

$$f(z) = z \left(\frac{z-a}{1-\bar{a}z}\right)^n \left(\frac{z-b}{1-\bar{b}z}\right)^p - c, \quad n, p \in \mathbb{N},$$

has exactly n + p + 1 roots in D(0, 1).

Exercise 2:

1. Let g be an entire function and assume that there exists a constant M > 0 such that

$$|g(z)| \le M |z^2 e^z|, \quad \forall z \in \mathbb{C}$$

Prove that there exists a constant $K \in \mathbb{C}$ such that $g(z) = Kz^2e^z$, $\forall z \in \mathbb{C}$ with $|K| \leq M$.

2. (a) Prove that the integral $\int_0^{+\infty} \frac{\ln x}{1+x^2} dx$ is convergent and use Cauchy's residue theorem to prove that $\int_0^{+\infty} \frac{\ln x}{1+x^2} dx = 0.$

- (b) Using a suitable variable change, show that $\int_{0}^{+\infty} \frac{\ln x}{1+x^2} dx = 0.$
- 3. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be an analytic automorphism.
 - (a) Prove that $\lim_{|z|\to+\infty} |f(z)| = +\infty$ and that 0 is a pole for the function $f(\frac{1}{z})$. Deduce that f is a polynomial function.
 - (b) b) Deduce that f(z) = az + b for some $a, b \in \mathbb{C}, a \neq 0$.

Answer of Ph.D Comprehensive Examination Analysis (Spacial Paper)

First semester 1429-1430 H

Solution of the Exercise 1:

1. By Riemann Theorem there is a conformal transformation from the half plane $\{z \in \mathbb{C}; \operatorname{Re} z > 0\}$ into the unit disc. Then if there is a conformal transformation from \mathbb{C} into the half plane $\{z \in \mathbb{C}; \operatorname{Re} z > 0\}$, there is a conformal transformation from \mathbb{C} into the unit disc, which is impossible by Liouville Theorem.

Second proof: If f = U + iV is a conformal transformation from \mathbb{C} into the half plane $\{z \in \mathbb{C}; \text{ Re } z > 0\}$, then $V \ge 0$ and V is harmonic on \mathbb{R}^2 , then V is constant and f is constant.

2. (a) The maximum principle: Let Ω be a bounded domain and f a continuous function on $\overline{\Omega}$ and holomorphic on Ω . If $M = \sup_{z \in \overline{\Omega} \setminus \Omega} |f(z)|$, then $|f(z)| \leq M$ for every $z \in \Omega$, and if there exists $a \in \Omega$ such that |f(a)| = M, then fis constant on Ω . (Furthermore, |f| does not attains a maximum at an interior point unless f is constant.) (b) the function g(z) = f(z)f(-z)f(iz)f(-iz) is continuous on $\overline{\Omega}$, holomorphic on Ω . Moreover g = 0 on $\partial\Omega$, then g = 0 and f = 0.

(c) Let g be the function defined by $g(z) = z \left(\frac{z-a}{1-\bar{a}z}\right)^n \left(\frac{z-b}{1-\bar{b}z}\right)^p$. For |z| = 1, |g(z)| = 1 and |f(z) - g(z)| = |c| < 1 = |g(z)|. Then f and g have the same number of zeros on the unit disc. Then f has exactly n + p + 1 roots in D(0, 1).

Solution of the Exercise 2:

- 1. Consider the function $f(z) = g(z)e^{-z}$. For all $z \in \mathbb{C}$, $|f(z)| \le M|z^2|$, then f is a polynomial of degree ≤ 2 . But f(0) = 0 and f'(0) = 0. Then there exists $K \in \mathbb{C}$ such that $f(z) = Kz^2$, $\forall z \in \mathbb{C}$ and $|K| \le M$.
- 2. (a) In a neighborhood of 0, $\frac{\ln x}{1+x^2} \approx \ln x$ which is integrable. For x > 1, $\frac{\ln x}{1+x^2} \le \frac{\ln x}{x^2}$ which is integrable on $[1, +\infty[$. By residue theorem

$$2i\pi \left(\operatorname{Res}(\frac{\log^2 z}{1+z^2}, i) + \operatorname{Res}(\frac{\log^2 z}{1+z^2}, -i) \right) = 4\pi^2 \int_0^{+\infty} \frac{dx}{1+x^2} - 4i\pi \int_0^{+\infty} \frac{dx}{1+x^2} dx$$

$$\operatorname{Res}\left(\frac{\log^2 z}{1+z^2}, \mathbf{i}\right) = -\frac{\pi^2}{8\mathbf{i}}, \ \operatorname{Res}\left(\frac{\log^2 z}{1+z^2}, -\mathbf{i}\right) = \frac{9\pi^2}{8\mathbf{i}}. \ \text{Then}$$
$$\int_0^{+\infty} \frac{\ln x}{1+x^2} dx = 0 \ \text{and} \ \int_0^{+\infty} \frac{dx}{1+x^2} = \frac{\pi}{2}.$$
$$(b) \ \int_1^{+\infty} \frac{\ln x}{1+x^2} dx \stackrel{t=\frac{1}{x}}{=} -\int_0^1 \frac{\ln x}{1+t^2} dt. \ \text{Then} \ \int_0^{+\infty} \frac{\ln x}{1+x^2} dx = 0.$$

3. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be an analytic automorphism.

(a) f^{-1} is continuous, then for all R > 0, $f^{-1}(\overline{D(0,R)})$ is a compact. There is R' > 0 such that $f^{-1}(\overline{D(0,R)}) \subset D(0,R')$. This is equivalent to

 $\forall R > 0, \exists R' > 0$ such that if $|z| \ge R', |f(z)| \ge R$.

Then $\lim_{|z|\to+\infty} |f(z)| = +\infty$. Since $\lim_{z\to 0} |f(\frac{1}{z})| = +\infty$, then 0 is a pole for the function $f(\frac{1}{z})$.

(b) Since f is injective, 0 is a simple pole of the function $f(\frac{1}{z})$ and f is a polynomial function of degree 1.

Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1429-1430 H

Exercise 3:

- 1. Let $\Omega = \{z = x + iy \in \mathbb{C}, a < x < b, y > 0\}$ and $g: \overline{\Omega} \longrightarrow \mathbb{C}$ be a continuous function and holomorphic on Ω . Assume that $g(x) \in \mathbb{R}$, for all a < x < b.
 - (a) Prove that the function \tilde{g} defined on the strip $\{z = x + iy \in \mathbb{C}, a < x < b\}$ by

$$\tilde{g}(z) = \begin{cases} g(z) & \text{if } z \in \overline{\Omega} \\ g(z) = \overline{g(\overline{z})} & \text{if } \overline{z} \in \Omega \end{cases}$$

is holomorphic.

- (b) Deduce that if g(x) = 0 for all a < x < b, then $g \equiv 0$ on Ω .
- 2. Let *h* be the holomorphic function defined on a neighborhood of the closed unit disc \overline{D} by: $h(z) = i\frac{1-z}{1+z}$.
 - (a) Prove that h is a conformal mapping from the unit disc D onto the upper half-plane $\mathcal{H} = \{x + iy \in \mathbb{C}; y > 0\}.$
 - (b) Find the image of $\{e^{it}; 0 < t < \frac{\pi}{2}\}$ by h.
- 3. Let f be a holomorphic function on the unit disc D and continuous on \overline{D} . Assume that $f(e^{it}) = 0$, for all $t \in [0, \frac{\pi}{2}]$. Prove that $f \circ h^{-1} \equiv 0$ and that $f \equiv 0$.
- 4. We can prove the same result otherwise. Define the function F by: F(z) = f(z)f(iz)f(-z)f(-iz).

Prove that $F \equiv 0$, and deduce that $f \equiv 0$.

Exercise 4 :

Let P be a polynomial of degree $n \ge 1$ and let R > 0.

1. Let h be an entire function (i.e. holomorphic on \mathbb{C}). Assume that $|h(z)| \leq |P(z)|$, for all $|z| \geq R$.

Prove that h is a polynomial of degree at least n.

- 2. Prove that $\lim_{|z| \to +\infty} |P(z)| = +\infty$.
- 3. Let $(z_n)_n$ be a sequence of complex numbers such that the sequence $(P(z_n))_n$ is convergent.

Prove that the sequence $(z_n)_n$ is bounded.

- Prove that P(ℂ) is an open and closed subset of ℂ and deduce D'Alembert's theorem, namely: Every non constant polynomial has at least one zero in ℂ.
- 5. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a holomorphic function such that $\lim_{|z| \to +\infty} |f(z)| = +\infty$.
 - (a) Prove that f has a finite number of zeros in \mathbb{C} .
 - (b) Prove that there exists a polynomial P such that the function $h = \frac{P}{f}$ is holomorphic in \mathbb{C} and $h(z) \neq 0$, for all $z \in \mathbb{C}$.
 - (c) Prove that there exists an R > 0 such that $|h(z)| \le |P(z)|$, for all $|z| \ge R$.
 - (d) Deduce that there exists a constant C such that f = CP.
- 6. Now let $g: \mathbb{C} \longrightarrow \mathbb{C}$ be a conformal mapping.
 - (a) Prove that $\lim_{|z|\to+\infty} |g(z)| = +\infty$.
 - (b) Deduce that g(z) = az + b, with $a, b \in \mathbb{C}$ and $a \neq 0$.

Answer Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1429-1430 H

Solution of the Exercise 3:

1. (a) \tilde{g} is holomorphic on Ω and on $\Omega^{-} = \{z = x + iy \in \mathbb{C}, a < x < b, y < 0\}$ and \tilde{g} is continuous on $\{z = x + iy \in \mathbb{C}; a < x < b\}$. If g(z) = U(x, y) + iV(x, y) on Ω , then $\tilde{g}(z) = U(x, -y) - iV(x, -y) = U_1(x, y) + iV_1(x, y)$ on Ω^{-} .

$$\begin{cases} \frac{\partial U_1}{\partial x}(x,y) = \frac{\partial U}{\partial x}(x,-y) = \frac{\partial V}{\partial y}(x,-y) = \frac{\partial V_1}{\partial y}(x,y) \\\\ \frac{\partial U_1}{\partial y}(x,y) = -\frac{\partial U}{\partial y}(x,-y) = \frac{\partial V}{\partial x}(x,-y) = -\frac{\partial V_1}{\partial x}(x,y) \end{cases}$$

Then \tilde{g} is holomorphic on Ω^- . Moreover \tilde{g} is continuous on $\{z = x + iy \in \mathbb{C}, a < x < b\}$. To show that \tilde{g} is holomorphic on $\{z = x + iy \in \mathbb{C}, a < x < b\}$, we use Morera's theorem and we prove that for all triangle $\Delta \subset \{z = x + iy \in \mathbb{C}, a < x < b\}, \int_{\Delta} \tilde{g}(z)dz = 0.$ Let $\Delta = (A, B, C)$ be a triangle in $\{z = x + iy \in \mathbb{C}, a < x < b\}$. If $\Delta \subset \Omega$ or $\Delta \subset \Omega^-$, then $\int_{\partial \Delta} \tilde{g}(z)dz = 0$.

If Δ meets the real axis, then we can suppose that $\Delta \cap \Omega$ is a triangle $\Delta_1 = (A, \alpha, \beta)$ and $\Delta \cap \Omega^-$ is a polygon (α, B, C, β) , (cf figure 1).

Since the triangle $\Delta_1 = (A, A_1, A_2)$ is in Ω and the quadrilateral $R_1 = (B, C, B_2, B_1)$ is in Ω^- , then $\int_{\partial \Delta_1} \tilde{g}(z) dz =$

Figure 1:

$$\int_{\partial R_1} f(z)dz = 0, \text{ thus } \int_{\partial \Delta} \tilde{g}(z)dz = \int_{\partial R_2} \tilde{g}(z)dz = 0,$$

with R_2 the quadrilateral (A_1, B_1, B_2, A_2) .
If the points A_1 and B_1 tend to α , then the integral

 $\int_{[A_1,B_1]} \tilde{g}(z)dz \text{ tends to } 0.$ The same result for the integral $\int_{[B_2,A_2]} \tilde{g}(z)dz$ tends to 0 when the points A_2 and

 B_2 tend to β .

It follows from Morera's Theorem that \tilde{g} is holomorphic on Ω .

(b) If g(x) = 0 for all a < x < b, $\tilde{g}(x) = 0$ for all a < x < b, then $\tilde{g} \equiv 0$ on $\{z = x + iy \in \mathbb{C}, a < x < b\}$ and then $g \equiv 0$ on Ω .

2. (a)
$$h'(z) = \frac{-2i}{(1+z)^2}$$
, then h is a conformal mapping. $h(z) = \frac{2y + i(1-|z|^2)}{|1+z|^2} \in \mathcal{H}$ with $z = x + iy \in D$. More-
over $h^{-1}(z) = \frac{1+iz}{1-iz} = \frac{1-|z|^2+2ix}{|1-iz|^2}$, then $|h^{-1}(z)|^2 = \frac{1+x^2-y^2}{(1+y)^2+x^2} \in D$ if $y > 0$.

Otherwise, we can see that h is a möbius transform and the image of the unit circle is the real axis and h(0) = i, then h is a conformal mapping from the unit disc D onto the upper half-plane $\mathcal{H} = \{x + iy \in \mathbb{C}; y > 0\}.$

(b) The image of $\{e^{it}; 0 < t < \frac{\pi}{2}\}$ by h is the interval]0, 1[.

- 3. From the first question $f \circ h^{-1}$ is holomorphic on the open set $\{z = x + iy \in \mathbb{C}, 0 < x < 1, y > 0\}$ and $f \circ h^{-1}(x) = 0$ on the interval]0, 1[. Then $f \circ h^{-1} \equiv 0$ and $f \equiv 0$.
- 4. $F \equiv 0$ on the unit circle and from the maximum principle, $F \equiv 0$ on D. Then $f \equiv 0$.

Solution of the Exercise 4:

If $P(z) = a_n z^n + \ldots + a_0$ with $a_n \neq 0$. So

$$\lim_{|z| \to +\infty} \frac{|P(z)|}{|a_n| |z|^n} = \lim_{|z| \to +\infty} \left| 1 + \frac{a_{n-1}}{a_n z} + \ldots + \frac{a_0}{a_n z^n} \right| = 1, \quad (0.1)$$

then there exists $R_1 > 0$ such that $|P(z)| \le 2|a_n||z|^n$ for $|z| \ge R_1$.

- 1. If $h(z) = \sum_{k=0}^{+\infty} b_k z^k$ and $|h(z)| \le |P(z)|$, for all $|z| \ge R$. The Cauchy's inequalities gives that for all $m \ge 1$ and $|z| \ge \max(R, R_1)$, $|b_m| \le 2|a_n||z|^{n-m}$; which gives that $b_m = 0$ if $m \ge n+1$. Then h is a polynomial of degree at least n.
- 2. The relation (0.1) proves that $\lim_{|z| \to +\infty} |P(z)| = +\infty$.
- 3. Let $(z_n)_n$ be a sequence of complex numbers such that the sequence $(P(z_n))_n$ is convergent. If the sequence $(z_n)_n$ is not bounded, there exists a subsequence $(z_{\varphi(n)})_n$ such that $\lim_{n \to +\infty} |z_{\varphi(n)}| = +\infty$. Then $\lim_{n \to +\infty} |P(z_{\varphi(n)})| = +\infty$ which is impossible.

4. By the open mapping theorem $P(\mathbb{C})$ is an open subset which deduced from the open mapping theorem.

If there exists a sequence $(z_n)_n$ such that the sequence $(P(z_n))_n$ is convergent, there exists a convergent subsequence $(z_{\varphi(n)})_n$. Let $a = \lim_{n \to +\infty} z_{\varphi(n)}$ and $\alpha = \lim_{n \to +\infty} P(z_n)$. Then $\alpha = P(a)$, and then $P(\mathbb{C})$ is closed. $P(\mathbb{C})$ is connected, then $P(\mathbb{C}) = \mathbb{C}$, which proves the D'Alembert's theorem.

- 5. (a) There exists R > 0 such that for |z| > R, $|f(z)| \ge 1$, then the set of zeros of f is in the compact D(0, R), then f has a finite number of zeros in \mathbb{C} .
 - (b) It suffices to take $P(z) = \prod_{j=1}^{n} (z z_j)$, with z_1, \ldots, z_n the zeros of f cited with their order of multiplicity.
 - (c) It suffices to take R the same as in the question a).
 - (d) We deduce from the first question that $\frac{P}{f}$ is a polynomial without zeros, then it is a constant. Then f = CP.
- 6. (a) As g is a conformal mapping, then g^{-1} is continuous, then for all R > 0, $g^{-1}(\overline{D(0,R)})$ is a compact subset, then is bounded. It follows that there exists R' > 0 such that $g^{-1}(\overline{D(0,R)} \subset D(0,R')$. Then for all R > 0, there exists R' > 0 such that for $|z| \ge R'$, $|g(z)| \ge R$, which proves that $\lim_{|z| \to +\infty} |g(z)| = +\infty$.
 - (b) From the above question g is a polynomial, but it has only one zero, then g(z) = az + b, with $a, b \in \mathbb{C}$ and $a \neq 0$.

Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1996

Exercise 1:

- 1. (a) Let f be analytic in \mathbb{C} , z = x + iy. If $\operatorname{Re} f(z) = e^x(x\cos y y\sin y)$ when |z| < 1, find the general form of $f(z) \in \mathbb{C}$.
 - (b) Map the region between |z 1| = 1 and |z 2| = 2 conformally onto $\operatorname{Re} z > 0$.
- 2. (a) Calculate $\int_{|z-1|=3} (z^2 z + 1) d\bar{z}$.
 - (b) Let f(z) be analytic in |z| < 1. Show that $|f^n(0)| \le n!n^n$ for some integer n.

(c) By the method of contour integration show that $\int_0^{+\infty} \frac{x^{\alpha-1}}{1+x} dx = \frac{\pi}{\sin \pi \alpha}, \ 0 < \alpha < l.$

3. (a) Find the number of zeros of
$$2z^2 - e^{\frac{z}{2}}$$
 in $|z| < 1$.

(b) Expand $f(z) = \frac{1}{z(z-1)(z-2)}$ as a Laurent series in the annulus 1 < |z| < 2.

Answer of Ph.D Comprehensive Examination Analysis (General Paper)

Second semester 1996

Solution of the Exercise 1:

1. If
$$f = U + iV$$
, $U(x, y) = e^x(x \cos y - y \sin y)$. $\frac{\partial U}{\partial x} = e^x(x \cos y - y \sin y) = \frac{\partial V}{\partial y}$. Then $V(x, y) = e^x(x \sin y + y \cos y) + h(y)$. Moreover $\frac{\partial U}{\partial y} = e^x(-x \sin y - y \cos y - \sin y) = -\frac{\partial V}{\partial x} = e^x(-x \sin y - y \cos y - \sin y) - h'(y)$. Then $h = C$ and

$$f(z) = e^x(x\cos y - y\sin y) + ie^x(x\sin y + y\cos y) + iC = ze^z + iC.$$

- 2. We denote Ω the region between |z-1| = 1 and |z-2| = 2. The function $z \mapsto f_1(z) = \frac{1}{z}$ maps conformally Ω onto the strip $\Omega_1 = \{z \in \mathbb{C}; \frac{1}{4} < \operatorname{Re} z < \frac{1}{2}\}$. The function $z \mapsto f_2(z) = 4i\pi z - \frac{3i\pi}{2}$ maps conformally Ω_1 onto the strip $\Omega_2 = \{z \in \mathbb{C}; -\frac{\pi}{2} < \operatorname{Im} z < \frac{\pi}{2}\}$. The function $z \mapsto f_3(z) = e^z$ maps conformally Ω_2 onto the half plane $\{z \in \mathbb{C}; \operatorname{Re} z > 0\}$. Then the function $z \mapsto f(z) = f_3 \circ f_2 \circ f_1(z)$ maps conformally Ω onto the half plane $\{z \in \mathbb{C}; \operatorname{Re} z > 0\}$.
- 3. (a) $\int_{|z-1|=3} (z^2 z + 1) d\bar{z} = -i \int_0^{2\pi} ((1 + 3e^{i\theta})^2 1 3e^{i\theta} 1)e^{-i\theta} d\theta = -6i\pi.$
 - (b) The power series $\sum_{n\geq 1} n!n^n z^n$ has 0 as radius of convergence. Then if $|f^n(0)| \geq n!n^n$ for all integers n, the function f can not be analytic on the unit disc.
 - (c) Let $f(z) = \frac{z^{\alpha-1}}{1+z}$, with $z^{\alpha-1} = e^{(\alpha-1)\log z}$, $\log z$ is the branch of $\log z$ such that $\log z = \ln |z| + i\theta$, $0 < \theta < 2\pi$. We take the closed curve defined by the figure (2). $\operatorname{Res}(f, -1) = -e^{i\pi\alpha}$. Then by the residue theorem $\int_0^{+\infty} \frac{x^{\alpha-1}}{1+x} dx = \frac{\pi}{\sin \pi \alpha}, 0 < \alpha < l$.

Figure 2:

- 4. (a) Let $f(z) = 2z^2 e^{\frac{z}{2}}$ and $g(z) = 2z^2$. For |z| = 1, $|f(z) - g(z)| = |e^{\frac{z}{2}}| \le \sqrt{e} < 1 < |g(z)|$. Then the number of zeros of $2z^2 - e^{\frac{z}{2}}$ in |z| < 1 is 2.
 - (b)

$$f(z) = \frac{1}{2z} - \frac{1}{z-1} + \frac{1}{2(z-2)} = \frac{1}{2z} - \frac{1}{z} \frac{1}{1-\frac{1}{z}} - \frac{1}{4} \frac{1}{1-\frac{z}{2}}$$
$$= \frac{1}{2z} - \sum_{n=0}^{+\infty} \frac{1}{z^{n+1}} - \sum_{n=0}^{+\infty} \frac{z^n}{2^{n+2}}.$$

Ph.D Comprehensive Examination Analysis (General Paper)

Autumn 1997

Exercise 1 :

- 1. (a) Let f be an analytic function in a domain Ω . If the arg f is constant, show that f is a constant.
 - (b) Map the region between $\{z \in \mathbb{C}; |z| = 1\}$ and $\{z \in \mathbb{C}; |2z 1| = 1\}$ conformally onto the half-plane $\{z \in \mathbb{C}; \operatorname{Re} z > 0\}$.

2. (a) Evaluate
$$\int_0^{2\pi} \frac{\cos^2 \theta}{5 + 3\cos \theta} d\theta$$
.

- (b) State Rouche's theorem and use it to prove the fundamental theorem of algebra about the zeros of a polynomial.
- 3. (a) Let $(f_n)_n$ be a sequence of analytic functions in a domain D. Suppose $f_n(z) \neq 0$ for any n and any $z \in D$. Suppose $(f_n)_n$ converges to f uniformly on every compact subset of D. Show that if $f(z_0) = 0$ for some $z \in D$, then f(z) = 0 for all $z \in D$.
 - (b) Let $f(z) = \frac{\cos z}{z^2 \log(1+z)}$. Use the Laurent series to find the residue of f at z = 0.

Answer of Ph.D Comprehensive Examination Analysis (General Paper)

Autumn 1997

Solution of the Exercise 1:

1. (a) Let f be an analytic function in a domain Ω . If the arg f is constant, show that f is a constant.

- (b) Map the region between $\{z \in \mathbb{C}; |z| = 1\}$ and $\{z \in \mathbb{C}; |2z 1| = 1\}$ conformally onto the half-plane $\{z \in \mathbb{C}; \operatorname{Re} z > 0\}$.
- 2. (a)

$$\int_{0}^{2\pi} \frac{\cos^{2} \theta}{5+3\sin \theta} d\theta = \int_{|z|=1}^{1} \frac{(z^{2}+1)^{2}}{4z^{2}(5+3\frac{z^{2}-1}{2iz})} \frac{dz}{iz}$$
$$= \int_{|z|=1}^{1} \frac{(z^{2}+1)^{2}}{2z^{2}(3z^{2}+10iz-3)} dz$$
$$= 2i\pi \left(\operatorname{Res}(f,0) + \operatorname{Res}(f,-\frac{i}{3}) \right) = -2i\pi(\frac{i}{9}) = \frac{2\pi}{9}$$

where
$$f(z) = \frac{(z^2 + 1)^2}{2z^2(3z^2 + 10iz - 3)}$$
.
 $\operatorname{Res}(f, 0) = -\frac{5i}{9}$ and $\operatorname{Res}(f, -\frac{i}{3}) = \frac{4i}{9}$

(b) The Rouché's Theorem: Let f and g be two holomorphic functions on a neighborhood of the disc $\{z \in \mathbb{C}; |z-a| \le r\}$ and $|f(z) - g(z)| < |f(z)|; \forall z \in \mathscr{C}(a,r) = \{z \in \mathbb{C}; |z-a| = r\}$, then f and g have the same number of zeros inside the disc D(a,r). (The zeros are counted according to their order or multiplicity.)

The Fundamental Theorem of Algebra: If $P(z) = a_n z^n + \dots + a_0$, then for |z| large enough, $|P(z) - a_n z^n| < |a_n||z^n|$, because $\lim_{|z|\to+\infty} \left|\frac{P(z) - a_n z^n}{a_n z^n}\right| = 0$. It results that P has the same number of zeros that the polynomial $Q(z) = a_n z^n$.

3. (a) Since the sequence $(f_n)_n$ is uniformly convergent on any compact subset of Ω , then f is holomorphic. We assume that $f(z_0) = 0$ and z_0 is a zero of multiplicity $k \ge 1$ of f and f is not identically 0. Let r > 0 such that $f(z) \ne 0$ for any $z \in \overline{D(z_0, r)} \setminus \{z_0\}$ and let γ be the

closed curve defined by the circle of radius r and centered at z_0 traversed in the clockwise direction. Then $\frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} dz = k$. Since f never vanishing on γ , the sequence $\left(\frac{f'_n}{f_n}\right)_n$ converges uniformly on γ to $\frac{f'}{f}$, thus

$$k = \frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz = \lim_{n \to +\infty} \frac{1}{2i\pi} \int_{\gamma} \frac{f'_n(z)}{f_n(z)} \, dz = 0,$$

which is absurd.

(b) Let
$$f(z) = \frac{\cos z}{z^2 \log(1+z)}$$
. Use the Laurent series to find the residue of f at $z = 0$.

Ph.D Qualifying Examination Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014

Exercise 1 : [Note that parts 1) and 2) are independent]

- 1. Compute the following integrals $\int_0^{+\infty} \frac{dx}{1+x^3}$ and $\int_0^{+\infty} \frac{\ln(x)}{1+x^3} dx$.
- 2. Let f be a holomorphic function on $D \setminus \{0\}$ and $|f(z)| \le \ln\left(\frac{1}{|z|}\right)$, for all $z \in D \setminus \{0\}$, where D is the unit disc.
 - (a) Prove that 0 is a removable singularity of f. (Hint: you can consider the function zf(z) and calculate its limit at 0).

(b) Prove that for all 0 < r < 1, $|f(z)| \le \ln\left(\frac{1}{1-r}\right)$, for all $z \in D(0, 1-r)$.

(c) Deduce that f = 0.

Exercise 2: [Note that parts 1) and 2) are independent]

1. Consider the function defined by the power series

$$f(z) = \sum_{n=1}^{+\infty} z^{n!}$$

- (a) Prove that f is holomorphic on the unit disc $D = \{z \in \mathbb{C}; |z| < 1\}.$
- (b) Let $\alpha \in \mathbb{C}$ such that $\alpha^m = 1$, for some $m \in \mathbb{N}$. (α is called a root of unity). Prove that $\lim_{r \to 1, r < 1} |f(r\alpha)| = +\infty$.

- (c) Deduce that f can not be extended to a holomorpic function on an open set U such that $D \subset U$ and $D \neq U$.
- 2. Let (f_n) be a sequence of holomorphic functions on the unit disc D such that $f_n(D) \subset D$ for all $n \in \mathbb{N}$ and $\lim_{n \to +\infty} f_n(0) = 1$.
 - (a) Prove that there is a subsequence $(f_{n_j})_j$ which converges uniformly on any compact to a holomorphic function gon the unit disc D and g(0) = 1.
 - (b) We assume that g is not constant.
 - i. Prove that there exists R > 0 such that g 1 is without zeros in $D(0, R) \setminus \{0\}$.
 - ii. Prove that for j sufficiently large and |z| = r < R, we have

$$|(f_{n_j}(z)-1) - (g(z)-1)| < \inf\{|g(z)-1|; |z|=r\}.$$

- iii. Deduce that $f_{n_j}(z) 1$ has the same number of zeros as g 1 in D(0, r).
- iv. Prove that $f_{n_i}(z) 1$ is without zero on D(0, r).

v. Deduce that g(z) = 1 for all $z \in D$.

(c) Prove that $(f_n)_n$ converges uniformly to 1 on any compact.

Answer of Ph.D Qualifying Examination Analysis (General Paper)

Dhu Al-Hijjah 1425, October 2014

Solution of the Exercise 1:

1. Let
$$f(z) = \frac{\log^2(z)}{1+z^3}$$
, $I = \int_0^{+\infty} \frac{dx}{1+x^3}$ and $J = \int_0^{+\infty} \frac{\ln(x)}{1+x^3} dx$.
By Residue Theorem

$$-4i\pi J + 4\pi^2 I = 2i\pi \left(\operatorname{Res}(f, -1) + \operatorname{Res}(f, e^{\frac{i\pi}{3}}) + \operatorname{Res}(f, e^{\frac{5i\pi}{3}}) \right).$$

$$\begin{aligned} \operatorname{Res}(f,-1) &= -\frac{\pi^2}{3}.\\ \operatorname{Res}(f,e^{\frac{\mathrm{i}\pi}{3}}) &= \frac{\pi^2}{27}(\frac{1}{2} + \mathrm{i}\frac{\sqrt{3}}{2}).\\ \operatorname{Res}(f,e^{\frac{5\mathrm{i}\pi}{3}}) &= \frac{25\pi^2}{27}(\frac{1}{2} - \mathrm{i}\frac{\sqrt{3}}{2}).\\ \operatorname{Then} &-4\mathrm{i}\pi J + 4\pi^2 I = \frac{8\mathrm{i}\pi^3}{27} + \frac{8\pi^3\sqrt{3}}{9}, \ I = \frac{2\pi\sqrt{3}}{9} \ \text{and} \ J = -\frac{2\pi^2}{27}. \end{aligned}$$

2. (a) For all $z \in D$, $|z^{n!}| \leq |z|^n$ and the series $\sum_{n\geq 1} |z|^n$ is convergent. Then f is holomorphic on the unit disc $D = \{z \in \mathbb{C}; |z| < 1\}.$

(b)
$$f(r\alpha) = \sum_{n=1}^{m-1} r^{n!} \alpha^{n!} + \sum_{n=m}^{+\infty} r^{n!}$$
. Then $\lim_{r \to 1, r < 1} |f(r\alpha)| = +\infty$. $(\sum_{n=m}^{+\infty} r^{n!} \ge \sum_{n=m}^{p} r^{n!}$ for all $p > m$.)

(c) Let U be an open set such that $D \subset U$ and $D \neq U$. There is α a root of unity in U. But $\lim_{r \to 1} |f(r\alpha)| = +\infty$, which is absurd. The function f can not be extended to a holomorpic function on an open set U such that $D \subset U$ and $D \neq U$.

Solution of the Exercise 2:

1. (a) $\lim_{z\to 0} zf(z) = 0$, then 0 is a removable singularity of f.

(b) For all
$$z \in D(0, 1-r), |f(z)| \le \sup_{|w|=1-r} |f(w)| \ln\left(\frac{1}{1-r}\right)$$
.

(c) It results that for all $z \in D$, $|f(z)| \le \lim_{r \to 0} \ln\left(\frac{1}{1-r}\right) = 0$, then f = 0.

- 2. (a) The sequence (f_n) is bounded, then by Montel Theorem, there is a subsequence $(f_{n_j})_j$ which converges uniformly on any compact to a holomorphic function g on the unit disc D. Since $\lim_{n \to +\infty} f_n(0) = 1$, then g(0) = 1.
 - (b) We assume that g is not constant.
 - i. By Theorem of isolated zero of non constant holomorphic function, there exists R > 0 such that $g(z) - 1 \neq 0$ for all $z \in D(0, R) \setminus \{0\}$.
 - ii. The convergence of the sequence $(f_{n_j})_j$ is uniform on the compact $\{z \in \mathbb{C}; |z| = r < R\}$. Then for jlarge enough

$$\left| f_{n_j}(z) - g(z) \right| = \left| (f_{n_j}(z) - 1) - (g(z) - 1) \right| < \inf\{ |g(z) - 1|; |z| =$$

- iii. By Theorem $f_{n_j} 1$ and g 1 have the same number of zeros on D(0, r).
- iv. $f_{n_j}(z) 1 \neq 0$ for all $z \in D(0, r)$ since $f_n(D) \subset D$, which is absurd since g(0) = 1.
- v. We deduce that g is constant, then g(z) = 1 for all $z \in D$.
- (c) Since the sequence $(f_n)_n$ is bounded and any subsequence converges to 0 in the space of holomorphic functions, then $(f_n)_n$ converges uniformly to 1 on any compact.

Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 27-28

Exercise 1 :

- 1. Precise the image of the line $\{z \in \mathbb{C}; \text{ Re } z = 0\}$ by the möbius transformation $f(z) = \frac{1}{1-z}$. Deduce the image of the half-plane $\{z \in \mathbb{C}; \text{ Re } z > 0\}$ by the function f.
- 2. If Ω is a simply connected domain in \mathbb{C} different from \mathbb{C} , justify the non existence of a conformal transformation from \mathbb{C} to Ω .
- 3. Let $(a_n)_n$ be a sequence of complex numbers such that $\sum_{n=1}^{+\infty} \frac{1}{|a_n|} < +\infty$. Construct an entire function such that its set of zeros is equal to $\{a_n; n \ge 1\}$.

Question 2

For $a \in \mathbb{C}$ and s > 0, we consider the set \mathcal{F} of family of analytic functions on a domain $\Omega \subset \mathbb{C}$ satisfying to |f(z) - a| > s for all $z \in \Omega$ and all $f \in \mathcal{F}$. We consider the family

$$\mathcal{G} = \{g; g(z) = \frac{1}{f(z) - a}, f \in \mathcal{F}\}.$$

- 1. State the definition of a normal family and prove that \mathcal{G} is normal.
- 2. Deduce that for any sequence $(g_n)_n$ of \mathcal{G} , we can extract a sub-sequence that converges to a function g which is either identically equal to zero or without zero on Ω .
- 3. \mathcal{F} is it a normal family?

Answer of Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 27-28

Solution of the Exercise 1:

- 1. f(0) = 1, $f(i) = \frac{1+i}{2}$ and $f(\infty) = 0$, then the image of the line $\{z \in \mathbb{C}; \text{ Re } z = 0\}$ by f is the circle of center $\frac{1}{2}$ and radius $\frac{1}{2}$. Since $f(1) = \infty$ then the image of the half-plane $\{z \in \mathbb{C}; \text{ Re } z > 0\}$ by the function f is the complement of the disc of center $\frac{1}{2}$ and radius $\frac{1}{2}$.
- 2. Ω is a simply connected domain in \mathbb{C} different from \mathbb{C} , then there is a conformal transformation from Ω into the unit disc. If there is a conformal transformation from \mathbb{C} to Ω , we find a conformal transformation from \mathbb{C} into the unit disc, which is impossible by Liouville theorem.
- 3. The function $f(z) = \prod_{n=1}^{+\infty} (1 \frac{z}{a_n})$ is an entire function and its set of zeros is equal to $\{a_n; n \ge 1\}$.

Solution of the Exercise 2:

- 1. A family $\mathcal{F} \subset \mathcal{O}(\Omega)$ is called a normal family if from any sequence $(f_n)_n \in \mathcal{F}$, we can extract a convergent sub-sequence. By Montel's theorem, \mathcal{G} is normal since \mathcal{G} is bounded.
- 2. Let $(g_n)_n$ be a sequence of \mathcal{G} , we can extract a sub-sequence that converges to a function g. Since the functions g_n are without zeros, then g is either identically equal to zero or without zero on Ω .
- 3. \mathcal{F} is not a normal family. We can take the sequence $(f_n = n + a + s)_n$.

Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 28-29

Exercise 1 :

- (a) Prove that the principal determination (branch) of the argument is a continuous function on C\R⁻. Verify that it can not be extended continuously at any point of R⁻.
 - (b) We denote by Log the principal determination (branch) of the logarithmic function and by log the determination of the logarithm defined on $\mathbb{C} \setminus i\mathbb{R}^+$, $(\theta \in]\frac{\pi}{2}, \frac{5\pi}{2}[$). On which domain of \mathbb{C} , log = Log.
- 2. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be an entire function such that $\lim_{|z| \to +\infty} |f(z)| = +\infty$.
 - (a) Prove that the set of zeros of f is non empty and is a finite set.
 - (b) We denote by z_1, \ldots, z_p the zeros of f counted with order of multiplicity. Let $P(z) = \prod_{j=1}^{p} (z - z_j)$ and g(z) = P(z)

 $\frac{P(z)}{f(z)}.$

Prove that g extends analytically on \mathbb{C} and $g(z) \neq 0$ for all $z \in \mathbb{C}$.

- (c) Use the Cauchy inequalities to prove that g is a polynomial function.
- (d) Deduce that f is a polynomial function.
- 3. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a proper analytic function on \mathbb{C} . Deduce from 2) that f is a polynomial function. (Proper means the pre-image of any compact is a compact).

Exercise 2:

- 1. Let f be a holomorphic function on $D(a,r) \setminus \{a\}$. Assume that $\alpha > 0$ such that $f(D(a,r) \setminus \{a\}) \cap D(0,\alpha) = \emptyset$. Prove that either a is a removable singularity or a pole.
- 2. Determine the singularities of the function $\frac{z}{\sin \pi z}$ and find its corresponding residues.
- 3. Determine all möbius mappings transforming the half-plane $\{z \in \mathbb{C}; \text{ Im } z > 0\}$ onto the unit disc.

4. Evaluate the following integral
$$\int_{-\infty}^{+\infty} \frac{e^{iax}}{x-i} dx$$
, with $a \neq 0$.

Answer of Ph.D Comprehensive Examination Analysis (Special Paper)

Second semester 28-29

Solution of the Exercise 1:

1. (a)
$$z = r(\cos \theta + i \sin \theta) = x + iy$$
, with $\theta \in] -\pi, \pi[$.
 $x = r \cos \theta = 2r \cos^2(\frac{\theta}{2}) - r, y = r \sin \theta = 2r \cos(\frac{\theta}{2}) \sin(\frac{\theta}{2})$.
 $x + r = 2r \cos^2(\frac{\theta}{2})$ and $y = 2r \cos(\frac{\theta}{2}) \sin(\frac{\theta}{2})$. Then
 $\frac{y}{x + \sqrt{x^2 + y^2}} = \tan(\frac{\theta}{2}) \Rightarrow \theta = 2 \tan^{-1}(\frac{y}{x + \sqrt{x^2 + y^2}})$,
which is a continuous function.
For $a < 0$, $\lim_{(x,y) \to (a,0^+)} \theta(x, y) = \pi$ and $\lim_{(x,y) \to (a,0^-)} \theta(x, y) = -\pi$. Then θ can not be extended continuously at any
point $(a, 0)$.

(b) $\log(z) = \log(z)$ for all $z \in \mathbb{C}$ such that $\operatorname{Im} z > 0$ and $\operatorname{Re} z < 0$.

- 2. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be an entire function such that $\lim_{|z| \to +\infty} |f(z)| = +\infty$.
 - (a) If $f(z) \neq 0$ for all $z \in \mathbb{C}$, the function $\frac{1}{f}$ is an entire function and $\lim_{|z|\to+\infty} \frac{1}{|f(z)|} = 0$. Then $\frac{1}{f}$ is the null function, which is absurd. Moreover there is R > 0 such that $|f(z)| \geq 1$ for all $|z| \geq R$. Then the set of zeros of f is in the compact $\overline{D}(0, R)$, then it is finite.
 - (b) The function g is analytic on $\mathbb{C} \setminus \{z_1, \ldots, z_p\}$ and each point z_j is a removable singularity of g, then g can be extended analytically on \mathbb{C} . Moreover by definition of the points $z_j, g(z) \neq 0$ for all $z \in \mathbb{C}$.
 - (c) For $|z| \ge R$, $|g(z)| \le |P(z)|$. Since $\lim_{|z|\to+\infty} \frac{|P(z)|}{|z|^p} = C < +\infty$, there exists a constant C' > 0 such that $|g(z)| \le C(1+|z|)^p$. From the Cauchy's inequalities, g is a polynomial of degree less or equal then p.
 - (d) Since g is zero free, thus deg g = 0, this which yields that f is a polynomial.
- 3. Since f is proper, then $\lim_{|z|\to+\infty} |f(z)| = +\infty$. (For all R > 0, $f^{-1}(D(0,R))$ is bounded. Then there is R' > 0 such that $f^{-1}(D(0,R)) \subset D(0,R')$. This is equivalent to: for all R > 0 there is R' > 0 such that for all $|z| \ge R'$, $|f(z)| \ge R$.) From 2) f is a polynomial function.

Solution of the Exercise 2:

- 1. Since $f(D(a, r) \setminus \{a\})$ is not dense, then a is not an essential singularity.
- 2. The singularities of the function $f(z) = \frac{z}{\sin \pi z}$ are $n \in \mathbb{Z}$. 0 is a removable singularity. $\operatorname{Res}(f, n) = \frac{n(-1)^n}{\pi}$, for $n \neq 0$.

Let f be such Möbius transformation and α ∈ H⁺ = {z ∈ C; Im z > 0} such that f(α) = 0, thus f(ā) = ∞ and f(z) = e^{iθ} z - α/z - ā, with θ ∈ ℝ.
 ∫^{+∞} e^{iax}/(x-i) dx = 2iπ(Resf,i) = 2iπe^{-a}, with f(z) = e^{iaz}/(z-i).

Ph.D Comprehensive Examination Analysis (Special Paper)

First semester 29-30

 $\mathcal{O}(D)$ denotes the space of holomorphic functions on unit disc D = D(0, 1) and $D^* = D \setminus \{0\}.$

Exercise 1:

- 1. Let h be a holomorphic function on D.
 - (a) Assume that h is injective on D. Justify that if h(a) = 0 for some $a \in D$, then a is a simple zero of h.
 - (b) Now, assume that h is injective on D^* . Prove that $h'(0) \neq 0$ and h is necessary injective on the disc D.
- 2. Let f be an injective holomorphic function on D^* , a be a point in D^* and r > 0 be a positive real number such that $D(a,r) \subset D^*$.
 - (a) Prove that there exists $\alpha > 0$ such that for all $z \in D^* \setminus D(a, r)$

$$|f(z) - f(a)| \ge \alpha.$$

- (b) Deduce that either f extends as a holomorphic function, injective on the disc D(0, 1), or 0 is a simple pole of f. Give an example of a such function.
- 3. Let $(a_n)_n$ be a sequence of complex numbers such that the series $\sum_{n\geq 1} \frac{1}{|a_n|}$ is convergent. Prove that $f(z) = \prod_{n\geq 1} (1 \frac{z}{a_n})$ is holomorphic on \mathbb{C} .

Exercise 2 :

- 1. Let D be a bounded domain in \mathbb{C} containing the origin and f be a holomorphic function on D with $f(D) \subset D$ and f(0) = 0.
 - (a) Prove that the sequence $(f'_n(0))_n$ is bounded, where $f_n = f \circ \ldots f$ denotes the n-th iteration of f. Deduce that $|f'_n(0)| \leq 1$. (Hint: express $f'_n(0)$ as a function of f'(0)).
 - (b) Prove that if f'(0) = 1, then f = id. (Cartan's theorem).
- 2. Assume that $f'_k(0) = 1$ for some $k \ge 1$. Prove that f is an automorphism of D.
- 3. Let $\mathcal{F} = \{ f \in \mathcal{O}(D); f(D) \subset D \text{ and } f(0) = 0 \}.$
 - (a) Prove that \mathcal{F} is closed in $\mathcal{O}(D)$.
 - (b) Justify that \mathcal{F} is a normal family of $\mathcal{O}(D)$.

Answer of Ph.D Comprehensive Examination Analysis (Special Paper)

First semester 29-30

Solution of the Exercise 1:

- 1. (a) If h is injective on D, then $h'(z) \neq 0$ for all $z \in D$. Then if h(a) = 0, a is a simple zero of h.
 - (b) If h'(0) = 0, h can not be injective in any neighborhood of 0. If h is injective on D^* , then there is a sequence $z_n \neq 0$ and $z_n \neq z_m$ for $m \neq n$ such that $h(z_n) = h(0)$, which is absurd. Then $h'(0) \neq 0$ and h is injective in a neighborhood of 0. With the same arguments h is necessary injective on the disc D.
- 2. Let f be a holomorphic function on D^* , a be a point in D^* and r > 0 be a positive real number such that $D(a, r) \subset D^*$.

- (a) f is a holomorphic function and injective on D^* , f(D(a, r))is a neighborhood of f(a), thus there exists $\alpha > 0$ such that $D(f(a), \alpha) \subset f(D(a, r))$. Since f is injective, then $\forall z \notin D(a, r), f(z) \notin D(f(a), \alpha)$, i.e. $|f(z) - f(a)| \ge \alpha, \forall z \in D^* \setminus D(a, r)$.
- (b) We deduce that 0 can not be an essential singularity of f. Then either f extends as a holomorphic function, injective on the disc D(0,1), or 0 is a pole of f. In use the function $h = \frac{1}{f}$ and the previous question, we deduce that 0 is a simple pole of f.

As example, we take the function $f(z) = \frac{1}{z}$.

3. If the series
$$\sum_{n\geq 1} \frac{1}{|a_n|}$$
 is convergent, the series $\sum_{n\geq 1} \frac{z}{a_n}$ is uniformly convergent on any compact of \mathbb{C} , then $f(z) = \prod_{n\geq 1} (1 - \frac{z}{a_n})$ is holomorphic on \mathbb{C} .

Solution of the Exercise 2:

1. (a) If $D \subset D(0, R)$ and $D(0, r) \subset D$, with r > 0, we have:

$$f'(0) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(r \mathrm{e}^{\mathrm{i}\theta})}{r \mathrm{e}^{\mathrm{i}\theta}} d\theta$$

Thus $|f'(0)| \leq \frac{R}{r}$.

We prove by induction that $f'_n(0) = (f'(0))^n$. Since the sequence $(f'_n(0))_n$ is bounded, then $|f'(0)| \leq 1$.

(b) If f'(0) = 1, then $f'_n(0) = 1$ for all $n \in \mathbb{N}$. We assume that the expansion in power series of f is $f(z) = z + \sum_{n=m}^{+\infty} a_n z^n$ for |z| < r, with $m \ge 2$. We assume that the expansion in power series of $f^{[k]}$ is $f^{[k]}(z) = z + ka_m z^m + ka_m z^$

 $\sum_{n=m+1}^{+\infty} a_{n,k} z^n \text{ and let proves the expansion in power series}$

of
$$f^{[k+1]}$$
 is $f^{[k+1]}(z) = z + (k+1)a_m z^m + \sum_{n=m+1}^{+\infty} a_{n,k+1} z^n$.

$$\begin{split} f \circ f^{[k]}(z) &= f^{[k]}(z) + a_m (f^{[k]})^m (z) + z^{m+1} g(z), \text{ with } g \text{ a holomorphic function on } D(0,r). \text{ The first term of the function } a_m (f^{[k]})^m (z) \text{ is } a_m z^m \text{ and the first term of } f^{[k]}(z) - z \text{ is } ka_m z^m, \text{ thus the expansion in power series of } f^{[k+1]} \text{ is } f^{[k+1]}(z) &= z + (k+1)a_m z^m + \sum_{n=m+1}^{+\infty} a_{n,k+1} z^n. \\ ka_m z^m &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f^{[k]}(e^{\mathrm{i}\theta}z) e^{-\mathrm{i}m\theta} d\theta, \text{ for } |z| < r. \end{split}$$

Since $f^{[k]}$ is a holomorphic function from D in D, then $|f^{[k]}(e^{i\theta}z)| < R$. Thus for any $k \in \mathbb{N}$, $k|a_m|r^m < R$. Then it results that $a_m = 0$ and f(z) = z.

- 2. If $f'_k(0) = 1$, then $f_k = \text{id.}$ If k = 1, f is an automorphism of D. If $k \ge 2$, $f \circ f_{k-1} = f_{k-1} \circ f = \text{id.}$ Then f is an automorphism of D.
- 3. (a) If $(f_n)_n$ is a sequence in \mathcal{F} and convergent to f. Since $f_n(D) \subset D$ and $f_n(0) = 0$, then $f(D) \subset D$ and f(0) = 0. Then \mathcal{F} is closed in $\mathcal{O}(D)$.
 - (b) Since \mathcal{F} is bounded, then it is a normal family of $\mathcal{O}(D)$.