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THE BORN - VON KARMAN BOUNDARY CONDITION 

•  By imposing an appropriate boundary condition on the wave 

functions we can demonstrate that the wavevector k must be real, 

and arrive at a condition restricting the allowed values or k.

•  The condition generally chosen is the natural generalization

of the condition used in the Sommerfeld theory of free electrons 

in a cubical box. 

•  As in that case, we introduce the volume containing the electrons 

into the theory through a Born-von Karman boundary condition 

or macroscopic periodicity.

•  We will not use a cubic  box now, instead we deal directly with 

the primitive cell of the underlying Bravais lattice.

this boundary condition treats a finite crystal as if it were infinite by assuming 
that the crystal repeats itself periodically in all directions
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❑ We will generalize the periodic boundary condition (2.4) in 

lecture No. 2:

❑ The generalized periodic boundary becomes:

( ) ( ) (8.22)i iN + =r a r

❑ where the ai are three primitive vectors and Ni are all integers of 

order N1/3,where N = N1N2N3 is the total number of primitive 

cells in the crystal.
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❑Applying Bloch‘s theorem to the boundary condition (8.22):
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❑ Therefore the general form for allowed Bloch wave vectors is: 
3

1

(8.27)i
i

i i

m

N=

=k b

❑  It follows that the volume k of k-space per allowed value of k is 
just the volume of the little parallelepiped with edges 𝒃𝑖/𝑁𝑖: 

( )31 2
1 2 3

1 2 3

1
. . (8.28)
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❑ since 𝒃1. 𝒃2 × 𝒃3  is the volume of primitive cell, Eq. (8.28)
says that  the number of allowed wavevector in a primitive cell of 
the reciprocal lattice is equal to the number of sites in the crystal.

❑ Since volume of primitive cell is: 2𝜋 3𝑁/𝑉  we have: (in 

agreement with (2.10) in lecture 2 for free electron gas)

( )
3

2
(8.29)
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

1- 

• Bloch' theorem introduces a wave vector k, which turns, out to 
play the same role in the periodic potential that the Free 
electron wave vector k plays in the Sommerfeld theory. 

•  Note, however that although the free electron wave vector is 
simply p/ħ, where p is the momentum of the electron. In the 
Bloch case k is not proportional to the electronic momentum.

•  This is clear on general grounds, since the Hamiltonian does not 
have complete translational invariance in  the presence of a non-
constant potential.

•  Therefore its eigenstate will not be simultaneous eigenstates of 
the momentum operator. 

•  This conclusion is confirmed by the fact that the momentum 
operator p = (ħ/i), when acting on  will not give a 
momentum eigenstate. 
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

• To show that the momentum operator p, when acting on  will 
not give a momentum eigenstate. 

( )( ) e

e ( ) (8.30)
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•  Hence, nk is not a momentum eigenstate.
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2- The wave vector k appearing in Bloch's theorem can always be 
confined to the first Brillouin zone (or to any other conventional 
primitive cell of the reciprocal lattice. It is because any k' not in the 
FBZ can be written as:

' (8.31)= +k k K

•  K is also a reciprocal lattice vector and k is in the FBZ. 
•  Since 𝑒𝑖𝑲.𝑹 = 1 for any K, then if (8.5) holds for k’, it will hold for k

( ) ( ) e (8.5)k.R
r R r

i + =

First Brillouin Zone (FBZ): The FBZ is the smallest region in reciprocal space that 
contains all unique wave vectors k necessary to describe the electronic states in 
a crystal. Any wave vector k′ outside the FBZ can be mapped back into the FBZ 
by adding or subtracting a reciprocal lattice vector K. ➔ reduced Brillouin Zone
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

3- 
• The index ,n appears in Bloch's theorem because for given k 

there are many solutions to the Schrödinger equation.
•  Let us look for all solutions to the Schrodinger equation that 

have the Bloch form:

( ) ( ) e (8.32)i

nk nku = k.r
r r

•  where k is fixed and u has the periodicity of the Bravais lattice.
•  Substituting this into the Schrodinger equation, we find that u is 

determined by the eigenvalue problem.

2 1
( ) ( ) ( ) ( ) (8.33)

2
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( ) ( ) (8.34)
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

•  Because of the periodic boundary condition we can regard (8.33) 

as a Hermitian eigenvalue problem restricted to a ingle primitive 

cell of the crystal. Because the eigenvalue problem is set is fixed 

in a finite volume, we can find an infinite family of solutions with 

discretely spaced eigenvalue.

4- 

• Although the full set or level can be described with k restricted 
to a single primitive cell, it is often useful to allow k to range 
through all of k-space.

•  we can assign the indices n to the levels in such a way that for 
given n, the eigenstates and eigenvalues are periodic functions 
of k in the  reciprocal lattice: 

, ,

, ,

( ) ( )
(8.35)
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

5- 
• It can be shown that ,an electron in a level specified by band 

index n and wave vector k has a non-vanishing mean velocity, 
given by:

1
v ( ) ( ) (3.36)n = kk k

• It says that there are stationary levels for an electron in a 
periodic potential in which, in spite of the interaction of the 
electron with the fixed lattice of ions, it moves forever without 
any degradation of its mean velocity 
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Density of Levels (states)

❑ In this section we shall find out an expression of general form of 
density of states (levels):

❑ We want to find a general expression for D(), the number of 
states per unit frequency range. The number of allowed values of 
K for which the frequency is between  and  + d is: 

3

3( ) (8.37)
2

shell

L
D d d K 



 
=  
 



❑ The real problem is to evaluate the volume of this shell. We let 
dS. Denote an element of area. The element of volume between 
the constant frequency surfaces  and  + d is a right cylinder 
of base dS and altitude 𝑑𝐾⊥so that

3 (8.38)
shell

d K dS dK ⊥= 
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❑ The gradient of , which is K , is also normal to the surface  
constant, and the quantity

𝛻𝑘𝜔 𝑑𝑘⊥ = 𝑑𝜔 

is the difference in frequency between the two surfaces connected 
by 𝑑𝑘⊥. Thus the element of the volume is

3

3

3

(3.39)
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2
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❑ We divide both sides by d and write V = L3 for the volume of 
the crystal: the result for the density of states is:

( )
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3
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3

3

( ) (8.42)
2

(8.43)

| |

(8.44)
| |

(8.44)

( )
2

( )
2

1
(

| |
)

4

g

k

g

k

g

k

L d
D

v

v

dSV
D

v

dSV
D

d

dS

S
g

d
















 









=

 
=  
 











=

=

=









❑ we multiplied by 2/V : 2 for the allowed spin states. V to 
normalize to a unit volume V
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❑ We can alway expand any function obeying the Born- von 
Karman boundary condition (8.22).

❑ Therefore we have wave vectors of the form (8.27):

( ) c e (8.45)i = q.r

q

q

r

❑ Because U(r) is periodic in the lattice, its plane wave expansion 
will only contain plane waves with the periodicity of the lattice 
and hence with wave vectors that are of the reciprocal lattice.

( ) e (8.46)

With :

1
( )e (8.47)

i

i
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U U

U d U r
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=

=


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K
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K

r

r

❑ Where UK is the Fourier coefficients
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❑ Since U(r) is real, then:

* (8.48)U U− =K K

❑ If we assume that the crystal has inversion symmetry so that, for 
a suitable choice of origin U(r) = U(-r) then (8.46) implies that UK 
is real and thus:

*

2
2

2 2
2 2

(8.49)

( ) (8.50)
2

(8.45) in (8.50) for kinetic energy term:

q c e (8.51)
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❑ For the potential energy term (8.45) & (8.46) in (8.50):

( )

,
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'
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( ) e c e c e
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( ) c e (8.52)
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❑ Now, (8.51) & (8.52) back in (8.50):
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❑Since the plane waves satisfying the BVK boundary condition are
an orthogonal set, the coefficient of each term in (8.54) must 
vanish, and therefore for all allowed wave vectors q 
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❑Hence, we have

2
2

' '

'

q c c 0 (8.55)
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❑Let: q = k – K where K is selected such that k lies in the FBZ
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( ) c c 0 (8.56)
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then back to: ' '-
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❑This equation is same as Schrodinger equation but in momentum 
space. K’s in this equation are all reciprocal lattice vectors
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❑Now, back to Eq. (8.45):

( )

'

'

( ) c e (8.57)

e c e (8.58)

this is same as Block theorm with:

( ) c e (8.59)
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❑Hence, we have used a different rout than before to prove same 
theorem.
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