**Problem 1 :** Consider the following matrices:

$$A = \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 3 & -3 \end{bmatrix}; C = \begin{bmatrix} -1 & 1 \\ 2 & 1 \\ 0 & -2 \end{bmatrix}; \ D = \begin{bmatrix} 1 & -3 \\ -1 & -4 \end{bmatrix}$$

Compute the following :

- (AC)
- (BC)
- $(D A^T)$

Solution 1 :

$$AC = \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 1 \\ 0 & -2 \end{bmatrix} \text{ not possible because } A_{2x2} \text{ and } C_{3x2}$$

$$BC = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 3 & -3 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 1 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 6 & 9 \end{bmatrix}$$
$$D - A^{T} = \begin{bmatrix} 1 & -3 \\ -1 & -4 \end{bmatrix} - \begin{bmatrix} 3 & 6 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} -2 & 9 \\ 0 & -2 \end{bmatrix}$$

**Problem 2 :** Express the inverse of the following nonsingular matrix as products of elementary matrices:

$$\begin{bmatrix} 2 & 4 \\ 5 & 8 \end{bmatrix}$$

## **Solution:**

$$\begin{bmatrix} 2 & 4 \\ 5 & 8 \end{bmatrix} \xrightarrow{(1/2)R_1} \sim \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} \xrightarrow{R_2 - 5R_1} \sim \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} \xrightarrow{(-1/2)R_2} \sim \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} \xrightarrow{(-1/2)R_2} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then we can construct a sequence of elementary matrices  $E_4, \ldots, E_1$  such that  $E_4 \cdots E_1 A = I$  as follows:

The first row operation is  $(1/2)R_1$ , so  $E_1 = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix}$ . The second row operation is  $R_2 - 5R_1$ , so  $E_2 = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}$ . The third row operation is  $(-1/2)R_2$ , so  $E_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1/2 \end{bmatrix}$ . The fourth row operation is  $R_1 - 2R_2$ , so  $E_4 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ .

Then  $A^{-1} = E_4 E_3 E_2 E_1$ 

**Problem 3 :** Use the inversion method to find the inverse of the following nonsingular matrix:

$$\begin{bmatrix} -2 & 0 & 1 \\ 0 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$

Solution:



Question 4: Choose the correct answer

1- If 
$$A = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$
 and  $B = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \rightarrow (A + 2B)^T$  is  
a)  $\begin{bmatrix} 0 & 4 & 0 \\ b \end{bmatrix} \begin{bmatrix} 3 & 7 & 0 \\ c \end{bmatrix}$   $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$   
d)  $\begin{bmatrix} 1 & 2 & -2 \end{bmatrix}$   
2- If AB=I, So B must equal to  
a)  $-A$   
b)  $A^T$   
c)  $A^{-1}$   
d)  $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & -1 \\ 0 & -2 & 1 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \rightarrow (AB)$  is  
a)  $\begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$   
b)  $\begin{bmatrix} 3 \\ 7 \\ -3 \end{bmatrix}$   
c)  $\begin{bmatrix} 1 & 7 & -3 \\ 0 \\ 2 & -1 \end{bmatrix}$   
d)  $\begin{bmatrix} 0 & 2 & -1 \end{bmatrix}$   
4- If  $A = \begin{bmatrix} -2 & 4 \\ 0 & 1 \end{bmatrix} \rightarrow A^{-1}$  is  
a)  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$   
b)  $\begin{bmatrix} -2 & 1 \\ 0 & 1 \end{bmatrix}$   
c) The matrix A is singular  
d)  $\begin{bmatrix} -\frac{1}{2} & 2 \\ 0 & 1 \end{bmatrix}$