Power Series
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Power Series

Radius of Convergence

For the series

o0
Z an(x — x0)",
n=0
there exists a number R € [0, oo, called the radius of convergence, such that

|z —x9| < R = the series converges absolutely,

|z —x9| > R = the series diverges.

If R = oo, the series converges absolutely for every real number z.

How to Compute the Radius R
Use the Ratio Test or the Root Test.

If one of the limits exists
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Interval of Convergence




Example: Geometric Series




Consider the power series
i": 3" (z — 3)"
A

n=1

This is a power series centered at
Ty — 3.

Apply the Ratio Test to the general term:

3tz — 3™t 4mn
4t (n+1) 3z —3)*|

Taking the limit as n — oo,

The series converges when

3 4

Hence, the radius of convergence is

4
R=-.
3
The inequality
4
— 3 < =
o -3 < 2
means that x is at a distance less than % from 3. This is equivalent to the open
interval 4 "
3—-—<zxr<3+ -,
3 =" 3
that is
2 cr<
3 3

13
o At x = 3 the series becomes

which diverges.

5
o At x = 3 the series becomes

which converges conditionally.

Interval of convergence : [g, ?) .







Example 4
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Main Properties of Power Series
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Higher—Order Differentiation
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For |z| < 1, we know

o0 0 1
;t 1=t

Integrate both sides from 0 to =
w &9 z ]
/ trdt= | ——dt.
0 420 o 1—1¢

Integrate the series term by term

00 xn 0 xn—i—l
HZ:O/O t dt_ngowrl'

Integrate the function

/Oxll_tdtz [—m(l—t)r: ~In(l =),

Final result

Rewriting the index,
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How a Function Becomes a Power Series

Assume a function f is given by a power series

[e.9]

f(z) = Z an(x — x0)"

n=0

with radius of convergence R > 0.
Inside (29— R, x¢+ R), the series behaves like a polynomial. So we can differentiate

term by term.

Differentiate once: -

f(x) = Z:lnan(a: — zo)" L

Evaluate at © = xy. All terms with (x — x¢) vanish except the first one:

f'(x0) = a1

Differentiate again:

F@) =3 n(n — an(@ — z0)"2.

n=2
Evaluate at x = xq:
f”(ZL'[)) = 2! as.

Continuing this process, we obtain

™ (20) = n!ay.
Hence, the coefficients of the power series are

f(")(xo)'

Ay = I
n.

Taylor Series

Substituting the coefficients back into the series gives

o () (5,
f(x)zzfi()(a:—xo)", |z — x| < R.

|
n=0 n:

This is called the Taylor series of f at z.

Maclaurin Series

If 2y = 0, the Taylor series becomes

_ = 0,

called the Maclaurin series.
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Power Series of f(z) = e”

We want to express e” as a power series centered at 0 (Maclaurin series).

First compute the derivatives of f(z) = e*:

flz) = ¢,
f(@) = e,
f//(l') — 6:137

fO) = ¢,

All derivatives are equal to e”.

Now evaluate these derivatives at x = 0:

f0)=¢"=1,
fo)=e=1,
fr0)=¢"=1,
FO0) = =1,
So for every n,
() =1

Recall the Maclaurin formula:

n=0 nl
Substitute £ (0) = 1
- o :L,TL
e’ = —
n=0 TZ'
Writing the first terms:
z2 33 gzt
€ :14—1'4'5‘{'54'5‘{—”' .

This power series converges for every real number z (its radius of convergence is
00).
Note that t, if f(z) =3 a,z™, g(x) = b,z™, then

(f(2) + g(z) =D (an + by)z"™
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Hyperbolic Functions from the Power Series of e

Recall the Maclaurin series of the exponential function:

ool.n 1.2 1‘3 ZL’4
S N (I IVE SR S
‘ Eom S TRRNE TRANT
and
,x i(—m)" " +x2 m3+x4
(& = fry — X _— = — —_— =
2l o 3 T

The hyperbolic functions are defined by

. et —e "t et 4+ e ”
smh:z::T, coshez = ——

Computation of sinh x

Subtract the two series:

22 z z? 2 x
e” —e :<1+$+2!+3!+4!+"')—<1—1’+.—+‘_"'

Now subtract term by term:

2 oo _ g 223 22°
AT
Divide by 2:

3 5
inho =2+ — + — + -+
sin TR :

Hence,

0o m2n+1

sinhngm (R = o0).

Computation of cosh x
Add the two series:

.I'Q .%‘3 .I‘4 172 I3 ZE4
e’ +e :<1+I+2|+3'+4|+>+<1—I+—+_

Add term by term:

T - _o 2z° 2zt

S A TR T
Divide by 2:

2

coshx:1+5+ﬂ—|—---.

Hence,
o0 xQn
coshz = nz:% @) (R = 00).




Representation of Functions by Power Series
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A function f is represented by a power series at xq if

f(z) = ian(aﬁ —xo)" for |z — 20| < R.

n=0

Method 1: Maclaurin Series (Taylor at 0)

If f is smooth near 0, we compute derivatives at 0:

f™(0
o=
So,
= f"(0) .,
Example: f(z) =¢e”
Since f™(0) = 1,
o0 xn
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Method 2: Substitution

Start from
1 o
— =) 2" (|z] < 1).
1 - n=0
If a function can be written as |
1—g(x)’

1 o
= gz g(z)| <1
= = 2 (6@)" @l
1
Example 1:
2+ 3x
1 1 1 2 (=1)"3"
= =o :Z " l,n’ ||<7
243z 2 1_(_§$) = At

1
Example 2:
1+

Method 3: Differentiation and Integration

If -
flx) = Z anx"”,
n=0
then
Differentiate:

fl(x) = i nanz" .
n=1

Integrate from 0 to x:

l,nJrl

/0 f(t)dt:;ann+1.

These operations keep the same radius of convergence.

This is how we obtain series for functions such as In(1 + x) and arctanz starting

from the geometric series.




Important Power Series to Know
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Interval of Convergence

Function | Power Series (Maclaurin)
. o xn
e .l (—00, 00)
n=0
1 o
>t lz| < 1
l—x n=0
. [e9) (_1>nx2n+1
sin x nz:% Gn i) (—00, 00)
o9 (_1)711,271
COS T nz;; @) (—00, 00)
< (1 n+1,.n
In(1+ z) Z( i -l<z<1
n=1 n
00 (_1)nx2n+1
it —_— <1
arctan nz::O 1 lz| <
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Exercises

1) Show that

Solution. For |z| < 1,

Subtract z — %2:

Let z — O:

In(l+z) =

o In(l42)—xz+ % 1
lim = —.
z—0 J}g 3
io: ( 1>n+1 . .IZ N I3 1’4 N
=z - —4+ —— —
) 2 3 4
2 2 ozt 22 3
@‘2+3‘4+“»”+2‘3‘4+
ln(l—l—x)—x—l—%_l T
3 3 4
. In(l+z)—x+ % 1
lim = —.
z—0 :L‘S 3
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2) Show that

1—cosz— % 1
-2
ll—r% x4 24"
Solution. For all real z,
o] xQn $2 1’4 [L’G .CIZ'Q
— —1)" S T [
ot n;)( "G T 2 "

Compute the numerator:

2 2 4 6 2
1_Cosx_902_1_<1_x+x_fﬂ+...>_x

2 24 720
2 2 ozt 5
~ T2 2 Tau T
z*t  z
a0
Divide by z*:
1—cosx — %2 1 x?
x4 24 720
Let x — 0:
1— _ &
lim cos T D _i
x—0 x4 24

24 720

x*t 8

3) Evaluate

Solution. For |z] < 1,

Substitute x = %:
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4) Show that

and compute

Solution.

Starting from the geometric series

differentiate twice and multiply appropriately by z. This yields

> 1
> nPa" = M, |z| < 1.
n=1 (1 o x)3

1
Substituting x = 3




