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Abstract
In the current study, we analyze the 2DWilliamson nanoliquid flow due to variable thickness surface
embedded in permeable space. Cattaneo–Christov heat and mass flux assumptions have been
employed for the embodiment of heat and mass equations. Flow is generated by an exponential
stretchable sheet. The Darcy–Forchheimer model is considered to scrutinize the liquid flow in a
porous medium. The case of prescribed exponential surface temperature of heat transfer is examined.
A model is contrived to comprise the partial differential equations and then transform them into
ordinary differential equations by imposing an appropriate non-dimensional similarity
transformation. The bvp4c technique is used to execute the laborious non-linear equations. A
numerical interpretation is manifested to incorporate the skin friction values. The significance of the
effect on the involved parameters is presented in graphs and discussed in detail.
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(Some figures may appear in colour only in the online journal)

Introduction

In 1929 Williamson [1] explicated the flow of pseudoplastic
liquids and presented a model to explain the flow of pseudo-
plastic liquids and empirically established the resultant role.
Williamson liquid is a type of pseudoplastic fluid having the
nature of shear thinning. Pseudoplastic fluids are mostly found in
non-Newtonian fluids. Many investigators have studied the
boundary layer flow of pseudoplastic fluids as it has extensive
relevance in many fields such as geophysics, biological sciences
and the petroleum industry. This type of flow extensively occurs
in the emulsion of coated sheets, food processing, polymer
processing, extrusion of polymer sheets, plastic manufacturing
and various other processes. The rheological characteristics of
fluid cannot be deliberated through the Navier–Stokes equation
alone. Blood is assumed to be behave like Williamson fluid,
which is why much attention has been paid to it by many
researchers. The Williamson parameter is the relation of the
relaxation to the retardation time, where relaxation time refers to
the time taken by the liquid to return from a deformed state to its
initial state. The time needed to rectify the applied force is

retardation. Malik et al [2] explored the numerical interpretation
for the magnetohydrodynamic (MHD) stagnation point of Wil-
liamson liquid over a stretchable cylinder in the neighborhood of
the stagnation point. Ariel et al [3] examined the extended
homotopy for laminar flow over an extending sheet. Akbar et al
[4] retrieved the numerical and analytic results of peristaltic flow
of Williamson fluid. The peristaltic flow of the Williamson
model in a asymmetrical channel was elucidated by Nadeem
et al [5]. Scarpi and Dapara [6] established a perturbation
method for Williamson fluid interjected into rock rupture.

There are several cases in chemical engineering, envir-
onmental, geophysical and industrial systems involving flow
transport through a porous medium. Flow subject to a porous
medium has extrusive applications; such applications may
comprise the movement of water in reservoirs, gas cleaning
filtration, insulation of granules and fiber, blood flow through
arteries, oil production, catalytic reactors, the fermentation
process and numerous others. It is clear from the literature
that classical Darcy law has attracted the interest of many
scientists due to its distinctive use in the field of science. The
phenomenon of Darcy law has been widely used in order to
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execute the flow of drenched permeable media. The main
drawback of Darcian expression is that it is faintly copious
under the circumstances of weaker porosity and lower velo-
city. The difficulty emerges when exceeding the Reynold’s
number, and the nature of the flow assimilates to a non-linear
flow, in which the substantial effects of inertial and boundary
demand the extension of non-Darcian expression. There are
many substantial experiments that involve a higher inertial
and boundary effect at a higher flow rate. In such conditions,
Darcy law fails to characterize the behavior of flow as lami-
nar, turbulent or transient. Eventually, in 1901, the Dutch
scientist Forchheimer [7] prolonged the quadratic velocity
expression for the prognosis of the effect of boundary and
inertial flow. Essentially dominant filtration velocities generate
quadratic stress for a permeable medium in the momentum
expression. Muskat [8] named this term as ‘Forchheimer’ and
verified that non-Darcian expression is also cogent for an
extreme Reynold’s number. Mondal and Pal [9] validated the
hydromagnetic convective diffusion of species in the Darcy–
Forchheimer model past an exponential space and concluded
that solutal distribution dwindles when increasing the electric
field parameter. Hakeem and Ganesh [10] accounted for the
Darcy–Forchheimer MHD nanoliquid flow with thermally
layered permeable space past an exponential extending sheet.
Sing et al [11] incorporated the Darcy–Forchheimer model and
studied the characteristics of Brinkman fluid flow with heat
transfer. The Darcy–Forchheimer model for magneto-Maxwell
fluid instigated by convective heat surface was studied by
Sadiq and Hayyat [12].

The typical type of common base liquids, essentially
ethylene glycol, engine oil and water, have inadequate char-
acteristics of low thermal conductivity. They do not meet the
required standard for use in prevalent industrial applications.
Conventional fluids have remarkable thermal conductivity.
The concept of new nano-technology was proposed by Choi
[13]. Nanofluids have extensive applications in the fields of
solar cells, refrigerators, computer chips, ceramic industry,
grinding machines, car engines, etc. A nanoliquid is a
homogeneous solution of base liquid and nanoparticles.
Nanoliquids remarkably transmute the performance of base
liquids which modify the thermal conductivity, density,
viscosity, etc. In 2006, Buongiorno [14] ascertained that the
first two models proposed in the previous literature have the
limitation that nanoparticles do not accelerate with fluid
streamlines in a passive manner. Considerable efforts were
made by researchers to execute the eccentric strength in the
viscosity and thermal conductivity of nanoliquids. Seven slip
components (Magnus effect, gravity, thermophoresis, inertia,
Brownian diffusion, diffusiophoresis and drainage) were
instigated by Buongiorno that can produce a relative velocity
between the base liquid and nanoparticles. He evaluated all of
the seven impacts and concluded that the eccentric accretion
in the thermal conductivity is the consequence of thermo-
phoresis and Brownian movement. Kuznetsov and Nield [15]
inspected a tangible existent case of the boundary layer which
explored the signification of Brownian diffusion and ther-
mophoresis. Mustafa et al [16] investigated the boundary
layer flow of nanoliquid past a non-linear stretchable sheet

with convective boundary condition. Eastman et al [17]
reported copper nanoparticles in ethylene glycol and pro-
duced the result that the shape of nanoparticles has a robust
impact on thermal conductivity. The impact of Lorentz force
around the stagnation point on tangent hyperbolic fluid was
contemplated by Salahuddin et al [18]. Rehman [19] con-
sidered the Buongiornio model and revealed the properties of
force convective flow and heat transfer in a penetrable
stretchable plate in the presence of second-order slip condi-
tions at the interface. Solar radiation impacts and thermal
generation in Carreu fluid with variable thickness were
explored by Khan et al [20].

The heat transport mechanism occurs between two distant
kinds of objects or temperature differences between distinctive
parts of a similar system. The heat transfer mechanism has
attracted the attention of many scientists due to its prodigious
applications such as power generation, nuclear reactors, phar-
maceuticals, the petroleum industry, crystal growth distillation
columns and numerous others. In the past few decades, inves-
tigators have employed the renowned Fourier’s [21] law of heat
induction, while Fick’s [22] law is usually intimated for the
essential aspects of mass transfer as previous literature shows.
The animalistic behavior of the concentration and temperature
diffusions are ignored in Fourier’s and Fick’s laws. The major
inability of Fourier’s and Fick’s laws is that concentration and
temperature distributions have parabolic expressions. The con-
siderable impediment of the parabolic equation was that initial
intrusion is observed completely in an entire system. This
behavior is unrealistic because it controverts the ‘principal of
causality’ which is recognized by the contradiction of heat
conduction. Cattaneo [23] assumed relaxation time by con-
sidering the relaxation time, and prolonged Fourier’s law. The
relaxation time along with Fourier’s law is sufficient to maintain
the transformation of heat throughout the propagation of temp-
erature waves with average speed. The Cattaneo equations result
in hyperbolic energy equations but still, Cattaneo law is
incompetent to explicate the entire behavior of heat transfer
because different materials retain distinct relaxation times. By
including the characteristics of temperature relaxation time,
Christov [24] modified Cattaneo’s law and acclimated the time
derivative to preserve the material invariant expression. Thermal
conductivity in a horizontal layer of viscous liquid was exam-
ined by Straughan [25] by employing the Cattaneo–Christov
theory. Burgers fluid flow under the influence of thermal con-
ductivity was explored by Waqas et al [26] by considering the
Cattaneo–Christov model. The Cattaneo–Christov theory was
incorporated by Han et al [27], who perceived the flow of
Maxwell stretched material. Viscous nanoliquid flow past a bi-
directional linearly stretchable sheet under the impact of the
Cattaneo–Christov theory double diffusion was explored by
Hayat et al [28]. Heat transfer of a rotating flow of Maxwell
liquid along with the Cattaneo–Christov heat flux theory was
investigated by Mustafa [29]. Khan et al [30] accomplished the
numerical epitome for Maxwell fluid instigated by an expo-
nentially stretching sheet by monopolizing the relaxation time.
For an incompressible liquid, the existence of the Cattaneo–
Christov model was accomplished by Zampoli and Tibullo [31].
Lie et al [32] elucidated the impact of the Cattaneo–Christov
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model for Maxwell hydromagnetic liquid instigated by a verti-
cally moving surface. With the appearance of the Cattaneo–
Christov heat and mass flux models, the characteristics of Jeffrey
fluid were scrutinized by Hayat et al [33].

Viscosity is a substantial feature of liquids, i.e. liquid
opposition to flow, which relies upon intermolecular forces and
pressure. When fluid is heated, the fluid viscosity decreases
continuously. Through precise elucidation, it has been confirmed
that the temperature of gases and the viscosity are directly
related to one another, and inversely related in the case of fluids.
The boundary layer flow for a viscous fluid enclosed by an
extending sheet with variable viscosity was perceived by Fand
et al [34]. The flow of Maxwell liquid past a stretchable sheet
with variable thickness was elucidated by Hayat et al [35]. Flow
over a continuously non-linear extending sheet with variable
viscosity was investigated by Khadar et al [36].

The essential objective of the current work is to deter-
mine the significance of nanoparticles in 2D Williamson fluid
flow confined by an extending sheet with Darcy–Forchheimer
permeable media. The characteristics of thermophoresis
and Brownian diffusion are also studied. The influence of
Cattaneo–Christov heat and mass flux models are also con-
sidered. By appropriate consideration of the initial condition,
the resultant equations are manipulated numerically by con-
sidering the algorithmic program bvp4c. The distinct involved
parameters are tabularized through a benchmark and graphi-
cally to prognosticate the importance of the various para-
meters on velocity, thermal and solutal profiles.

Mathematical formulation

We devise a steady, 2D boundary layer flow of an incompres-
sible Williamson nanoliquid with variable thickness drenched in
permeable space explicated through the Darcy–Forchheimer
model (as shown in figure 1). The heat and mass transfer

mechanism is evaluated by employing the Cattaneo–Christov
heat and mass flux theories. We presume that the stretching
sheet is shrunk in its own axis with velocity s=U exp x Lw 0 ( )/
and =y 0 is normal to the sheet.

Cauchy stress tensor for Williamson fluid model is
delineated as

t= - +S pI , 1( )
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where L¥ is the limiting viscosity at an infinite shear rate and
Λ0 is the limiting viscosity at zero shear rate. B1 is the first
Rivlin–Ericksen tensor and h. is delimited as
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For h.=0, Williamson fluid becomes a regular New-
tonian fluid.

We assumed a no-slip boundary condition. Here we also
presumed that the extended sheet was permeable. On the wall

x= -v x( ) is the suction/injection velocity. Under the afore-
mentioned specified assumptions, the constitutive equations are
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where K is the intrinsic permeability, ρ is the liquid density, μ is
the dynamic viscosity, d b= x Ke (/ is the inertia coefficient
of the porous medium and be is the drag coefficient.

Figure 1. Geometry of the model in 2D.
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The advanced heat conduction and mass diffusion
equations together with the thermal and solutal relaxation
time can be deduced as

l+ -  +  +  = - q q q v v q v q k T. . . , 7e t f1 1 1 1 1( ( ) ) ( )

l+ -  +  +  = - j j j v v j v j D C. . . , 8c t B1 1 1 1 1( ( ) ) ( )

where j q v, , ,1 1 l ,c le and DB represent the mass flux, heat
flux, velocity vector, relaxation time of mass and heat flux
and Brownian diffusion coefficient. Setting the condition
lc = l = 0e , the preceding equations turn into classical
Fourier’s and Fick’s laws. By establishing ∇.V=0, q t1 =

=j 0t1 we get the following thermal and solutal equations:

l+  -  = - q v q q v k T. . , 9e f1 1 1( ) ( )

l+  -  = - j v j j v D C. . . 10c B1 1( ) ( )

Eliminating q1 and j1 from equations (9) and (10),
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To transform the non-linear partial differential equations into
ordinary differential equations, we introduce these suitable
similarity transformations [37]:
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In case of prescribed exponential surface temperature, =T
q y + ¥T x L Texp 2 ,0 ( ( ) ( )/

j y= + ¥C C x L Cexp 2 . 140 ( ( ) ( ) ( )/

The governing equations yield the following form:
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and the relevant boundary conditions are
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Here s indicates the injection/suction parameter, l is the
Williamson parameter, g is the local porosity parameter, Fr is
the Forchheimer parameter, Pr is the Prandtl number, NB is the
Brownian movement parameter, dc is the thermal relaxation
time parameter, NT is the thermophoresis parameter, dc is
the concentration relaxation time parameter and Sc is the
Schmidt number. The miscellaneous dimensionless para-
meters appearing in equations (15) to (17) are
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The skin friction coefficient is formalized as
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and in dimensionless form the skin friction coefficient is

l
q
q

 =  +  -
-

C g g2 Re 2 1 , 19g
r

2
1⎛

⎝⎜
⎞
⎠⎟( ) [ ( ) ] ( )/

where =
s

n
Re .

L exp x

L0 ( )

Conclusion and analysis

This section is presented to clarify the interpretation of distinct
engrossed parameters relative to the velocity profile y¢g ,( )
temperature distribution q y( ) and solutal profile j y .( ) Figure 2
shows that the momentum layer thickness and velocity dis-
tribution decrease with a rise in the suction parameter while they
increase for the injection case. The reason behind this
phenomenon is that when fluid is inserted into the extending
surface it covers the area closer to the wall which yields an
increment in the momentum layer thickness. The reason for
suction, however, is that liquid movement is in the outward
direction from the area obstructed by the wall, which makes it
difficult for the boundary layer to stabilize. Figure 3 demon-
strates that increasing the Williamson parameterl yields a minor
decrease in the velocity field and boundary layer thickness. The
relaxation time is also extended by increasing the Williamson
parameterl, which shows that liquid requires more resistance to
flow; thus, viscous forces become further pre-eminent to the
motion of liquid and the velocity decreases slightly. Figure 4
illuminates the behavior of the Forchheimer parameter Fr on the
velocity profile. By enlarging Fr , a decay occurs in the velocity
distribution and related momentum layer thickness. This means
the boundary layer becomes thicker and therefore the liquid
cannot move freely. Figure 5 shows that the porosity parameter
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g has a slight impact on the velocity distribution. It reveals that
extreme values of g cause a decrease in the velocity profile. The
persistence of permeable media proceeds to inflate the opposi-
tion to liquid which causes a decay in liquid velocity and

associated momentum layer thickness. Figure 6 demonstrates
that the velocity distribution is influenced by the variable
thickness of qr . It is observed that the liquid velocity dwindles by
raising the temperature parameter. Significantly, the liquid

Figure 2. Effect of s on y¢g .( )

Figure 3. Effect of l on y¢g ( ).

Figure 4. Effect of Fr on y¢g .( )
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viscosity is directly proportional to the cohesive and adhesive
forces. With an increase in the cohesive and adhesive forces, the
resistance of the liquid rises because the density of the molecules
is also increased.

Figure 7 reveals that the energy field and thermal layer
thickness decrease with the emerging Prandtl number, Pr. The
Prandtl number is inversely proportional to the temperature
diffusivity and thus an escalation in Pr yields a lower

Figure 5. Effect of g on y¢g .( )

Figure 6. Effect of qr on y¢g .( )

Figure 7. Effect of Pr on q y .( )

6

Phys. Scr. 94 (2019) 125201 T Salahuddin et al



temperature diffusivity. If the heat diffusivity is lower than
the momentum diffusivity then the distance the fluid will
move to fully develop the velocity boundary layer is less
compared to the distance moved for the thermal boundary
layer to fully develop, causing a smaller entrance region for
the velocity layer compared to the entrance region for the
thermal boundary layer. Weaker heat diffusivity generates
senility in the thermal field and related thermal layer thick-
ness. Figure 8 shows the behavior of the thermophoresis
parameter NT on the energy profile. It reveals that greater
values of NT cause an increase in the thermal profile and
thermal layer thickness. Interpretation beyond this accession
is that exceeding values of NT generate an energetic force.
The vigorous force allows the agitation of nanoparticles
departs in the region of colder liquid which proceeds a vig-
orous thermal profile. Figure 9 shows the importance of the
Brownian movement parameter NB relative to the energy
profile. Acceleration in NB yields an abnormal flow of liquid
molecules, thus the kinetic energy of molecules rises and

exceeds the thermal layer thickness. Figure 10 shows that the
energy profile and thermal layer thickness decrease when we
increase the heat relaxation time parameter d .e For high values
of d ,e liquid particles take a longer time to deport the heat to
adjacent particles, which results in a lower energy distribution
and thermal boundary layer.

Figure 11 shows that a higher Schmidt number, Sc,
produces a diminution in the nanoparticle volume fraction
distribution, as the Schmidt number is inversely related to
Brownian diffusivity. An accession in Sc generates poor
Brownian diffusivity. This state causes a decline in the
nanoparticle volume fraction distribution and thinner solutal
boundary layer. Figure 12 shows the effects of the Brownian
motion parameter NB on solutal distribution. With a higher NB,
the concentration profile and boundary layer thickness
dwindle as there is a rise in molecular contact. The Brownian
movement NB exploits a force to apart from the molecules in
the reverse direction of the solutal gradient, thus nanoparticles
come into more persistent form. The excessive Brownian

Figure 8. Effect of NT on q y .( )

Figure 9. Effect of NB on q y .( )
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force yields a lower solutal distribution. Figure 13 reveals that
the boundary layer thickness and solutal gradient are extended
by increasing the thermophoresis parameter N .T The thermal
conductivity of the liquid is enhanced by the nanoparticles.

Thermal conductivity emerges for increasing values of NT

since increasing the thermal conductivity increases the
nanoparticle volume fraction distribution. Figure 14 reveals
the influence of the solutal relaxation time dc on the

Figure 11. Effect of Sc on j y .( )

Figure 12. Effect of NB on j y .( )

Figure 10. Effect of de on q y .( )
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nanoparticle volume fraction distribution. For greater d ,c the
solutal distribution and boundary layer thickness decrease.
When we increase d ,c molecules need further time for mass
particles to its neighboring particles, which generates a
weaker nanoparticle volume fraction profile. Table 1 shows
the skin friction coefficient-Re Cg

1
2 for miscellaneous values

of q ,r gF , ,r s and l. We established that the skin friction
coefficient-Re Cg

1
2 has a decreasing trend for rising values of

the variable thickness parameter q ,r inertia coefficient F ,r

porosity parameter g, Williamson parameter l, and suction/
injection parameter s.

Concluding remarks

The aim of the current study was to address the Darcy–
Forchheimer flow of Williamson nanoliquid of variable
thickness restricted by a extending stretchable sheet using

Cattaneo–Christov theory. The results of the investigation are
summarized below:

• A diminution in velocity component y¢g ( ) is observed for
greater values of Williamson parameter l.

• The velocity component y¢g ( ) has the opposite influence
via porosity parameter g.

• A decrement is noted in the velocity distribution y¢g ( ) for
exceeding values of inertia coefficient F .r

• The velocity distribution y¢g ( ) has opposite trend through
variable thickness q .r

• For dominating values of NT , temperature and solutal
fields emerge.

• Temperature and solutal fields dwindle with an increase
in N .B

• Temperature and solutal distributions grow with the
increasing Pr number.

• Increasing the relaxation time de and solutal relaxation time
dc has the reverse effect on velocity and solutal distributions.

Figure 13. Effect of NT on j y .( )

Figure 14. Effect of dc on j y .( )
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