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Introduction

❑ Ions in a perfect crystal are arranged in a regular periodic array. 
Hence:

( ) ( ) (8.1)U U+ =r R r

❑ Since the scale of periodicity of the potential U is the size of a 
typical de Broglie wavelength of an electron in the Sommerfeld 
free electron model, it is essential to use quantum mechanics in 
accounting for the effect of periodicity on electronic motion

❑ The solution to the problem must add this potential to the 

Shrodinger Equaittion:

𝐻𝜓 = −
ℏ2𝛻2

2𝑚
+ 𝑈(𝒓) 𝜓 = 𝜀 𝜓                                                           (8.2)
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THE PERIODIC POTENTIAL 

❑ If a crystal follows the equation (8.1) then potential is periodic

A typical crystalline 
periodic potential, 
plotted along a line of 
ions and along a line 
midway between a 
plane of ions. (Closed 
circles are the 
equilibrium ion sites; 
the solid curves give 
the potential along the 
line of ions; the dotted 
curves give the 
potential along a line 
between planes of ions; 
the dashed curves give 
the potential or single 
isolated ions.) 
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BLOCH'S THEOREM 

• Bloch's theorem is a foundational principle in solid-state physics, named 
after the Swiss physicist Felix Bloch, who formulated the theorem in 1928. 

• The theorem addresses the behavior of electrons in a periodic potential, 
which is a typical scenario in crystalline solids. 

• Bloch's theorem has profound implications for understanding the electronic 
properties of materials and forms the basis for the band theory of solids. 

• Felix Bloch (1905–1983): Bloch introduced his theorem in his doctoral thesis 
while working under Werner Heisenberg. His work was essential in the 
development of quantum mechanics and its application to condensed matter 
physics.

• Quantum Mechanics Revolution: Bloch's theorem was formulated during the 
early years of quantum mechanics, a period of significant advancement in 
understanding atomic and subatomic phenomena. It applied the principles of 
quantum mechanics to the periodic potential experienced by electrons in a 
crystal lattice.



King Saud University, College of Science, Physics & Astronomy Dept. PHYS 674 (Band Theory of Solids)  © 2025

Electron Levels in a Periodic Potential

BLOCH'S THEOREM 

Main Points of Bloch's Theorem
1.Periodic Potential: Bloch's theorem applies to particles (typically electrons) 
moving in a periodic potential, such as that found in the crystal lattice of a 
solid. The periodicity of the potential is a direct consequence of the regular, 
repeating arrangement of atoms in a crystal.

2.Wave Function Formulation: The theorem states that the wave functions (ψ) 
of electrons in a periodic potential can be expressed as a product of two terms: 
a plane wave exp(ik·r) and a function u(r) that has the same periodicity as the 
crystal lattice. Mathematically, this is represented as:

• Here, k is the wave vector associated with the electron, r is the 

position vector, and uk(r) is a function that is periodic with the lattice.
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BLOCH'S THEOREM 

• Implications for Electron Dynamics: This formulation implies that 

electrons in a crystal do not behave as if they are free but are instead 

influenced by the periodic potential in a way that can be precisely 

described. The presence of the periodic potential leads to the formation of 

energy bands and band gaps, which are critical for understanding the 

electrical, thermal, and optical properties of materials.

• Energy Bands and Band Gaps: Bloch's theorem underpins the band 

theory of solids, explaining why electrons in a solid have discrete energy 

levels (bands) and why there are forbidden energy ranges (band gaps) 

where no electron states can exist. This explains the distinction between 

conductors, semiconductors, and insulators based on their electronic 

band structures.

• Brillouin Zones: The theorem also leads to the concept of Brillouin zones 

in the reciprocal lattice, which are key to understanding electron 

dynamics, including the behavior of electrons under external fields, and 

phenomena such as electron diffraction and the formation of Fermi 

surfaces in metals.
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Proof of BLOCH'S THEOREM 

•Blue line when using no periodic potential V=0

•Black lines when it is turned on
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Proof of BLOCH'S THEOREM 

• Block Theorm is a consequence of the periodic potential that electrons encounter

• Why? Due to symettry of the system



King Saud University, College of Science, Physics & Astronomy Dept. PHYS 674 (Band Theory of Solids)  © 2025

Electron Levels in a Periodic Potential

BLOCH'S THEOREM 

❑The eigenstates  of the one-electron Hamiltonian 

𝐻 = −
ℏ2𝛻2

2𝑚
+ 𝑈(𝒓), 

where 𝑈 𝒓 + 𝑹 = 𝑈(𝒓), for all R in a Bravais lattice, can be chosen 
to have the form of a plane wave times a function with the 
periodicity of the Bravais lattice : 

( ) ( ) e (8.2)

wehre:

( ) ( ) (8.3)

( ) ( ) e (8.4)

or simply:

( ) ( ) e (8.5)

i

nk nk

nk nk

i

nk nk

i

u

u u



 

 

=

+ =

→

+ =

+ =

k.r

k.R

k.R

r r

r R r

r R r

r R r

❑ Either (8.2) or (8.5) can be used to express Bloch’s theorem 
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Proof of BLOCH'S THEOREM 

❑ For each Bravais lattice vector R. we define a translation 
operator TR which, when operating on any function f(r), shifts the 
argument by R:

Since the Hamiltonian is periodic,we have

In addition, the result of applying two successive translations does not depend on

the orde

( ) ( ) (8.6)

( ) ( ) ( ) ( ) (8.7)

(8.8)

T f f

T H H H HT

T H HT

   

= +

= + + = + =

 =

R

R R

R R

r r R

r R r R r r R

( )

' '

' ' ' )

r

r

 in which they are applied, since for any Tψ :

( ') (8.9)

The efore

(8.1

r

0

T T T T

T T T T T

  

+

= = + +

= =

R R R R

R R R R R R

r R R
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Proof of BLOCH'S THEOREM 

❑ Equations (8.8) and (8.10) assert that the TR for all Bravais lattice 
vectors R and the Hamiltonian H form a set of commuting 
operators. It follows from a fundamental theorem of quantum 
mechanics that the eigenstates of H can therefore be chosen
to be simultaneous eigenstates of all the TR : 

(8.11)

( ) (8.12)

H

T c

 

 

=

=R R

❑ The eigenvalues c(R) of the translation operator are related 
because of the condition (8.10), for on the one hand:

' '

'

( ) ( ) ( ') (8.13)

(8.10)

( ') (8.14)

eigenvalues must atisfy:

( ') ( ) ( ') (8.15)

T T c T c c

T T c

c c c

  

 

= =

→

= +



+ =

R R R

R R

R R R

R R

R R R R
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Proof of BLOCH'S THEOREM 

❑ Now let ai , be three primitive vectors for the Bravais lattice. We 
can always write the c(ai) in the form:

2
( ) (8.16)iix

ic e


=a

❑ It then follows by successive applications of (8.15) that R is a 
general Bravais lattice vector given by:

31 2

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

(8.17)

c(R) ( ) ( ) ( ) (8.18)

( ) (8.19)

with :

(8.20)

nn n

i

n n n

c c c

c e

x x x

= + +

→

= + +

→

=

= + +

k.R

R a a a

a a a

R

k b b b

❑ where orthogonally condition was applied: 𝒃𝑖 . 𝒂𝑖 = 2𝜋𝛿𝑖𝑗
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Proof of BLOCH'S THEOREM 

❑ Summarizing, we have shown that we can choose the 
eigenstates   of H so that for every Bravais lattice vector R:

( ) ( ) ( ) (8.21)iT c e   = + = = k.R

R r R R r

❑ This is precisely Bloch’s theorem, in the form (8.5)
❑ Hence, we have proven the Bloch’s theorem using the translation 

vector property of the Bravais lattice in its reciprocal form
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THE BORN - VON KARMAN BOUNDARY CONDITION 

•  By imposing an appropriate boundary condition on the wave 

functions we can demonstrate that the wavevector k must be real, 

and arrive at a condition restricting the allowed values or k.

•  The condition generally chosen is the natural generalization

of the condition used in the Sommerfeld theory of free electrons 

in a cubical box. 

•  As in that case, we introduce the volume containing the electrons 

into the theory through a Born-von Karman boundary condition 

or macroscopic periodicity.

•  We will not use a cubic  box now, instead we deal directly with 

the primitive cell of the underlying Bravais lattice.

this boundary condition treats a finite crystal as if it were infinite by assuming 
that the crystal repeats itself periodically in all directions
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THE BORN - VON KARMAN BOUNDARY CONDITION

❑ We will generalize the periodic boundary condition (2.4) in 

lecture No. 2:

( ) ( ) (8.22)i iN + =r a r

❑ where the ai are three primitive vectors and Ni are all integers of 

order N1/3,where N = N1N2N3 is the total number of primitive 

cells in the crystal.

❑ Applying Bloch‘s theorem to the boundary condition (8.22):

2

( ) ( ) e (8.23)

With :

e 1 (8.24)

and

e 1 (8.25)

=integer (8.26)

i i

i i

i i

iN

nk i i nk

iN

iN x

i
i i

i

N

m
x m

N



 + =

=

=

 =

k.a

k.a

r a r
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THE BORN - VON KARMAN BOUNDARY CONDITION

❑ Therefore the general form for allowed Bloch wave vectors is: 
3

1

(8.27)i
i

i i

m

N=

=k b

❑  It follows that the volume k of k-space per allowed value of k is 
just the volume of the little parallelepiped with edges 𝒃𝑖/𝑁𝑖: 

( )31 2
1 2 3

1 2 3

1
. . (8.28)

N N N N

 
 =  =  

 

bb b
k b b b

❑ since 𝒃1. 𝒃2 × 𝒃3  is the volume of primitive cell, Eq. (8.28)
says that  the number of allowed wavevector in a primitive cell of 
the reciprocal lattice is equal to the number of sites in the crystal.

❑ Since volume of primitive cell is: 2𝜋 3𝑁/𝑉  we have: (in 

agreement with (2.10) in lecture 2 for free electron gas)

( )
3

2
(8.29)

V


 =k
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

1- 

• Bloch' theorem introduces a wave vector k, which turns, out to 
play the same role in the periodic potential that the Free 
electron wave vector k plays in the Sommerfeld theory. 

•  Note, however that although the free electron wave vector is 
simply p/ħ, where p is the momentum of the electron. In the 
Bloch case k is not proportional to the electronic momentum.

•  This is clear on general grounds, since the Hamiltonian does not 
have complete translational invariance in  the presence of a non-
constant potential.

•  Therefore its eigenstate will not be simultaneous eigenstates of 
the momentum operator. 

•  This conclusion is confirmed by the fact that the momentum 
operator p = (ħ/i), when acting on  will not give a 
momentum eigenstate. 
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

• To show that the momentum operator p, when acting on  will 
not give a momentum eigenstate. 

( )( ) e

e ( ) (8.30)

i

n n

i

n n

u
i i

u
i





 = 

= + 

k.r

k k

k.r

k k

r

k r

•  Hence, nk is not a momentum eigenstate.
2- The wave vector k appearing in Bloch's theorem can always be 
confined to the first Brillouin zone (or to any other conventional 
primitive cell of the reciprocal lattice. It is because any k' not in the 
FBZ can be written as:

' (8.31)= +k k K

•  K is also a reciprocal lattice vector and k is in the FBZ. 
•  Since 𝑒𝑖𝑲.𝑹 = 1 for any K, then if (8.5) holds for k’, it will hold for k
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

3- 
• The index ,n appears in Bloch's theorem because for given k 

there are many solutions to the Schrödinger equation.
•  Let us look for all solutions to the Schrodinger equation that 

have the Bloch form:

( ) ( ) e (8.32)i

nk nku = k.r
r r

•  where k is fixed and u has the periodicity of the Bravais lattice.
•  Substituting this into the Schrodinger equation, we find that u is 

determined by the eigenvalue problem.

2 1
( ) ( ) ( ) ( ) (8.33)

2

with:

( ) ( ) (8.34)

H u U u u
m i

u u


  

=  + + =  
  

= +

k k k k k

k k

r k r r r

r r R
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

•  Because of the periodic boundary condition we can regard (8.33) 

as a Hermitian eigenvalue problem restricted to a ingle primitive 

cell of the crystal. Because the eigenvalue problem is set is fixed 

in a finite volume, we can find an infinite family of solutions with 

discretely spaced eigenvalue.

4- 

• Although the full set or level can be described with k restricted 
to a single primitive cell, it is often useful to allow k to range 
through all of k-space.

•  we can assign the indices n to the levels in such a way that for 
given n, the eigenstates and eigenvalues are periodic functions 
of k in the  reciprocal lattice: 

, ,

, ,

( ) ( )
(8.35)

n n

n n

 

 

= 


= 

k+K k

k+K k

r r
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GENERAL REMARKS ABOUT BLOCH‘S THEOREM 

5- 
• It can be shown that ,an electron in a level specified by band 

index n and wave vector k has a non-vanishing mean velocity, 
given by:

1
v ( ) ( ) (3.36)n = kk k

• It says that there are stationary levels for an electron in a 
periodic potential in which, in spite of the interaction of the 
electron with the fixed lattice of ions, it moves forever without 
any degradation of its mean velocity 
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Density of Levels (states)

❑ In this section we shall find out an expression of general form of 
density of states (levels):

❑ We want to find a general expression for D(), the number of 
states per unit frequency range. The number of allowed values of 
K for which the frequency is between  and  + d is: 

3

3( ) (8.37)
2

shell

L
D d d K 



 
=  
 



❑ The real problem is to evaluate the volume of this shell. We let 
dS. Denote an element of area. The element of volume between 
the constant frequency surfaces wand  + d is a right cylinder 
of base dS and altitude 𝑑𝐾⊥so that

3 (8.38)
shell

d K dS dK ⊥= 
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Density of Levels (states)

❑ The gradient of , which is K , is also normal to the surface  
constant, and the quantity

𝛻𝑘𝜔 𝑑𝑘⊥ = 𝑑𝜔 

is the difference in frequency between the two surfaces connected 
by 𝑑𝐾⊥. Thus the element of the volume is

3

3

3

(3.39)

( ) (3.40)
2

with

(3.41)

k g

shell

shell

d d
dS dK dS dS

v

L
D d d K

d K dS dK

  



 



 


⊥

⊥

= =


 
=  
 

=



 
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Density of Levels (states)

❑ We divide both sides by d and write V = L3 for the volume of 
the crystal: the result for the density of states is:

( )

( )

3

3

3

3

3

( ) (8.42)
2

(8.43)

| |

(8.44)

( )
2

( )
2 | |

g

g

g k

k

dSV
D

v

d

L d
D S

S

d
v

v

V

d

D












 











=

=

 
=  
 



= 








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SECOND PROOF OF BLOCH’s THEOREM 

❑ We can alway expand any function obeying the Born- von 
Kaiman boundary condition (8.22).

❑ Therefore we have wave vectors of the form (8.27):

( ) c e (8.45)i = q.r

q

q

r

❑ Because U(r) is periodic in the lattice, its plane wave expansion 
will only contain plane waves with the periodicity of the lattice 
and hence with wave vectors that are of the reciprocal lattice.

( ) e (8.46)

With :

1
( )e (8.47)

i

i

cell

U U

U d U r
v

−

=

=





K.r

K

K

K.r

K

r

r

❑ Where UK is the Fourier coefficients
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SECOND PROOF OF BLOCH’s THEOREM 

❑ Since U(r) is real, then:

* (8.48)U U− =K K

❑ If we assume that the crystal has inversion symmetry so that, for 
a suitable choice of origin U(r) = U(-r) then (8.46) implies that UK 
is real and thus:

*

2
2

2 2
2 2

(8.49)

( ) (8.50)
2

(3.45) in (3.50) for kinetic energy term:

q c e (8.51)
2 2

i

U U U

H U
m

m m

  



− = =

 
= −  + = 
 

−  = 

K K K

q.r

q

q

r
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SECOND PROOF OF BLOCH’s THEOREM 

❑ For the potential energy term (8.45) & (8.46) in (8.50):

( )

,

'

'

, '

( ) e c e c e

let '=

( ) c e (8.52)

i i i

i

U U U

U U





+

−

  
= =  
   

+

 =

  



K.r q.r K q .r

K q K q

K q K q

q .r

K q K

K q

r

q K q

r

❑ Now, (8.51) & (8.52) back in (8.50):
2

2 '

'

, '

2
2

' '

'

q c e c e c e (8.53)
2

q c c e 0 (8.54)
2

i i i

i

U
m

U
m

  



−

−

 
+ = = 

 

  
 − + =  

  

  

 

q.r q .r q.r

q K q K q

q K q q

q.r

q K q K

q K

❑Since the plane waves satisfying the BVK boundary condition are
an orthogonal set, the coefficient of each term in (8.54) must 
vanish, and therefore for all allowed wave vectors q 
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SECOND PROOF OF BLOCH’s THEOREM 

❑Hence, we have

2
2

' '

'

q c c 0 (8.55)
2

U
m

 −

 
− + = 

 
q K q K

K

❑Let: q = k – K where K is selected such that k lies in the FBZ

2
2

' '

'

2
2

' '

'

(8.55)
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then back to: ' '-
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❑This equation is same as Schrodinger equation but in momentum 
space. K’s in this equation are all reciprocal lattice vectors
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❑Now, back to Eq. (8.45):

( )

'

'

( ) c e (8.57)

e c e (8.58)

this is same as Block theorm with:

( ) c e (8.59)
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k K .r

k k K

K
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K.r

k K
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r

❑Hence, we have used a different rout than before to prove same 
theorem.
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