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Power Series
A power series centered at x0 ∈ R is

∞∑
n=0

an(x− x0)n,

where the coefficients an are real numbers.

If x0 = 0, the series becomes
∞∑

n=0
anxn,

and is called a power series centred at the origin.

Radius of Convergence

For the series ∞∑
n=0

an(x− x0)n,

there exists a number R ∈ [0,∞], called the radius of convergence, such that

|x− x0| < R =⇒ the series converges absolutely,

|x− x0| > R =⇒ the series diverges.

If R =∞, the series converges absolutely for every real number x.

How to Compute the Radius R

Use the Ratio Test or the Root Test.
If one of the limits exists

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ , or L = lim
n→∞

n

√
|an|,

then

R =



1
L

, 0 < L <∞,

∞, L = 0,

0, L =∞.



3

Interval of Convergence

• If R =∞, the series converges for all x ∈ R. The interval of convergence is R.

• If R <∞, the series converges absolutely for

x ∈ (x0 −R, x0 + R).

• At the boundary points x = x0 − R and x = x0 + R, the rule above gives
no information. Each endpoint must be tested separately. The series may
converge conditionally or diverge.
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Example: Geometric Series
Consider ∞∑

n=0
xn = 1 + x + x2 + x3 + · · · .

Here x0 = 0 and an = 1.

Using the Ratio Test,

lim
n→∞

∣∣∣∣∣x n+1

xn

∣∣∣∣∣ = |x|, (x 6= 0).

|x| < 1 =⇒ convergence,

|x| > 1 =⇒ divergence,

|x| = 1 =⇒ test inconclusive.

Therefore, the radius of convergence is

R = 1.

Hence, the series converges absolutely for

−1 < x < 1.

We now study the boundary points.

• If x = 1, the series becomes

∞∑
n=0

1 = 1 + 1 + 1 + 1 + · · · ,

which clearly diverges.

• If x = −1, the series becomes

∞∑
n=0

(−1)n = 1− 1 + 1− 1 + · · · ,

whose partial sums oscillate between 1 and 0. Hence, the series does not
converge.

The interval of convergence is therefore

(−1, 1).

and on this whole interval the convergence is absolute.
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Consider the power series
∞∑

n=1

3n(x− 3)n

4nn
.

This is a power series centered at

x0 = 3.

Apply the Ratio Test to the general term:∣∣∣∣∣3n+1(x− 3)n+1

4n+1(n + 1) · 4nn

3n(x− 3)n

∣∣∣∣∣ =
∣∣∣∣34 · n

n + 1 · (x− 3)
∣∣∣∣ .

Taking the limit as n→∞,
3
4 |x− 3|.

The series converges when

3
4 |x− 3| < 1, that is |x− 3| < 4

3 .

Hence, the radius of convergence is

R = 4
3 .

The inequality
|x− 3| < 4

3
means that x is at a distance less than 4

3 from 3. This is equivalent to the open
interval

3− 4
3 < x < 3 + 4

3 ,

that is
5
3 < x <

13
3 .

• At x = 13
3 , the series becomes

∞∑
n=1

1
n

,

which diverges.

• At x = 5
3, the series becomes

∞∑
n=1

(−1)n

n
,

which converges conditionally.

Interval of convergence :
[

5
3 , 13

3

)
.
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Consider ∞∑
n=0

xn

n! .

Here an = 1
n! .

Ratio Test

lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)! ·
n!
xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ x

n + 1

∣∣∣∣ = 0.

The limit is 0 for every real x.

Conclusion

R =∞, interval = (−∞,∞).

This series defines
ex =

∞∑
n=0

xn

n! .



7

Example 4
Consider the power series

∞∑
n=2

xn

n log n
,

We evaluate

lim
n→∞

|an|1/n = lim
n→∞

(
1

n log n

)1/n

.

Taking the natural logarithm,

ln
( 1

n log n

)1/n
 = − ln(n log n)

n
.

lim
n→∞

ln(n log n)
n

= 0

(by L’Hopital’s rule). Hence,

lim
n→∞

(
1

n log n

)1/n

= e0 = 1.

Therefore,
lim

n→∞
|anxn|1/n = |x|.

This gives
|x| < 1⇒ convergence, |x| > 1⇒ divergence.

Thus, the radius of convergence is R = 1. We now study the boundary points.
For x = 1, the series becomes

∞∑
n=2

1
n log n

.

Using the Integral Test with f(x) = 1
x log x

,

∫ ∞
2

1
x log x

dx =
∫ ∞

log 2

1
u

du =∞,

so the series diverges.

For x = −1, the series becomes
∞∑

n=2

(−1)n

n log n
.

This is an alternating series where 1
n log n

is positive, decreasing (for n ≥ 3), and
tends to 0. Hence, it converges conditionally by the Alternating Series Test.

Conclusion

∞∑
n=2

xn

n log n
converges for x ∈ [−1, 1).

Radius of convergence: R = 1
Interval of convergence: [−1, 1)
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Main Properties of Power Series

Let
f(x) =

∞∑
n=0

an(x− x0)n

be a power series with radius of convergence R > 0.
For every x such that |x − x0| < R, the series converges. Therefore, the series
defines a function

f : (x0 −R, x0 + R) −→ R.
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Differentiation Term by Term
Start with the power series written as an infinite polynomial:

f(x) =
∞∑

n=0
an(x− x0)n

= a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + · · · .

We differentiate each term exactly as we do for polynomials.

d

dx

[
a0(x− x0)0

]
= d

dx
[a0] = 0,

d

dx

[
a1(x− x0)

]
= a1,

d

dx

[
a2(x− x0)2

]
= 2a2(x− x0),

d

dx

[
a3(x− x0)3

]
= 3a3(x− x0)2,

and so on.

In general,
d

dx

[
an(x− x0)n

]
= n an(x− x0)n−1.

Therefore, the derivative becomes

f ′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)2 + · · ·

=
∞∑

n=1
n an(x− x0)n−1.

Reindexing to start again from n = 0
Let k = n− 1. Then n = k + 1. The series can be written as

f ′(x) =
∞∑

k=0
(k + 1)ak+1(x− x0)k.

The important fact is that this new series has the same radius of convergence
R.
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We know that for |x| < 1,
∞∑

n=0
xn = 1

1− x
.

This means the power series defines the function

f(x) = 1
1− x

=
∞∑

n=0
xn.

Differentiate both sides.

Differentiate the series term by term

d

dx

( ∞∑
n=0

xn

)
=
∞∑

n=1
nx n−1 = 1 + 2x + 3x2 + 4x3 + · · · .

Differentiate the function

d

dx

( 1
1− x

)
= 1

(1− x)2 .

Therefore,
1

(1− x)2 = 1 + 2x + 3x2 + 4x3 + · · · , |x| < 1.

Higher–Order Differentiation
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We know that for |x| < 1,
∞∑

n=0
xn = 1

1− x
.

First derivative
Differentiating term by term,

∞∑
n=1

nxn−1 = 1 + 2x + 3x2 + 4x3 + · · · = 1
(1− x)2 .

Second derivative
Differentiate again term by term:

∞∑
n=2

n(n− 1)xn−2 = 2 + 6x + 12x2 + 20x3 + · · · = 2
(1− x)3 .

Third derivative

∞∑
n=3

n(n− 1)(n− 2)xn−3 = 6
(1− x)4 .

General formula
After differentiating k times,

∞∑
n=k

n(n− 1) · · · (n− k + 1) x n−k = k!
(1− x)k+1 , |x| < 1.
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Integration Term by Term
Start from

f(x) =
∞∑

n=0
an(x− x0)n.

Inside the interval of convergence, the series behaves like a polynomial, so we inte-
grate each term as usual.

∫
an(x− x0)n dx = an

n + 1(x− x0)n+1 + C.

Hence, the indefinite integral is

∫
f(x) dx = C +

∞∑
n=0

an

n + 1(x− x0)n+1.

Let k = n + 1. Then n = k − 1, and

∫
f(x) dx = C +

∞∑
k=1

ak−1

k
(x− x0)k.

Definite integral
For x inside the interval of convergence,

∫ x

x0
f(t) dt =

∞∑
n=0

an

n + 1(x− x0)n+1.

(Here the constant C disappears.)

This new series has the same radius of convergence R.
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For |x| < 1, we know
∞∑

n=0
tn = 1

1− t
.

Integrate both sides from 0 to x

∫ x

0

∞∑
n=0

tn dt =
∫ x

0

1
1− t

dt.

Integrate the series term by term

∞∑
n=0

∫ x

0
tn dt =

∞∑
n=0

xn+1

n + 1 .

Integrate the function

∫ x

0

1
1− t

dt =
[
− ln(1− t)

]x

0
= − ln(1− x).

Final result

− ln(1− x) =
∞∑

n=0

xn+1

n + 1 , |x| < 1.

Rewriting the index,

− ln(1− x) = x + x2

2 + x3

3 + · · · .
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How a Function Becomes a Power Series
Assume a function f is given by a power series

f(x) =
∞∑

n=0
an(x− x0)n

with radius of convergence R > 0.
Inside (x0−R, x0 +R), the series behaves like a polynomial. So we can differentiate
term by term.

Differentiate once:
f ′(x) =

∞∑
n=1

nan(x− x0)n−1.

Evaluate at x = x0. All terms with (x− x0) vanish except the first one:

f ′(x0) = a1.

Differentiate again:
f ′′(x) =

∞∑
n=2

n(n− 1)an(x− x0)n−2.

Evaluate at x = x0:
f ′′(x0) = 2! a2.

Continuing this process, we obtain

f (n)(x0) = n! an.

Hence, the coefficients of the power series are

an = f (n)(x0)
n! .

Taylor Series
Substituting the coefficients back into the series gives

f(x) =
∞∑

n=0

f (n)(x0)
n! (x− x0)n, |x− x0| < R.

This is called the Taylor series of f at x0.

Maclaurin Series
If x0 = 0, the Taylor series becomes

f(x) =
∞∑

n=0

f (n)(0)
n! xn,

called the Maclaurin series.
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Power Series of f(x) = ex

We want to express ex as a power series centered at 0 (Maclaurin series).

First compute the derivatives of f(x) = ex:

f(x) = ex,

f ′(x) = ex,

f ′′(x) = ex,

f (3)(x) = ex, . . .

All derivatives are equal to ex.

Now evaluate these derivatives at x = 0:

f(0) = e0 = 1,

f ′(0) = e0 = 1,

f ′′(0) = e0 = 1,

f (3)(0) = e0 = 1, . . .

So for every n,
f (n)(0) = 1.

Recall the Maclaurin formula:

f(x) =
∞∑

n=0

f (n)(0)
n! xn.

Substitute f (n)(0) = 1:

ex =
∞∑

n=0

xn

n! .

Writing the first terms:

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

This power series converges for every real number x (its radius of convergence is
∞).
Note that t, if f(x) = ∑

anxn, g(x) = ∑
bnxn, then

(f(x) + g(x) =
∑

(an + bn)xn.
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Hyperbolic Functions from the Power Series of ex

Recall the Maclaurin series of the exponential function:

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

and
e−x =

∞∑
n=0

(−x)n

n! = 1− x + x2

2! −
x3

3! + x4

4! − · · · .

The hyperbolic functions are defined by

sinh x = ex − e−x

2 , cosh x = ex + e−x

2 .

Computation of sinh x

Subtract the two series:

ex − e−x =
(

1 + x + x2

2! + x3

3! + x4

4! + · · ·
)
−
(

1− x + x2

2! −
x3

3! + x4

4! − · · ·
)

.

Now subtract term by term:

ex − e−x = 2x + 2x3

3! + 2x5

5! + · · · .

Divide by 2:

sinh x = x + x3

3! + x5

5! + · · · .

Hence,

sinh x =
∞∑

n=0

x2n+1

(2n + 1)! (R =∞).

Computation of cosh x

Add the two series:

ex + e−x =
(

1 + x + x2

2! + x3

3! + x4

4! + · · ·
)

+
(

1− x + x2

2! −
x3

3! + x4

4! − · · ·
)

.

Add term by term:

ex + e−x = 2 + 2x2

2! + 2x4

4! + · · · .

Divide by 2:

cosh x = 1 + x2

2! + x4

4! + · · · .

Hence,

cosh x =
∞∑

n=0

x2n

(2n)! (R =∞).
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Representation of Functions by Power Series

A function f is represented by a power series at x0 if

f(x) =
∞∑

n=0
an(x− x0)n for |x− x0| < R.

Method 1: Maclaurin Series (Taylor at 0)
If f is smooth near 0, we compute derivatives at 0:

an = f (n)(0)
n! .

So,

f(x) =
∞∑

n=0

f (n)(0)
n! xn .

Example: f(x) = ex

Since f (n)(0) = 1,

ex =
∞∑

n=0

xn

n! .
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Method 2: Substitution
Start from

1
1− x

=
∞∑

n=0
xn (|x| < 1).

If a function can be written as
1

1− g(x) ,

then substitute x = g(x):

1
1− g(x) =

∞∑
n=0

(
g(x)

)n
|g(x)| < 1.

Example 1:
1

2 + 3x

1
2 + 3x

= 1
2 ·

1
1−

(
−3

2x
) =

∞∑
n=0

(−1)n3n

2n+1 xn, |x| < 2
3 .

Example 2:
1

1 + x2

1
1 + x2 = 1

1− (−x2) =
∞∑

n=0
(−1)nx2n, |x| < 1.

Method 3: Differentiation and Integration
If

f(x) =
∞∑

n=0
anxn,

then

Differentiate:
f ′(x) =

∞∑
n=1

nanxn−1.

Integrate from 0 to x:

∫ x

0
f(t) dt =

∞∑
n=0

an
xn+1

n + 1 .

These operations keep the same radius of convergence.

This is how we obtain series for functions such as ln(1 + x) and arctan x starting
from the geometric series.
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Important Power Series to Know

Function Power Series (Maclaurin) Interval of Convergence

ex
∞∑

n=0

xn

n! (−∞,∞)

1
1− x

∞∑
n=0

xn |x| < 1

sin x
∞∑

n=0

(−1)nx2n+1

(2n + 1)! (−∞,∞)

cos x
∞∑

n=0

(−1)nx2n

(2n)! (−∞,∞)

ln(1 + x)
∞∑

n=1

(−1)n+1xn

n
−1 < x ≤ 1

arctan x
∞∑

n=0

(−1)nx2n+1

2n + 1 |x| ≤ 1
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Exercises

1) Show that

lim
x→0

ln(1 + x)− x + x2

2
x3 = 1

3 .

Solution. For |x| < 1,

ln(1 + x) =
∞∑

n=1

(−1)n+1

n
xn = x− x2

2 + x3

3 −
x4

4 + · · · .

Subtract x− x2

2 :

ln(1 + x)− x + x2

2 =
(

x− x2

2 + x3

3 −
x4

4 + · · ·
)
− x + x2

2 = x3

3 −
x4

4 + · · · .

Divide by x3:
ln(1 + x)− x + x2

2
x3 = 1

3 −
x

4 + · · · .

Let x→ 0:

lim
x→0

ln(1 + x)− x + x2

2
x3 = 1

3 .
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2) Show that

lim
x→0

1− cos x− x2

2
x4 = 1

24 .

Solution. For all real x,

cos x =
∞∑

n=0
(−1)n x2n

(2n)! = 1− x2

2 + x4

4! −
x6

6! + · · · = 1− x2

2 + x4

24 −
x6

720 + · · · .

Compute the numerator:

1− cos x− x2

2 = 1−
(

1− x2

2 + x4

24 −
x6

720 + · · ·
)
− x2

2

= −x2

2 + x2

2 −
x4

24 + x6

720 − · · ·

= −x4

24 + x6

720 − · · · .

Divide by x4:
1− cos x− x2

2
x4 = − 1

24 + x2

720 − · · · .

Let x→ 0:

lim
x→0

1− cos x− x2

2
x4 = − 1

24 .

3) Evaluate
∞∑

n=0
(n + 1)

(1
2

)n

.

Solution. For |x| < 1,
1

(1− x)2 =
∞∑

n=0
(n + 1)xn.

Substitute x = 1
2 :

∞∑
n=0

(n + 1)
(1

2

)n

= 1(
1− 1

2

)2 = 1(
1
2

)2 = 4 .



22

4) Show that
∞∑

n=1
n2xn = x(1 + x)

(1− x)3 , |x| < 1,

and compute
∞∑

n=1

n2

3 n
.

Solution.
Starting from the geometric series

∞∑
n=0

xn = 1
1− x

,

differentiate twice and multiply appropriately by x. This yields

∞∑
n=1

n2xn = x(1 + x)
(1− x)3 , |x| < 1.

Substituting x = 1
3,

∞∑
n=1

n2

3 n
=

1
3

(
1 + 1

3

)
(
1− 1

3

)3 = 4
9 ·

27
8 = 3

2 .


