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Semiconductor Crystals
Holes

The properties of vacant orbitals in an otherwise filled band are
important in semiconductor physics and in solid state electronics.
Vacant orbitals in a band are commonly called holes, and without
holes there would be no transistors.

A hole acts in applied electric and magnetic fields as if it has a
positive charge +e. The reason is given in five steps:

1- k,=-k, (8.17)

 The total wavevector of the electrons in a filled band is zero:
2k =0, where the sum is over all states in a Brillouin zone.

 If the band is filled all pairs of orbitals k and -k are filled, and the
total wavevector is zero

4 If an electron is missing from an orbital of wavevector k,, the
total wavevector of the system is -k, and is attributed to the hole

 The hole is an alternate of a band with one missing electron.
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Semiconductor Crystals
Electron —Hole Conservation of Total Momentum

€

Conduction band

k,

Electron removed k =

\ Valence band

Figure 7 Absorption of a photon of energy fiw and negligible wavevector takes an electron from
E in the filled valence band to Q in the conduction band. If k, was the wavevector of the electron
at E, it becomes the wavevector of the electron at Q. The total wavevector of the valence band
after the absorption is —k,, and this is the wavevector we must ascribe to the hole if we describe
the valence band as occupied by one hole. Thus k;, = —k,; the wavevector of the hole is the same
as the wavevector of the electron which remains at G. For the entire system the total wavevector
after the absorption of the photon is k, + k;, = 0, so that the total wavevector is unchanged by the
absorption of the photon and the creation of a free electron and free hole.
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Semiconductor Crystals
Holes

2- gk, )=-¢.(k,) (8.18)

1 Here the zero of energy of the valence band is at the top of the
band.

d The lower in the band the missing electron lies; the higher the
energy of the system.

d The energy of the hole is opposite in sign to the energy of the
missing electron, because it takes more work to remove an
electron from a low orbital than from a high orbital

d Thus if the band is symmetric: g.(k,) = €,(-k,) = - &,(-k.)= - &,(k,).

3-V,=V, (8.19)
dThe velocity of the hole is equal to the velocity of the missing
electron
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Semiconductor Crystals
Electron —Hole Conservation of Total Momentum

€
Hole band constructed

with kj, = -k, and
Gh(kh) = —Gl(k() to
simulate dynamics
of a hole.

en bt
- withone
electron missing

Figure 8 The upper half of the figure shows the hole band that simulates the dynamics of a hole,
constructed by inversion of the valence band in the origin. The wavevector and energy of the hole
are equal, but opposite in sign, to the wavevector and energy of the empty electron orbital in the va-
lence band. We do not show the disposition of the electron removed from the valence band at k..
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Semiconductor Crystals
Holes

4 m,=-m (8.20)

J We show below that the effective mass is inversely proportional
to the curvature d?g/dk? and for the hole band this has the
opposite sign to that for an electron in the valence band. Near
the top of the valence band m, is negative, so that m, is positive

5-h%% — o (E + v, x B) B2 f
d The equation of motion for a hole is that of a =  <__@_,';
. d - | X 1 6 ¥
particle of positive charge e. | f _
d Current: , =
j =(-e)v(G) =(-e)[- v(E)] = ev(E) (8.23) | @;’::

[ The hole and electron drift velocities are in . &
opposite directions S
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Semiconductor Crystals
Holes and Electrons (Comparison)

d In the next table: We quickly compare between Holes &
Electrons. Momentum, Energy, Velocity , mass and Eq. of motion

Wl | Electon | Quamtity

K, = -k, k. Momentum
(k)= -€.(k.) €o(k.) Energy
V, =V, V, Velocity
my, = -m, m, Mass
% — SR 4 %Vh % B) ﬁ% — +%v,, « g) EQuation of Motion
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Semiconductor Crystals
Effective Mass m*

J When we look at the energy-wavevector relation e=(h?/2m)k?
for free electrons, we see that the coefficient of k? determines
the curvature of € versus k. Turned about, we can say that 1/m,
the reciprocal mass, determines the curvature.

d For electrons in a band there can be regions of unusually high
curvature near the band gap at the zone boundary.

[ In semiconductors the band width is of the order of 20 eV, while
the band gap is of the order of 0.2 to 2 eV.

[ Thus, the reciprocal mass is enhanced by a factor 10 to 100, and
the effective mass is reduced to 0.1-0.01 of the free electron
mass.

d These values apply near the band gap; as we go away from the
gap the curvatures and the masses are likely to approach those
of free electrons.
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Semiconductor Crystals
Effective Mass m*
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Semiconductor Crystals
Effective Mass Equation

First differentiate group velocity with time:
Wave function of a free elecron is expressed as: " :

v, =2—f =1d—g (8.26)
h dk
Change of energy of electron by the work don by E is:
de = 32 gk = —eEdx = —eEvdt = —o= 92 gy (8.27)
dk ho dk
_dp dnk dk dv
ot dat et Mt
. hdk _1dde 1 d’s dk
“mdt ndtdk 7 dk? dt
1 1 d%
= =27 (8.28)
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Semiconductor Crystals
Effective Masses in Semiconductors

M In many semiconductors it has been possible to determine by
cyclotron resonance the effective masses of carriers in the
conduction and valence bands near the band edges.

d The determination of the energy surface is equivalent to a
determination of the effective mass.

[ Cyclotron resonance in a semiconductor is carried out so that
the current carriers are accelerated in helical orbits about the
axis of a static magnetic field.

 The angular rotation frequency @, is:

D, = (8.30)

where m* is the appropriate cyclotron effective mass
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Semiconductor Crystals
Effective Masses in Semiconductors

d Resonant absorption of energy from
an rf electric field perpendicular to
the static magnetic field occurs
when the rf frequency is equal to
the cyclotron frequency.

d Holes and electrons rotate in
opposite directions. .

co e

Flectron Heavy hole Light hole Split-off hole Spin-orbit
Crystal A gl Mm 1y M. .2/ A eV

InSb 0.015 .39 0.021 (0.11) (0.82

InAs 0.026 0.41 (. 025 0.08 0.43
InP 0.073 0.4 ((.078) (0.15) 0.11
(GaSh 0.047 0.3 0.06 (.14} 0.80
GaAs ().066 0.5 0.052 G.17 0.34

0O (.99 — 0.58 0.69 (.13
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Semiconductor Crystals
Electron —Hole Conservation of Total Momentum

Figure 14 Calculated band
structure of germanium.
The general features are in
good agreement with
experiment. The  four
valence bands are shown
in gray. The fine structure
of the valence band edge
is caused by spin-orbit
splitting. The energy gap is
indirect; the conduction
band edge is at the point
(2mt/a)(}2)20%).

Energy in eV

13
k=2m(1l1l1 k=0 k=27(100)
a (2 22 [111] { [100] S
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Semiconductor Crystals
Electron —Hole Conservation of Total Momentum
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Semiconductor Crystals
Electron —Hole Conservation of Total Momentum

4

[
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L r X
(a) (b)
Figure 17a Constant energy ellipsoids for Figure 17b Band structure of GaAs, after S. C. Louie.

electrons in silicon, drawn for mym, = 5.
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

(d We want the concentration of intrinsic carriers as a function of
temperature, in terms of the band gap.

 we assume that &-u>> k;T, so that the Fermi-Dirac distribution
function reduces to:

f ~ e[ﬁkﬂ (8.35)

&

d This is the probability that a conduction electron orbital is
occupied, in an approximation valid when f, << 1.
d The energy of an electron in the conduction band is:

n’k?

" 8.36
o (8.36)

g =E .+

C

 where E_is the energy at the conduction band edge.
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Semiconductor Crystals
Electron —Hole Conservation of Total Momentum
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[ 77/ Figure 18 Energy scale for statistical calcula-
77 TR tions. The Fermi distribution function is shown
G band on the same scale, for a temperature kgT < E,,
S The Fermi level u is taken to lie well within the
band gap, as for an intrinsic semiconductor. If
1

€ = u, then f=3.

{
<
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION
d Thus from (6.20) the density of states at ¢ is:

1 (2m,
De(g)zzﬂz( 72 j(‘g—EC)UZ

The concentration of electrons in the conduction band iIs:

n= ]2 D,.(¢)f,(g)de

1 (Zme jeulkBT T(g— Ec )1/2 e—g/kBng

270° \ K? <

which integrates to give .

n=2 mekBT e e(ﬂ—Ec)/kBT
2’

C

(8.37)

(8.38)

(8.39)
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d Chat GPT show us how to derive n in (8.39) by taking a snapshot
of (8.38), pasting it and asking for full derivative:

The integral in question is:

/ (e — E)V2e /*sT e
E.

Change of Variables

To simplify this integral, perform a change of variables:
u—¢€— FE.= du = de
e =u+ F.
Whene = F.,u = 0.Whene = o0, 4 = 00.

The integral becomes:

Factor Out Constants

E./kpT

Extract theterm e which does not depend on wu:

o0
e~ Ee/ksT / yl/2e—u/kET g,
0



Use the Gamma Function

The remaining integral is a standard form that involves the gamma function, I’ (n], forn = 3/2:

f u"le " dy = T'(n)a"
0
wherea = kgT andn = 3 /2.

Thus, the integral evaluates to:
I'(3/2)(ksT)*”

The gamma function I"(3/2) = %, hence the integral becomes:

e

E./ksT ? (I!ﬁB T) 3/2

This gives the complete solution:

w (kBT)H;QE E./kgT

e
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1. Density of States, D (¢€):

3/2
1 2m '\
Dle) =5 (h_) €= B

This term gives the density of states for a 3D parabolic band. It counts the number of available states at
each energy level that electrons can occupy.
2. Fermi-Dirac Distribution, f(€):

1
ele—n)/ksT | 1

fle) =

For simplicity, assuming T' — 0 (absolute zero), this function can be approximated as a step function
thatis1fore < u(chemical potential) and O for € > u. At non-zero temperatures, it smoothly
transitions around fu.

3. Multiplying and Integrating:

The product D(€) f (€) is integrated from the conduction band edge E, to infinity to find the total
number of electrons per unit volume in the conduction band. The integral simplifies at low

temperatures to:

3/2  no0
2m \ 1/2 _—e/kgT
”—f D()f(e)de R(F) ./E{,(E‘Ec) ¢ e
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4. Solution of the Integral:

As calculated previously, this integral is:

m

I

(kBT)g';‘EE E{_-I,."'.I.:ET

Plugging this back into the equation for n yields:

Simplifying this expression gives:

(2m) 3/2 (kBT)S,’Z e E./kgT
4?.1.:3 h:i'.

T =

This simplifies further to the form shown in your image:

r 3/2
3,-" 2 !
m*“kpT " _(B.—u)/ksT

"= 2R3

Please note: | am using Chat GPT to show you how powerful it is in
solving hard equations and simplyfiy them.
The final solution requires just few adjustment to fit for our form.
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

d Home Work: (not to be submitted)
J Please construct an equation similar to (8.39) but for p this time,
then use Chat GPT to solve it for p (eq. 8.42)
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION
4 Forthe holes: ¢ — n >> K, T

1 1

= 8.40
exp(e—ulkT)+1 exp(u—elkT)+1 (840)

f=1—

~exple—pulk,T]
we have:

1 (om V2
D, (¢) = 5 ( hzh j (E,—¢&)™? (8.41)

2 7h*
From (8.39) and (8.42) we obtain the equilibrium relation:

np = 4( KT js (m"m’ )3/2 g FolkeT (8.43)
277h? e n |

* 3/2
. p= 2( m KgT J o(Ec—#)/keT (8.42)
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

 This useful result does not involve the Fermi level p.

J At 300 K the value of np is 2.10 X 10*° /cm®, 2.89 X 10%° /cm®,
and 6.55 X 10*2/cmb®, for the actual band structures of Si, Ge, and
GaAs, respectively.

J We have nowhere assumed in the derivation that the material is
intrinsic: the result holds for impurity ionization as well.

d The only assumption made is that the distance of the Fermi level
from the edge of both bands is large in comparison with kT
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

d We should notice that (np) as a whole is constant at any given
temperature:

d To prove this:

1 Suppose that the equilibrium population of electrons and holes
is maintained by black-body photon radiation at temperature T.

J Let A(T) be the electron-hole pairs generation.

d Let B(T)np is the rate of the recombination reaction e + h =

photon.
 Then:
dn dp
— = A(T)-B(T)np=— 3 44
e = e (8.44)
In equilibrium: il = i =0 and np :_A(T)
dt dt B(T)
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

(] Because the product of the electron and hole concentrations is a
constant independent of impurity concentration at a given
temperature, the introduction of a small proportion of a suitable
impurity to increase n, say, must decrease p.

d This result is important in practice-we can reduce the total
carrier concentration n + p in an impure crystal, sometimes
enormously, by the controlled introduction of suitable
impurities. Such a reduction is called compensation.

d In an intrinsic semiconductor the number of electrons is equal
to the number of holes, because the thermal excitation of an
electron leaves behind a hole in the valence band. (8.43)=>

KT Y\ _E, /2kgT
h=n=p =2| -t (m'm", )" e (8.45)
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2. For intrinsic semiconductor:
* =P = Ny
* Fermi level u lies near midgap, symmetrically.

« Charge neutrality.

Thus, multiply n > p:

Substitute both expressions:

3/2 3,2
n2 2 mekpT el —Ee) kel 5 |9 mykp T e\Ev—n)/kel
t 2mh? 2mh?

3. Simplify:

Group terms:

kpT " 2/3 (B B /keT
2 3/2 (E,—E.)/ kg1
T 4 - M1
! (E:rrﬁi) (mems)
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

 Intrinsic carrier concentration depends exponentially on Eg/ZkBT,.
We set (8.39) = (8.42) to obtain, for the Fermi level as measured
from the top of the valence band: (please derive at home):

2u - 3/2 i
el =(—“] el (8.45)
me
e % 3 +% KaT In-2 (8.47)

e

Ifm, =m, then = % E, and the Fermi level is in the middle

of the forbidden gap.
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

 Intrinsic carrier concentration depends exponentially on Eg/ZkBT,.
We let (8.39) = (8.42) to obtain, for the Fermi level as measured
from the top of the valence band: (please derive at home):

3/2
n = 2( r;k;; j gluEo)lksT (8.39)
7T
* 3/2
L p= Z[rnzhi;leT j e(Ec—ﬂ)/kBT (842)
7T

J Make them = and derive the eq. (8.47)
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

1. Set n = p using their full expressions:

Thus:

3/2 3/2

mekpT (p—E.)/keT mypkpT (Ev—p) kT

2 , € 2 ‘ €
2mh? 2mh?

Divide both sides by 2 and group:

3,2
m ' ARV LR N T
( E) E[“_Eﬁ p—E ) kg1 1
my

Simplify the exponent:
(,'u-' Ef:) { (JU' E’EJ) 2}1 (E-f' | E“:]

Thus:

3/2
Me o(2h—(E+E,)) kT _
my
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2. Rearrange:

Take reciprocal:

3/2

Write it as:

3,2
Ei!pl.f'kg'.!' Tnh E_!|:-E"|.""-E-:.'.:}.":'i‘:ﬂr-!1
mMe

MNotice:
E.—FE, =E, > E.+E,=2E,+E,
but usually if the midgap is considered symmetric:
(E. + E,) = E,

(So we approximate E. + E, = E, in this treatment.)

Thus:

3/2
21/ kel h o Fal kel
M

L. This matches equation (46)!
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

3. Now take natural logarithm (In) of both sides:

2 3 (m) £
kﬂT 2 M

Multiply through by kpT"

3 my,
2p = Eg 4 EkETln(m )

e

Thus:

1 3 my,
—F —kpT In
= 9 q | A I ( )

.. Exactly equation (47)!
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

1 The mobility is the magnitude of the drift velocity of a charge
carrier per unit electric field:

U= | V|/ E (8.48)

d The mobility is defined to be positive for both electrons and

holes, although their drift velocities are opposite in a given field.
4 For distinction : use . for electrons and p, for holes.
 Electrical conductivity is the sum of both:

o = (New, + peu,) (8.49)
V= q7E (from Chapter 6)
m
o, = °%e  and Ly, = E% (8.50)
me mh

where 7 is the collision time
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

d In Ge; let E,=0.670 eV, m” = 0.55 m_, chemical potential y, is
given by u =-7.69x103 eV . Find:

a) ¢ relative to the TOP of valence band.

b) Probability of occupancy at the bottom of conduction band f(E_)

for T=300K
c) Density of electrons at same temperature

(a)
From Fig. 18:

1
. =—(E, —E
F 2( Vv C)
Let E, beat OeV

=% :%(O+O.67) —0.335%V
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION
(b) for the case when (& — ) >> kT (at 300K))

f (6’) ~ e (u—&)lkg

—7.69x103-0.67+0.335
- f (E ):e(u—Ec VKe _ @ 8.62x10°x300
o o C

=1.7x10"° eV

(c)
vn@):Z[

* 3/2 —E
m'k,T . o
2 th?

_5 0.55x9.11x103'%1.38%x10 % %300
277 < (1.05x107°*)?

—6.55%x10"% e /m?

3/2
} x1.74%107°°
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Semiconductor Crystals

INTRINSIC CARRIER CONCENTRATION

Q In Si; if we have: m_" =0.259 m_, pu, = 0.135 m?/v.s , u, = 0.048,
and m*, =0.537 m, . Calculate relaxation time for (e) and (holes).

Solution:

From Eq. (5):
* —31

. m 4 _ O.259><9.11><1O_19 x0.135 _1.99x10 2 Sec
e 1.6x10
* ~31

= m a4, O.537><9.11><1(319 x 0.048 14710 Sec
e 1.6x10
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