&
o
C
S
0

Phys 674

Physics & Astronomy
King Saud University
2"d Term: 2025/2022

Lecture No. 06

Electron Levels in a Periodic Potential Part 2
(Ashcroft Chapter 08)

Prof. Nasser S. Alzayed



Electron Levels in a Periodic Potential
Introduction

v" Introduction

v THE BORN - VON KARMAN BOUNDARY CONDITION
v Density of Levels (states)
v SECOND PROOF OF BLOCH’s THEOREM

King Saud University, College of Science, Physics & Astronomy Dept. PHYS 674 (Band Theory of Solids) © 2025



Electron Levels in a Periodic Potential

THE BORN - VON KARMAN BOUNDARY CONDITION

By imposing an appropriate boundary condition on the wave
functions we can demonstrate that the wavevector k must be real,
and arrive at a condition restricting the allowed values or k.

« The condition generally chosen is the natural generalization
of the condition used in the Sommerfeld theory of free electrons
In a cubical box.

« As in that case, we introduce the volume containing the electrons
Into the theory through a Born-von Karman boundary condition
Or macroscopic periodicity.

« We will not use a cubic box now, instead we deal directly with

the primitive cell of the underlying Bravais lattice.

this boundary condition treats a finite crystal as if it were infinite by assuming
that the crystal repeats itself periodically in all directions
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THE BORN -

d We will genera
lecture No. 2:

w(x+L,y,2)=yXy,2)
(X y+L2)=yXY,2)

Electron Levels in a Periodic Potential

VON KARMAN BOUNDARY CONDITION

lize the periodic boundary condition (2.4) In

V"~

(2.4)

wxy,2+L)=w(Xy,7)
1 The generalized
w(r+Nga)=w(r)

 where the a; are
order N8 ,where
cells in the crysta

periodic boundary becomes:

(8.22)

three primitive vectors and N, are all integers of
N = N;N,N; Is the total number of primitive
.
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Electron Levels in a Periodic Potential

THE BORN - VON KARMAN BOUNDARY CONDITION

JApplying Bloch’s theorem to the boundary condition (8.22):

W (F+ N;a;) =y, (r) e (8.23)
With :

eiNika _q (8.24)
and

e? M =1 (8.25)
N.k.a, =2zm,

= X =% m. =integer (8.26)
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Electron Levels in a Periodic Potential

THE BORN - VON KARMAN BOUNDARY CONDITION

 Therefore the general form for allowed Bloch wave vectors is:
k=i%bi (8.27)
It follows that the volume Ak of k-space per allowed value of k is
just the volume of the little parallelepiped with edges b; /N;:

b, (b, b, 1

Ak = T ( T st :Nbl.(bz xb,) (8.28)

d since b;.(b, X b3) is the volume of primitive cell, Eq. (8.28)
says that the number of allowed wavevector in a primitive cell of
the reciprocal lattice is equal to the number of sites in the crystal.

A Since volume of primitive cell is: (2m)3N/V we have: (in
agreement with (2.10) in lecture 2 for free electron gas)

Ak = (27[)3

(8.29)
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Electron Levels in a Periodic Potential

GENERAL REMARKS ABOUT BLOCH'S THEOREM

 Bloch' theorem introduces a wave vector k, which turns, out to
play the same role in the periodic potential that the Free
electron wave vector k plays in the Sommerfeld theory.

* Note, however that although the free electron wave vector is
simply p/h, where p is the momentum of the electron. In the
Bloch case k is not proportional to the electronic momentum.

* This is clear on general grounds, since the Hamiltonian does not
have complete translational invariance in the presence of a non-
constant potential.

* Therefore its eigenstate will not be simultaneous eigenstates of
the momentum operator.

 This conclusion is confirmed by the fact that the momentum
operator p = (h/i)V, when acting on i will not give a
momentum eigenstate.
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Electron Levels in a Periodic Potential

GENERAL REMARKS ABOUT BLOCH'S THEOREM
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Electron Levels in a Periodic Potential

GENERAL REMARKS ABOUT BLOCH'S THEOREM
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Electron Levels in a Periodic Potential

GENERAL REMARKS ABOUT BLOCH'S THEOREM

* To show that the momentum operator p, when acting on w will
not give a momentum eigenstate.

?ank = ?(Vunk (r)e*" )

~ hky, 46T ?wnk (r) (8.30)

* Hence, y,, is not a momentum eigenstate.
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Electron Levels in a Periodic Potential

GENERAL REMARKS ABOUT BLOCH'S THEOREM

2- The wave vector k appearing in Bloch's theorem can always be
confined to the first Brillouin zone (or to any other conventional
primitive cell of the reciprocal lattice. It is because any k' not in the
FBZ can be written as:

kK =k +K (8.31)

 Kis also areciprocal lattice vector and k is in the FBZ.
* Since ¢XR = 1for any K, then if (8.5) holds for k’, it will hold for k

y(r+R)=y(r)e"" (8.5)

First Brillouin Zone (FBZ): The FBZ is the smallest region in reciprocal space that
contains all unique wave vectors k necessary to describe the electronic states in
a crystal. Any wave vector k' outside the FBZ can be mapped back into the FBZ
by adding or subtracting a reciprocal lattice vector K. =» reduced Brillouin Zone
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Electron Levels in a Periodic Potential

GENERAL REMARKS ABOUT BLOCH’S THEOREM

3-

* The index ,n appears in Bloch's theorem because for given k
there are many solutions to the Schrodinger equation.

 Let us look for all solutions to the Schrodinger equation that

have the Bloch form:
W (1) = Uy (r)e™ (8.32)

 where ks fixed and u has the periodicity of the Bravais lattice.
e Substituting this into the Schrodinger equation, we find that u is
determined by the eigenvalue problem.

H,.u,(r) ={h—2(_}V+kj+U(r)}uk(r) =¢&.U,(r) (8.33)
2m\ |

with:

u.(r)=u,(r+R) (8.34)
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Electron Levels in a Periodic Potential

GENERAL REMARKS ABOUT BLOCH'S THEOREM

« Because of the periodic boundary condition we can regard (8.33)
as a Hermitian eigenvalue problem restricted to a ingle primitive
cell of the crystal. Because the eigenvalue problem is set is fixed
In a finite volume, we can find an infinite family of solutions with
discretely spaced eigenvalue.

A-

e Although the full set or level can be described with k restricted
to a single primitive cell, it is often useful to allow k to range
through all of k-space.

 we can assign the indices n to the levels in such a way that for
given n, the eigenstates and eigenvalues are periodic functions
of k in the reciprocal lattice:

Voo (1) = wn,k(r)} (8.35)

gn,k+K - gn,k
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Electron Levels in a Periodic Potential

GENERAL REMARKS ABOUT BLOCH'S THEOREM

5-
* It can be shown that ,an electron in a level specified by band
index n and wave vector k has a non-vanishing mean velocity,

given by:

v, (K) =2V, (k) (3.36)
It says that there are stationary levels for an electron in a
periodic potential in which, in spite of the interaction of the

electron with the fixed lattice of ions, it moves forever without
any degradation of its mean velocity
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Electron Levels in a Periodic Potential
Density of Levels (states)
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Electron Levels in a Periodic Potential
Density of Levels (states)
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Electron Levels in a Periodic Potential
Density of Levels (states)
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Electron Levels in a Periodic Potential
Density of Levels (states)
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Electron Levels in a Periodic Potential
Density of Levels (states)
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Electron Levels in a Periodic Potential
Density of Levels (states)

[ In this section we shall find out an expression of general form of

density of states (levels):
d We want to find a general expression for D(w), the number of
states per unit frequency range. The number of allowed values of

K for which the frequency is between wand w+ dwis:

D(w)dw:[ij [ d (8.37)

27 ) g

 The real problem is to evaluate the volume of this shell. We let
dS. Denote an element of area. The element of volume between
the constant frequency surfaces w and @ + dw is a right cylinder
of base dS_ and altitude dK so that

j d3K = j ds, dK (8.38)

shell
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Electron Levels in a Periodic Potential
Density of Levels (states)

 The gradient of @, which is VK, is also normal to the surface @
constant, and the quantity

|Viw|dk, = dw

is the difference in frequency between the two surfaces connected
by dk . Thus the element of the volume is

ds dK , =ds 99 _gg 9@ (3.39)
Vol Vg
L 3

'.'D(a))da):(—j [ d* (3.40)
270 ) g

with

[ d* =[ds,dK, (3.41)

shell
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Electron Levels in a Periodic Potential
Density of Levels (states)

d We divide both sides by dw and write V = L3 for the volume of
the crystal: the result for the density of states is:

D(w)da)z(ij [ dsw‘i'/—‘” (8.42)

D(w) = (2\7’[)3 [ dvsw (8.43)

v, 4V,0)

Vs,

. D(0) = 2] | Vo (8.44)
1 ¢ ds

= 9(8) = | Vsl (8.44)

d we multiplied by 2/V : 2 for the allowed spin states. V to
normalize to a unit volume V
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Electron Levels in a Periodic Potential

SECOND PROOF OF BLOCH’s THEOREM

(d We can alway expand any function obeying the Born- von
Karman boundary condition (8.22).
[ Therefore we have wave vectors of the form (8.27):

p(r)=) ce (8.45)

(1 Because U(r) is periodic in the lattice, its plane wave expansion
will only contain plane waves with the periodicity of the lattice
and hence with wave vectors that are of the reciprocal lattice.

U(r)=>U,e" (8.46)
K
With :
_ 1 —iK.r
U, = Q.Lm dru(r)e (8.47)

d Where U, is the Fourier coefficients
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Electron Levels in a Periodic Potential

SECOND PROOF OF BLOCH’s THEOREM
[ Since U(r) is real, then:

U, =U, (8.48)

A If we assume that the crystal has inversion symmetry so that, for
a suitable choice of origin U(r) = U(-r) then (8.46) implies that U,
is real and thus:

U,=U,=U, (8.49)
hZ
wHy = [——Vz +U (r)jw =gy (8.50)
2m
(8.45) in (8. 50) for kinetic energy term:
2
- Zq c,e (8.51)
2m
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Electron Levels in a Periodic Potential

SECOND PROOF OF BLOCH’s THEOREM
 For the potential energy term (8.45) & (8.46) in (8.50):
Uy =(ZUK e”“j (Z cqei‘“J =Y U, c T

let g'=K +q
Uy => U c e (8.52)
K,q'

(J Now, (8.51) & (8.52) back in (8.50):
FZ—ZZqche“"r + > Uy }//z ey =¢) ce'*  (8.53)
2m q K.q' q

.'.Z{(h—zqz—gjcq+ZUK.cqK}e“” =0 (8.54)

5 |\ .2m

Since the plane waves satisfying the BVK boundary condition are
an orthogonal set, the coefficient of each term in (8.54) must
vanish, and therefore for all allowed wave vectors q

King Saud University, College of Science, Physics & Astronomy Dept. PHYS 674 (Band Theory of Solids) © 2025



Electron Levels in a Periodic Potential

SECOND PROOF OF BLOCH’s THEOREM

(JHence, we have

2
(h—qz—g]chrZUK.cqK. =0 (8.55)
a

2m

Let: q = k— K where K is selected such that k lies in the FBZ

- (8.55) =
B 2
[ﬂ (k-K) _ngkK+ZUK'CkKK' =0 (8.56)
=
then back to: K'—» K'-K
hz
[%(k—K)2 _ngkK+ZUK'K Co =0 (8.57)
=

This equation is same as Schrodinger equation but in momentum
space. K’s in this equation are all reciprocal lattice vectors
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Electron Levels in a Periodic Potential

SECOND PROOF OF BLOCH’s THEOREM
(Now, back to Eq. (8.45):

Y (1) :ch-Kei(k_K)'r (8.57)
K
_ eik.r ch_Kle —-iK.r (858)
K
this is same as Block theorm with:
u(ry=> ce" " (8.59)
K

(JHence, we have used a different rout than before to prove same
theorem.

King Saud University, College of Science, Physics & Astronomy Dept. PHYS 674 (Band Theory of Solids) © 2025



Thanks



	Slide 1: Phys 674
	Slide 2: Electron Levels in a Periodic Potential Introduction
	Slide 3: Electron Levels in a Periodic Potential THE BORN - VON KARMAN BOUNDARY CONDITION 
	Slide 4: Electron Levels in a Periodic Potential THE BORN - VON KARMAN BOUNDARY CONDITION
	Slide 5: Electron Levels in a Periodic Potential THE BORN - VON KARMAN BOUNDARY CONDITION
	Slide 6
	Slide 7: Electron Levels in a Periodic Potential THE BORN - VON KARMAN BOUNDARY CONDITION
	Slide 8: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 9: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 10: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 11: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 12: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 13: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 14: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 15: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 16: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 17: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 18: Electron Levels in a Periodic Potential GENERAL REMARKS ABOUT BLOCH‘S THEOREM 
	Slide 19: Electron Levels in a Periodic Potential Density of Levels (states)
	Slide 20: Electron Levels in a Periodic Potential Density of Levels (states)
	Slide 21: Electron Levels in a Periodic Potential Density of Levels (states)
	Slide 22: Electron Levels in a Periodic Potential Density of Levels (states)
	Slide 23: Electron Levels in a Periodic Potential Density of Levels (states)
	Slide 24: Electron Levels in a Periodic Potential Density of Levels (states)
	Slide 25: Electron Levels in a Periodic Potential Density of Levels (states)
	Slide 26: Electron Levels in a Periodic Potential Density of Levels (states)
	Slide 27: Electron Levels in a Periodic Potential SECOND PROOF OF BLOCH’s THEOREM 
	Slide 28: Electron Levels in a Periodic Potential SECOND PROOF OF BLOCH’s THEOREM 
	Slide 29: Electron Levels in a Periodic Potential SECOND PROOF OF BLOCH’s THEOREM 
	Slide 30: Electron Levels in a Periodic Potential SECOND PROOF OF BLOCH’s THEOREM 
	Slide 31: Electron Levels in a Periodic Potential SECOND PROOF OF BLOCH’s THEOREM 
	Slide 32

