Solution of Nonlinear Equations

- 2. Use the bisection method to find solutions accurate to within 10^{-4} on the interval [-5, 5] of the following functions:
 - (a) $f(x) = x^5 10x^3 4$
- 4. Estimate the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $f(x) = x^3 + 4x^2 + 4x 4$ lying in the interval [0, 1] using the bisection method.
- 5. Use the bisection method for $f(x) = x^3 3x + 1$ in [1, 3] to find:
 - (b) Find an error estimate $|\alpha x_8|$.
- 9. Use the false position method to find solution accurate to within 10^{-4} on the interval [3, 4] of the equation $e^x 3x^2 = 0$.
- 11. Consider the nonlinear equation $g(x) = \frac{1}{2}e^{0.5x}$ defined on the interval [0, 1]. Then
 - (a) Show that there exists a unique fixed-point for g in [0,1].
 - (b) Use the fixed-point iterative method to compute x_3 , set $x_0 = 0$.
 - (c) Compute an error bound for your approximation in part (b).
- 13. Find value of k such that the iterative scheme $x_{n+1} = \frac{x_n^2 4kx_n + 7}{4}$, $n \ge 0$ converges to 1. Also, find the rate of convergence of the iterative scheme.
- 14. Write the equation $x^2 6x + 5 = 0$ in the form x = g(x), where $x \in [0, 2]$, so that the iteration $x_{n+1} = g(x_n)$ will converge to the root of the given equation for any initial approximation $x_0 \in [0, 2]$.
- 15. Which of the following iterations

(a)
$$x_{n+1} = \frac{1}{4} \left(x_n^2 + \frac{6}{x_n} \right)$$

(b)
$$x_{n+1} = \left(4 - \frac{6}{x_n^2}\right)^n$$

is suitable to find a root of the equation $x^3 = 4x^2 - 6$ in the interval [3, 4]? Estimate the number of iterations required to achieve 10^{-3} accuracy, starting from $x_0 = 3$.

19. Use the Newton's formula for the reciprocal of square root of a number 15 and then find the 3rd approximation of number, with $x_0 = 0.05$.

- **21.** Find the Newton's formula for $f(x) = x^3 3x + 1$ in [1,3] to calculate x_3 , if $x_0 = 1.5$. Also, find the rate of convergence of the method.
- **23.** Given the iterative scheme $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$, $n \ge 0$ with $f(\alpha) = f'(\alpha) = 0$ and $f''(\alpha) \ne 0$. Find the rate of convergence for this scheme.
- 27. Solve the equation $e^{-x} x = 0$ by using the secant method, starting with $x_0 = 0$ and $x_1 = 1$, accurate to 10^{-4} .
- **29.** Find the root of multiplicity of the function $f(x) = (x-1)^2 \ln(x)$ at $\alpha = 1$.
- 32. If f(x), f'(x) and f''(x) are continuous and bounded on a certain interval containing $x = \alpha$ and if both $f(\alpha) = 0$ and $f'(\alpha) = 0$ but $f''(\alpha) \neq 0$, show that

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)}$$

- 33. Show that iterative scheme $x_{n+1} = 1 + x_n \frac{x_n^2}{2}$, $n \ge 0$ converges to $\sqrt{2}$. Find the rate of convergence of the sequence.
- 34. Let α be the exact solution of the function f(x) = 0 such that $f'(\alpha) \neq 0$, $f''(\alpha) \neq 0$, then find the conditions of the constant K under which the rate of convergence of the sequence $x_{n+1} = x_n^2 Kf(x_n)$, $n = 0, 1, 2, \ldots$ is quadratic.
- **39.** Solve the following system using the Newton's method:

$$\begin{array}{rcl} 4x^3 & + y & = & 6 \\ x^2y & = & 1 \end{array}$$

Start with initial approximation $x_0 = y_0 = 1$. Stop when successive iterates differ by less than 10^{-7} .

Systems of Linear Algebraic Equations

14. Use the simple Gaussian elimination method to show that the following system does not have a solution

15. Solve the following systems using the simple Gaussian elimination method

(b)
$$x_1 + x_2 + x_3 = 1$$

$$2x_1 + 3x_2 + 4x_3 = 3$$

$$4x_1 + 9x_2 + 16x_3 = 11$$

23. Solve the following systems using the Gauss-Jordan method
(a)

21. Solve the following linear systems using the Gaussian elimination with partial pivoting and without pivoting

(c)
$$6.122x_1 + 1500.5x_2 = 1506.622$$
$$2000x_1 + 3x_2 = 2003$$

27. Find the LU decomposition of each matrix A using the Doolittle's method, and then solve the systems.

(c)
$$A = \begin{pmatrix} 2 & 2 & 2 \\ 1 & 2 & 1 \\ 3 & 3 & 4 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 0 \\ -4 \\ 1 \end{pmatrix}.$$

28. Solve the Problem 27 by the LU decomposition using the Crout's method.

35. Solve the following linear systems using the Jacobi method, start with initial approximation $\mathbf{x}^{(0)} = 0$ and iterate until $\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_{\infty} \leq 10^{-5}$ for each system.

36. Consider the following system of equations

$$4x_1 + 2x_2 + x_3 = 1$$

 $x_1 + 7x_2 + x_3 = 4$
 $x_1 + x_2 + 20x_3 = 7$

- (a) Show that the Jacobi method converges by using $||T_J||_{\infty} < 1$.
- (b) Compute 2nd approximation $\mathbf{x}^{(2)}$, starting with $\mathbf{x}^{(0)} = [0, 0, 0]^T$.
- (c) Compute an error estimate $\|\mathbf{x} \mathbf{x}^{(2)}\|_{\infty}$ for your approximation.
- 38. Consider the following system of equations

$$4x_1 + 2x_2 + x_3 = 11$$

 $-x_1 + 2x_2 = 3$
 $2x_1 + x_2 + 4x_3 = 16$

- (a) Show that the Gauss-Seidel method converges by using $||T_G||_{\infty} < 1$.
- (b) Compute the second approximation $\mathbf{x^{(2)}}$, starting with $\mathbf{x^{(0)}} = [1, 1, 1]^T$. (c) Compute an error estimate $\|\mathbf{x} \mathbf{x^{(2)}}\|_{\infty}$ for your approximation.
- 51. Discuss the ill-conditioning (stability) of the linear system

$$\begin{array}{rcl} 1.01x_1 & + & 0.99x_2 & = & 2 \\ 0.99x_1 & + & 1.01x_2 & = & 2 \end{array}$$

If $\mathbf{x}^* = [2,0]^T$ be an approximate solution of the system, then find the residual vector \mathbf{r} and estimate the relative error.

Polynomial Interpolation and Approximation

- 7. Let $f(x) = (x+2)\ln(x+2)$. Use the quadratic Lagrange interpolation formula based on the points $x_0 = 0, x_1 = 1, x_2 = 2,$ and $x_3 = 3$ to approximate f(0.5) and f(2.8). Also, compute the error bounds for your approximations.
 - 9. Let $f(x) = x^4 2x + 1$. Use cubic Lagrange interpolation formula based on the points $x_0 = -1, x_1 = 0, x_2 = 2$, and $x_3 = 3$ to find the polynomial $p_3(x)$ to approximate the function f(x) at x = 1.1. Also, compute an error bound for your approximation.
- 10. Construct the Lagrange interpolation polynomials for the following functions and compute the error bounds for the approximations:
 - $f(x) = x + 2^{x+1},$ $x_0 = 0, x_1 = 1, x_2 = 2.5, x_3 = 3.$ $f(x) = 3x^3 + 2x^2 + 1,$ $x_0 = 1, x_1 = 2, x_2 = 3.$

 - 13. Consider the following table of the $f(x) = \sqrt{x}$:

- (a) Construct the divided difference table for the tabulated function.
- (b) Find the Newton interpolating polynomials $p_3(x)$ and $p_4(x)$ at x = 5.9.
- (c) Compute error bounds for your approximations in part (b).
- 17. Let $f(x) = x^2 + e^x$ and $x_0 = 0, x_1 = 1$. Use the divided differences to find the value of the second divided difference $f[x_0, x_1, x_0]$.

21. Consider the following table for function
$$f(x) = \sin \theta$$

21. Consider the following table for function
$$\frac{x}{f(x)} = \frac{45^{\circ}}{0.7071} = \frac{50^{\circ}}{0.7660} = \frac{55^{\circ}}{0.8192} = \frac{60^{\circ}}{0.8660}$$

Use Newton's forward interpolation formula to find the value of sin 520

Numerical Differentiation and Integration

- 1. Let $f(x) = (x-1)e^x$ and take h = 0.01.
 - (a) Calculate approximation to f'(2.3) using the two-point forward-difference formula. Also, compute the actual error and an error bound for you approximation.
 - (b) Solve part (a) using the two-point backward-difference formula.
- 5. Use the three-point central-difference formula to compute the approximate value for f'(5) with $f(x) = (x^2 + 1) \ln x$, and h = 0.05. Compute the actual error and the error bound for you approximation.
- **20.** Let $f(x) = x + \ln(x+2)$, with h = 0.1. Use the three-point formula to approximate f''(2). Find error bound for your approximation and compare the actual error to the bound.
- 28. Use a suitable composite integration formula for the approximation of the integral $\int_{1}^{2} \frac{dx}{3-x}$, with n=5. Compute an upper bound for your approximation.
- **29.** Use the composite Trapezoidal rule for the approximation of the integral $\int_1^3 \frac{dx}{7-2x}$ with h=0.5. Also, compute an error term.
- 30. Find the step size h so that the absolute value of the error for the composite Trapezoidal rule is less than 5×10^{-4} when it is used to approximate the integral $\int_{2}^{7} \frac{dx}{x}$.
- 35. Evaluate $\int_0^1 e^{x^2} dx$ by the Simpson's rule choosing h small enough to guarantee five decimal accuracy. How large can h be ?

Numerical Solution of Ordinary Differential Equations

3. Solve the following initial-value problems using the Euler's method.

(a)
$$y' = y + x^2$$
, $x = 0(0.2)1$, $y(0) = 1$.

- 5. Solve the following initial-value problems using the Taylor's method of order two. (a) $y' = 2x^2 y$, x = 0(0.2)1, y(0) = -1.
- 7. Solve the following initial-value problems using the Modified Euler's method.

(a)
$$y' = y^2 x^2$$
, $x = 1(0.2)2$, $y(1) = -1$.

- 11. Solve the following initial-value problems using the fourth-order Runge-Kutta formula using h=0.2
- (a) $y' = 1 + \frac{y}{x}$, $1 \le x \le 2$ y((1) = 1.