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The Drude Theory of Metals
Basic Assumptions of the Model

Todays Lecture Outline:

* Basic Assumptions of the Drude
Model for metals

 DCELECTRICAL CONDUCTIVITY OF A
METAL

* Hall Effect and Magnetoresistance

e ACELECTRICAL CONDUCTIVITY OF A
METAL

 Thermal Conductivity of Metals
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The Drude Theory of Metals
Basic Assumptions of the Model

(J Metals are excellent conductors of heat and electricity.

1 Indeed. the metallic state has proved to be one of the great
fundamental states of matter

1 3 years after Thomson's discovery of electrons (1897); Drude
constructed his theory of electrical and thermal conduction by
applying the highly successful kinetic theory of gases to a metal,
considered as a gas of electrons.

 In its simplest form kinetic theory treats the molecules of a gas
as identical solid spheres, which move in straight lines until they
collide with one another.

1 The time taken up by a single collision is assumed to be
negligible, and, except for the forces coming momentarily into
play during each collision; no other forces are assumed to
act between the particles.
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The Drude Theory of Metals
Basic Assumptions of the Model

1 This model assumes that electrons can move while nuclei are
considered immobile.

J At his time there was no precise notion of the origin of the
mobile electrons and the heavier, immobile, positively charged
particles. The solution to this problem is one of the fundamental
achievements of the modern quantum theory of solids.

J We assume that when atoms of a metallic element are
brought together to form a metal; the valence electrons become
detached and wander freely through the metal, while the
metallic ions remain intact and play the role of the immobile
positive particles in Drude’s theory.

. . . Nucleus
and when in a metal the nucleus and ion core retain :

their configuration in the free atom. But the valence | } Core electrons

electrons leave the atom to form the electron gas.
Valence electrons E Conductlion electrons
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The Drude Theory of Metals
Basic Assumptions of the Model

 For single isolated atom:
= +eZ,is the charge of the nucleus (Z, = atomic no.)
= -eZ_is the charge of surrounding electrons
= Zof these electrons are weakly bound to the nucleus
= (Z,-Z)is the no. of tightly bound electrons (core electrons)
1 When these isolated atoms condense to form a metal, the core
electrons remain bound to the nucleus to form the metallic ion,
but the valence electrons are allowed to wander far away from
their parent atoms.
 These electrons are called: conduction electrons
d On average there are: 10%? conduction electrons/cm?
J These densities are typically a thousand times greater than those
of a classical gas at normal temperatures and pressures.
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The Drude Theory of Metals
Basic Assumptions of the Model

The basic assumptions of the Drude model are:

[ Between collisions the interaction of a given electron, both with
the others and with the ions, is neglected and thus the electron
will move in a straight line (no external fields applied).

[ In the presence of externally applied fields each electron is taken
to move as determined by Newton's laws of motion in the
presence of those external fields, but neglecting the additional
complicated fields produced by the other electrons and ions.

1 The neglect of electron-electron interactions between collisions
is known as the independent electron approximation.

d The corresponding neglect of electron-ion interactions
is known as the free electron approximation

[ the free electron approximation must be abandoned if one is to
arrive at even a qualitative understanding of metallic behavior.
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The Drude Theory of Metals
Basic Assumptions of the Model

The basic assumptions of the Drude model are:

[ Collisions in the Drude model, as in kinetic theory, are
instantaneous events that abruptly alter the velocity of an
electron. Drude attributed them to the electrons bouncing off
the impenetrable ion cores

(J We shall assume that an electron experiences a collision with a
probability per unit time 1/1. We mean by this that the
probability of an electron undergoing a collision in any
infinitesimal time interval of length dt is just dt/~.

[ t: Relaxation time OR Collision time OR the mean free time

 the collision time 7 is taken to be independent of an electron's
position and velocity

1 Electrons are assumed to achieve thermal equilibrium with their
surroundings only through collisions
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Valency | Element | n (10°?/cm?) | n°/n
1 Li 4.70 0.8
Na 2.65 1.2

K 1.40 1.1

Rb 1.15 1.0

1 Cu 8.47 )
Ag 5.86 1.3

Au 5.90 1.5

2 Be 24.7 -0.2
Mg 8.61 -0.4

3 Al 18.1 -0.3

In 11.5 -0.3
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The Drude Theory of Metals

DC ELECTRICAL CONDUCTIVITY OF A METAL

[ Based on Ohm’s Law: V = IR (1.1)
J The Drude model provides an estimate of the resistance R

[ Or using resistivity: E = p] (1.2)
dj=1/A and thus: R = pL/A
4 j=-nev,, (1.3)

J where n = no. electrons per unit volume
4 v, Is defined as:

eEt
Yavg =~
nezt
m
] = oF
ne3t
= (1.5)

1 This establishes the linear dependence of jon E
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The Drude Theory of Metals

DC ELECTRICAL CONDUCTIVITY OF A METAL

1 Hence, the relaxation time is:

m

T = (1.6)

pne?

d At any time t, the average electronic velocity v is just p(t)/m,
where p is the total momentum per electron. Hence the current
density is:

j=—— (1.7)
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The Drude Theory of Metals

DC ELECTRICAL CONDUCTIVITY OF A METAL

ELECTRICAL RESISTIVITIES OF SELECTED ELEMENTS® DRUDE RELAXATION TIMES IN UNITS OF 10 '* SECOND"
ELEMENT 71K 273 K 73K (f_/gan K ELEMENT 77 K 273 K 373 K
R _(p/ 273 X Li 73 0.88 061
Li 1.04 8.55 12.4 1.06 Na 17 32
Na 0.8 4.2 Melted K 18 4.1
K 1.38 6.1 Melted Rb 14 28
Rb 2.2 11.0 Melted Cs g6 21
Cs 4.5 18.8 Melted Cu 21 27 19
Cu 0.2 1.56 2.24 1.05 Ag 20 40 g
Ag 0.3 1.51 2.13 1.03 An 0 10 31
e
c . ; ) L
Mg 062 39 5.6 1.05 g “ 2o iy
;:i : 2; 43 5.0 1.07 Se . hk
Ba 17 60 Bd 0.66 019
Nb 30 15.2 19.2 0.92 g al 042 0.33
Fe 0.66 89 14.7 121 Fe 3.2 0.24 0.14
Zn Ll 5.5 78 1.04 én 2.4 0.49 0.34
Cd e R Cd 24 0.56
Hg 538 Meited Melted Heg 0.7
Al 0.3 245 3.55 1.06 Al 6.5 0.80 0.55
Ga 275 13.6 Melted Ga 0.84 0.17
In 1.8 8.0 12.1 111 In 1.7 0.38 0.25
T 3.7 15 22.8 1.11 mn 091 0.22 0.15
Sn 2.1 10.6 158 1.09 Sn 1.1 023 0.15
Pb 4.7 19.0 27.0 1.04 Pb 0.57 0.14 0.099
Bi 35 107 156 1.07 Bi 0072 0.023 0.016
Sb 8 39 59 1.11 Sb 0.27 0.055 0.036
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The Drude Theory of Metals

Example 1

The resistivity of Cu is 1.7x10% Qm at 300 K and the electron
density is 8.5x1028 m-3,
(a) Calculate the relaxation time of electrons in Cu at 300 K .

(b) Calculate the mean free path of the electrons using Drude
approximation

Me 9.1 x 10731

== = 2.38 x 10714
"= pne? T 1.7 x 10°8.855 x 1028(1.6 X 10-19)2 S
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

J Hall assumed that if the current of electricity in a fixed conductor
is itself attracted by a magnet, the current should be drawn to
one side of the wire, and therefore the resistance experienced
should be increased but without experimental results.

Magnetic field B. y
R —

Section
perpendicular
to 2 axis;
just starting up.

Section
perpendicular |
to 2 axis;
drift velocity E
in steady state.
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

(1 Motion of electrons in magnetic and electric fields:

Fzmd—v=h%=—e£E+1VXBj 1.8)
dt dt C

If no magnetic field applied:

%h%:—eE:F (1.9)

Integrating both sides and rearranging terms

sk =— S Et
p

—>h5t—k=—eE=F

Adding the friction effect (proportional to 1/7)

h(d—+3j5k _F (1.10)
dt

T
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

 Equation (1.10) has two terms:

d :
h = ok (acceleration term)

and: h% (force of friction term).
Magnetic field adds:

F:—e(%vaj (1.11)

[ Please note that the c is added only if using the CGS system of
units.

 The force shown in eq. (1.8) is the total force on the electron and
is called: Lorentz force
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

Using mv = hdk : then use B at z direction, (1.8) leads to:

m d—+1 v=—e(E+EVxBj (1.12)
dt = C
m d—+l vV, =—€ Ex-l-EVy (1.13)
dt = C
d 1 B
mf —+—-v,=—e|E, ——V 1.14
dt 7))’ Y ¢ (1.14)
m d—+l v, =—€E, (1.15)
dt =
- ) 17 J A
UXB — | vy vy
Cy B4y B2
Nhele - Ly = Bx —o /@f@'&

s

1 .

- (LQXIZ < ; C’Ll«yfzé_a)jc 7/:7,%
A ) -

——a(’lﬂx @g._(-)):JMXg
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

LAt equilibrium, derivative = 0

et

vV, =——E, —a.wv, (1.16)
m

v, =—LE +au, (L.17)
m

v, = LE (1.18)
m

din Hall experiment, a new voltage builds up across the
conductor due to the build-up of charges:

er |
v, =——E, +o,
m
er
”HEV =, -V, - (1.19)

et
v, =0, ~.—E, =aw
m

X
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

er er
VW, =——E, —aowv,6 =-——E,
m m

.’.e—z-Ey =a)cr(—e—TExj
m m

=aw,7(-E,)

y
, =—0.TE,

E
~.E

B, =BT (1.20)
mcC

InSI System :

E, __ B
m
e ' (1.21)

y

"I B

Where the cyclotron frequency is:

B

. =
mcC

c
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

AR, is called: Hall coefficient:

Iy = E,
m
eBrp
RH = 2m
LR
m
1
"R, = — (SI) (1.22)
ne

 This is a very striking result, for it asserts that the Hall coefficient
depends on no parameters of the metal except the density of
carriers
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

(Since we have already calculated n assuming that the atomic
valence electrons become the metallic conduction electrons, a
measurement of the Hall constant provides a direct test of the
validity of this assumption.

 In trying to extract the electron density n from measured Hall
coefficients one is faced with the problem that, contrary to the
prediction of (1.22 ), they generally do depend on magnetic field

 Furthermore, they depend on temperature and on the care
with which the sample has been prepared

 This result is somewhat unexpected, since the relaxation time T,
which can depend strongly on temperature and the condition
of the sample, does not appear in (1.22).

(J However, at very low temperature, the measured Hall constants
do appear to approach a limiting value.
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

. . HALL COEFFICIENTS OF SELECTED ELEMENTS
Some Hall coefficients at IN MODERATE TO HIGH FIELDS®

high and moderate fields are  yerar VALENCE 1/Rnec
listed in the table . Note the Li ! 0.8
. . Na 1 1.2
occurrence of cases in which K 1 1.1
. ” . Rb 1 1.0
R, is actually positive, Cs 1 0.9
apparently corresponding to ﬁ; ; -
1 1 T H Au 1 1.5
carriers with a positive o , b
charge. A striking example of Me : 04
4] ).
observed field dependence Al 3 03

tOta”y uneXpIained by DrUde ? These are roughly the limiting values assumed by Ry as the

. . . ficld becomes very large (of order 10° G), and the tempcrature
theo ry IS shown in the Flgu re very low. in carefully prepared specimens. The dalta are quoted
on the next S“de in the form ngy/n, where n, 1s the density for which the Drude

form (1.21) agrees with the measured Ry,:n, = — 1/R,ec.
Ewvidently the alkali metals obey the Drude result reasonably
well, the noble metals (Cu, Ag, Au) less well, and the remaining
entries, not at all.
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Hall Effect and Magnetoresistance
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

(1 The Drude result confirms Hall's observation that the resistance
does not depend on field, for when j, = 0 (as is the case in the
steady state when the Hall field has been established), the
expected result for the conductivity in zero magnetic field.

Figure 1.4
The quanuty ny/n = § np/n == 1[Rynec
—1/Rynec, for aluminum, as

a function of w.r. The free
clectron density n is based on W = eflt/me
A 3 1 1 1 |

a nominal chemical valence 0.01 0.1 1.0 10 100 1000
of 3. The high field value
suggests only one carrier per
primitive cell, with a positive
charge. (From R. Lick, Phys.
Stat. Sol. 18, 49 (1966).) 03— T
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The Drude Theory of Metals
Hall Effect and Magnetoresistance

1 However, more careful experiments on a variety of metals have
revealed that there is a magnetic field dependence to the
resistance, which can be quite dramatic in some cases.

(J Here again the quantum theory of solids is needed to explain
why the Drude result applies in some metals and to account for
some truly extraordinary deviations from it in others.
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