T
=)

—
1

King Saud University

m

g2 &

104 PHYS

s Law

b

(Gauss

Dr. Ayman Alismail ©




Contents

m Electric Flux
Gauss’s Law
M |

Application of Gauss’s Law to Various Charge Distributions

SeC. 24 .04 Conductors in Electrostatic Equilibrium

Phys 104 - Ch. 24 - Dr. Alismail ©




mm

Electric Flux Svemerr]

King Saud University

The electric flux @ is proportional to the number of electric field Area = A
lines penetrating some surface.
The electric flux @g is the product of the magnitude of the
electric field E and surface area A perpendicular to the field. _\\ S
— —
The electric flux @ has units of newton-meters squared per ..‘*--..*}__\: ::"““
.‘"‘l “-“"'--.___‘
coulomb (N - m?/C). \\\
————
Sy < N
If the surface under consideration is perpendicular to the field: Q"“: EH'““:-‘-‘-.____‘
-‘.""l-.__ ey _-"""'--..___'
\\-. H-‘-"""'--.
"l-..___‘_-_‘---

Field lines representing a uniform electri
penetrating a plane of area A perpendicul
The electric flux @ through this area i
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M Electric Flux

Example 24.01

The magnitude of the electric field 1.00 m from this charge is:

q
E - ke T'_Z
= 9% 107 x 1.00 x 107
- (1.00)2

E=9x%x103N/C

The field points radially outward and is therefore everywhere perpendicular
to the surface of the sphere. The flux through the sphere is thus:

®; = EA

& = E(4nr?)

®r =9 %103 x4 x3.14 x (1)
@y = 1.13 x 105 N - m2/C

g2 E1Joll
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» If the surface under consideration is not perpendicular to the field: Normal
@ 4 = EA' cos(180) g
7,
o s
l.-."‘:_i_‘..,ff 9

» The electric flux @ has a maximum value EA when 8 = 0° \\$s

» The electric flux ® is zero when 6 = 90° -\
""-.._*,..-f’ E

"!-.-r;!f‘-ﬂ'

Field lines representing a uniform electric field penetrating an area A that
is at an angle 0 to the field. Because the number of lines that go through
the area A’ is the same as the number that go through A, the flux throu
is equal to the flux through A and is given by @z = EA cos 6.
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Problem 24.04

(@) A'=0.10 X 0.30 = 0.03 m?
& 4o =EA cosO
@, 4 = 7.80 X 10* x 0.03 X cos(180)
Qg 4 =—234x10*N-m?/C

0.1
®) 4=o. = 0.06 m?
A =030 X ers = 006m

®p 4 = EAcos6
@y 4 = 7.80 x 10* X 0.06 X cos(60)
®p 4 = 2.34 X 103 N -m?/C

l . --\-.-""H-._\__ _.....--"'-..--.-.
(€) ®g rorqr = —2.34x 103 +234x103+0+0+0 Y S,
CDE, total = 0
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» In more general situations, the electric field may vary over a surface.

» The variation in the electric field over one element can be neglected if

the element is sufficiently small.

ADy = E;AA; cos0; = E; - M;

» If we let the area of each element approach zero, then the number of
elements approaches infinity and the sum is replaced by an integral.

Therefore, the general definition of electric flux is:

A small element of surface area AA;. The electric field
makes an angle 6; with the vector AA;, define
being normal to the surface element, and
through the element is equal to E;AA; co

Phys 104 - Ch. 24 - Dr. Alismail ©
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» A closed surface is defined as one that divides space into an

inside and an outside region, so that one cannot move from

one region to the other without crossing the surface.

» The net flux through the surface is proportional to the net
number of lines leaving the surface, where the net number
means the number leaving the surface minus the number

entering the surface.

» If more lines are leaving than entering, the net flux is

positive. If more lines are entering than leaving, the net flux

1s negative.
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A closed surface in an
electric field. The area
vectors  AA; are, by
convention, normal to the
surface and point outward.
The flux through an area
element can be positi
(element (1)), zer:
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Electric Flux
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Example  24.02

The net flux is the sum of the fluxes through all faces of the cube. First, note that the
flux through four of the faces (3), (3), and the unnumbered ones) is zero because E
1s perpendicular to dA on these faces.

The net flux through faces (1) and (2) is:

cpE:j E-d/f+j E.dA
1 2

o
/

Z

A closed surface in the shape of a cube in a uniform
electric field oriented parallel to the x axis. Side (4) is
the bottom of the cube, and side (1) is opposite side (2).
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Example  24.02

For face (1), E is constant and directed inward but dffl is directed outward (6
= 180°); thus, the flux through this face is:

=

]E-d,Z:j E(cos(180))dA=—Ef dA = —EA = —E|?
1 1

1 ,.../"""-// T _ E
= . . . . > . . N dA__""‘-- _ // i Oane
For face (2), E is constant and outward and in the same direction as dA, is directed i :.,1' 2 ~—
|

outward (6 = 0°); hence, the flux through this face is:

-

4
j E-dA=f E(cos(O))dA=Ej dA=EA=EI? G{ |
2 2 2 i /‘/*Emaﬁmxﬁx
Therefore, the net flux over all six faces is: / S {i‘_:_ pF ¢

4 e
®;=—-ELZ+E2+0+0+0+0 @/l,dA4
Cp =0 A closed surface in the shape of a cube in a uniform

electric field oriented parallel to the x axis. Side (4) is
the bottom of the cube, and side (1) is opposite side (2).
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» Gauss’s law describes the relationship between the net

electric flux through a closed surface (often called a

Gaussian t
gaussian surface) and the charge enclosed by the surface. P e / surface
¢E=7§E.dj=7§EdA=EjgdA [ E
k
dp = 2) = Ark,q
I
A spherical gaussian surface of radius r Closed surfaces of various shapes
surrounding a point charge g. When the surrounding a charge q. The net
> The net flux through any closed surface surrounding a point charge is at the center of the sphere, the electric flux is the same through

electric field is everywhere normal to all surfaces.

charge g is given by q/¢€, and is independent of the shape the surface and constant in magnitude.

of that surface.
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» When the point charge located outside a closed surface of

arbitrary shape, the net electric flux through a closed surface

that surrounds no charge is zero.

» In the case of many point charges (or a continuous distribution
of charge), the electric flux due to many charges is the vector

sum of the electric fields produced by the individual charges:
CI)E:fE).dA):f(El-I_EZ-I_...).dA)

» Gauss’s law, which is a generalization of what we have just

described, states that the net flux through any closed surface is:

Phys 104 -

A point charge located outside a
closed surface. The number of
lines entering the surface equals
the number leaving the surface.

Ch. 24 - Dr. Alismail ©
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The net electric flux through any
closed surface depends only on the
charge inside that surface. The net flux
through surface S is g, /€y, the net flux
through surface S" is (g, + q3)/¢€o,
and the net flux through surface S"' i
zero. Charge g, does not contri
the flux through any surfac
is outside all surfaces
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Example 24.03

(a) The flux through the surface is tripled because flux is proportional
to the amount of charge inside the surface.

(b) The flux does not change because all electric field lines from the
charge pass through the sphere, regardless of its radius.

(c) The flux does not change when the shape of the gaussian surface
changes because all electric field lines from the charge pass
through the surface, regardless of its shape.

(d) The flux does not change when the charge is moved to another
location inside that surface because Gauss’s law refers to the total
charge enclosed, regardless of where the charge is located inside
the surface.

Phys 104 - Ch. 24 - Dr. Alismail ©
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Problem 24.09

~ (5.00x107¢) + (=9.00 x 107¢) + (27.00 x 107°) + (—84.00 x 107°)

E 8.85 x 1012
®p = —6.89 X 10° N - m?/C

(b) Since the net electric flux is negative, more lines enter than leave the surface.

Phys 104 - Ch. 24 - Dr. Alismail ©




Gauss’s Law

Problem 24.21

(b)

(a) Oy = din
€o
170 x 10~¢

Pr =585 x 10-12
®p = 1.92 % 107 N - m?/C

1 1.92 x 107
o, = =3.20 X 106 N - m2/C

d —

( E )one face 6 6

The answer to (a) would remain the same, since the overall flux would remain the same. The
answer to (b) would change because the flux through each face of the cube would not be
equal with an asymmetric charge distribution. The sides of the cube nearer the charge would
have more flux and the ones further away would have less.

g2 E1Joll
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» Gauss’s law is useful in determining electric fields when the charge

distribution is characterized by a high degree of symmetry.

» The closed surface should satisfy one or more of the following

conditions:

1. The value of the electric field can be argued by symmetry to
be constant over the surface.

2. The dot product in Gauss’s law can be expressed as a simple
algebraic product E - dA because E and dA are parallel.

3. The dot product in Gauss’s law is zero because E and d4 are
perpendicular.

4. The field can be argued to be zero over the surface.

Phys 104 - Ch. 24 - Dr. Alismail ©
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Example  24.04

A single charge represents the simplest possible charge distribution, and we use Gaussian
this familiar case to show how to solve for the electric field with Gauss’s law. The / o e
following figure and our discussion of the electric field due to a point charge in -
Chapter 23 help us to conceptualize the physical situation. Because the space \
around the single charge has spherical symmetry, we categorize this problem as r
one in which there is enough symmetry to apply Gauss’s law. To analyze any \
Gauss’s law problem, we consider the details of the electric field and choose a p
gaussian surface that satisfies some or all of the conditions that we have listed \
above. We choose a spherical gaussian surface of radius r centered on the point q
charge, as shown in the following figure. The electric field due to a positive point

charge is directed radially outward by symmetry and is therefore normal to the

surface at every point. Thus, as in condition (2), E is parallel to dA at each point.
Therefore, E - dA = E dA and Gauss’s law gives:

O, = f{;‘-’ . dA = f E dA = 1 The point charge q is at the center of the

€o spherical gaussian surface, and E is parallel to
dA at every point on the surface.

Phys 104 - Ch. 24 - Dr. Alismail ©
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Example  24.04

By symmetry, E is constant everywhere on the surface, which satisfies condition

Gaussian
1), soitcanb d from the integral. Therefore:
(1), so it can be remove c(;m e integral. Therefore / o D
7€EdA=E(4m‘2)=— \
€o :
¥
where we have used the fact that the surface area of a sphere is 47r2. Now, we . W { ﬁ;: dA
solve for the electric field: Y
E=—1_ 7 E
4meyr
q
E=ke—

To finalize this problem, note that this is the familiar electric field due to a point

charge that we developed from Coulomb’s law in Chapter 23. Ui jpotifs eltvijge g 18 et e esii of die

spherical gaussian surface, and E is parallel to
dA at every point on the surface.
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Example  24.04

What If? What if the charge in the following figure were not at the center of the Gaussian
spherical gaussian surface?

e . + surface
Answer In this case, while Gauss’s law would still be valid, the situation would \

not possess enough symmetry to evaluate the electric field. Because the charge is r

not at the center, the magnitude of E would vary over the surface of the sphere and

the vector E would not be everywhere perpendicular to the surface. \\_!_ o } #

The point charge g is at the center of the
spherical gaussian surface, and E is parallel to
dA at every point on the surface.

Phys 104 - Ch. 24 - Dr. Alismail ©
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Application of Gauss’s Law to Various Charge Distributions

g2 E1Joll
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(a) Because the charge distribution is spherically
symmetric, we again select a spherical gaussian surface
of radius r, concentric with the sphere, as shown in Fig.
(a). For this choice, conditions (1) and (2) are satisfied,
as they were for the point charge in Example 24.4.
Following the line of reasoning given in Example 24.4,
we find that:

Q
E=ker—2

(for r > a)

Note that this result is identical to the one we obtained
for a point charge. Therefore, we conclude that, for a
uniformly charged sphere, the field in the region
external to the sphere is equivalent to that of a point
charge located at the center of the sphere.

S~ _~ Gaussian —
S sphere
(a) (b)
A uniformly charged insulating sphere of radius a and total charge
Q. (a) For points outside the sphere, a large spherical gaussian
surface is drawn concentric with the sphere. In diagrams such as
this, the dotted line represents the intersection of the gaussian
surface with the plane of the page. (b) For points inside the sphere, a
spherical gaussian surface smaller than the sphere is drawn.

Phys 104 - Ch. 24 - Dr. Alismail ©




Application of Gauss’s Law to Various Charge Distributions agesu ol

King Saud University

Example  24.05

(b) In this case we select a spherical gaussian surface
having radius r < a, concentric with the insulating
sphere (Fig. (b)). Let us denote the volume of this
smaller sphere by V'. To apply Gauss’s law in this
situation, it is important to recognize that the charge g;,, I
within the gaussian surface of volume V' is less than Q.
To calculate q;,,, we use the fact that g;,, = pV":

' 4 3 N o

Gin =pV-=p §TL’T S~ 7~ Gaussian

By symmetry, the magnitude of the electric field is (a) sphere (b)

constant everywhere on the spherical gaussian surface : . . :

and is normal to the surface at each point—both A uniformly charged insulating sphere of radius a and total charge

conditions (1) and (2) are satisfied. Therefore, Gauss’s Q. (a) Eor points outside' the- sphere, a large spberical gaussian

law in the region < a gives: surface is drawn concentric with the sphere. In diagrams such as
_ this, the dotted line represents the intersection of the gaussian

% EdA =E f dA = E(47‘[T‘2) = qﬂ surface with the plane of the page. (b) For points inside the sphere, a

€o spherical gaussian surface smaller than the sphere is drawn.

Phys 104 - Ch. 24 - Dr. Alismail ©
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Example  24.05

(b) Solving for E gives:

37°)
qn  P\3 p

E = = = r
Amear?  4dmeyr? 3¢

Because p = Q/ G na3) by definition and because k, '.

= 1/(4me,) , this expression for E can be written as:

E=L3=ke%r (for r <a) \ ,
4meqga a "~ -7 Gaussian _
Note that this result for E differs from the one we E_) sphere b)
a )

obtained in part (a). It shows that E—>0 as r—0. : _ : :
Therefore, the result eliminates the problem that would A uniformly charged insulating sphere of radius a and total charge

exist at 7 = 0 if E varied as 1/r2 inside the sphere as it Q. (a) For points outside the sphere, a large spherical gaussian
does outside the sphere. That is, if E o 1/r2 for r < a surface is drawn concentric with the sphere. In diagrams such as

this, the dotted line represents the intersection of the gaussian
surface with the plane of the page. (b) For points inside the sphere, a
spherical gaussian surface smaller than the sphere is drawn.

the field would be infinite at » = 0, which is physically
impossible.

Phys 104 - Ch. 24 - Dr. Alismail ©
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Example  24.05

Thus, the value of the field is the same as we approach the surface from both
directions. A plot of E versus 7 is shown in the figure below. Note that the
magnitude of the field is continuous, but the derivative of the field magnitude
is not.

Suppose we approach the radial position r = a from
inside the sphere and from outside. Do we measure the
same value of the electric field from both directions?

From (a), we see that the field approaches a value from
the outside given by:

. Q 0,
E=lhr2<"erz>="eﬁ

From the inside, (b) gives us: A plot of E versus 7 for a uniformly
charged insulating sphere. The
electric field inside the sphere (r
< a) varies linearly with r. The
field outside the sphere (r > a) is

r the same as that of a point charge Q

located at r = 0.

: Q Q Q
E = 11m<k —T'> =ke$a=ke?

r>a\ ©a3

Phys 104 - Ch. 24 - Dr. Alismail ©
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(a) The calculation for the field outside the shell is identical
to that for the solid sphere shown in Example 24.5a. If we
construct a spherical gaussian surface of radius r > a
concentric with the shell (see Fig. (b)), the charge inside
this surface is Q. Therefore, the field at a point outside the
shell is equivalent to that due to a point charge Q located
at the center:

E=ker22 (for r > a)

Gaussian Gaussian

sphere I sphere

(a) The electric field inside a uniformly charged spherical shell is zero. The
field outside is the same as that due to a point charge Q located at the center of
the shell. (b) Gaussian surface for.r > a. (c¢) Gaussian surface for r < a.

Phys 104 - Ch. 24 - Dr. Alismail ©
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Application of Gauss’s Law to Various Charge Distributions agesuEloll R

King Saud University 7

(b) The electric field inside the spherical shell is zero. This
follows from Gauss’s law applied to a spherical surface of
radius r < a concentric with the shell (see Fig. (c)).
Because of the spherical symmetry of the charge
distribution and because the net charge inside the surface
i1s zero satisfaction of conditions (1) and (2) again—
application of Gauss’s law shows that E = 0 in the region

r < a. We obtain the same results using E = ke f 4 4 and

integrating over the charge distribution. This calculatlon is
rather complicated. Gauss’s law allows us to determine
these results in a much simpler way.

Gaussian Gaussian

T sphere I sphere

(a) The electric field inside a uniformly charged spherical shell is zero. The
field outside is the same as that due to a point charge Q located at the center of
the shell. (b) Gaussian surface for.r > a. (c¢) Gaussian surface for r < a.

Phys 104 - Ch. 24 - Dr. Alismail ©
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Example  24.07

The symmetry of the charge distribution requires that E be _
perpendicular to the line charge and directed outward, as gﬁ,‘;:il: &
shown in Fig. (a) and (b). To reflect the symmetry of the
charge distribution, we select a cylindrical gaussian \‘\
surface of radius r and length [ that is coaxial with the line

charge. For the curved part of this surface, E is constant in
magnitude and perpendicular to the surface at each
point—satisfaction of conditions (1) and (2). Furthermore,
the flux through the ends of the gaussian cylinder is zero
because E is parallel to these surfaces—the first
application we have seen of condition (3).

We take the surface integral in Gauss’s law over the entire

dA

L

gaussian surface. Because of the zero value of E - dA for (a) (b)

the ends of the cylinder, however, we can restrict our

attention to only the curved surface of the cylinder. (a) An infinite line of charge surrounded by a cylindrical gaussian
surface concentric with the line. (b) An end view shows that the

electric field at the cylindrical surface is constant in magnitude and
perpendicular to the surface.
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Example  24.07

The total charge inside our gaussian surface is Al. _
Applying Gauss’s law and conditions (1) and (2), we find giﬂ‘;:i‘;“
that for the curved surface: \’

h

Y > ;
jéEdA=EyﬁdA=EA=qﬂ=— :
€ € L
0 0 D e— E
The area of the curved surface is A = 2nrl; therefore: t dA
Al !
EQnmrl) = — l | /
€o 3
A 2k,
E = = A
2TEQT T
Thus, we see that the electric field due to a cylindrically
symmetric charge distribution varies as 1/r, whereas the (a) (b)

field ~external “to a - spherically symmetric  charge (a) An infinite line of charge surrounded by a cylindrical gaussian

e : 2 o pl : ne ol _ .
distribution varies as 1/, E' = 2k, - was also derived by surface concentric with the line. (b) An end view shows that the
integration of the field of a point charge. electric field at the cylindrical surface is constant in magnitude and

perpendicular to the surface.
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Example 24.07

What if the line segment in this example were not infinitely

the field near the ends of the line would be different from that far
from the ends. Thus, condition (1) would not be satisfied in this
situation. Furthermore, E is not perpendicular to the cylindrical
surface at all points—the field vectors near the ends would have
a component parallel to the line. Thus, condition (2) would not (2) (b)
be satisfied. For points close to a finite line charge and far from

Gaussian
(7
long ! surface ' o
If the line charge in this example were of finite length, the result \\ T .
for E would not be that given by E = 2k, 2 A finite line charge § E
) r . "_';'—-...‘__ E
does not possess sufficient symmetry for us to make use of ¢ i JA
Gauss’s law. This is because the magnitude of the electric field is
no longer constant over the surface of the gaussian cylinder— /

L

(a) An infinite line of charge surrounded by a cylindrical gaussian
surface concentric with the line. (b) An end view shows that the
the field. electric field at the cylindrical surface is constant in magnitude and
perpendicular to the surface.

the ends, E = 2ke% gives a good approximation of the value of

Phys 104 - Ch. 24 - Dr. Alismail ©
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Example 24.08

By symmetry, E must be perpendicular to the plane and must
have the same magnitude at all points equidistant from the plane.
The fact that the direction of E is away from positive charges
indicates that the direction of E on one side of the plane must be
opposite its direction on the other side, as shown in the following
figure. A gaussian surface that reflects the symmetry is a small
cylinder whose axis is perpendicular to the plane and whose ends E
each have an area A and are equidistant from the plane. Because
Eis parallel to the curved surface—and, therefore, perpendicular
to dA4 everywhere on the surface—condition (3) is satisfied and
there is no contribution to the surface integral from this surface.

A cylindrical gaussian
surface penetrating an

For the flat ends of the cylinder, conditions (1) and (2) are b infinite  plane  of

satisfied. The flux through each end of the cylinder is EA; hence, X charge. The flux is EA

the total flux through the entire gaussian surface is just that . - through each end of

through the ends, ®; = 2EA. | - ‘ the gaussian surface
” _ Gaussian and zero through its
il surface curved surface.

Phys 104 - Ch. 24 - Dr. Alismail ©
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Example 24.08

Noting that the total charge inside the surface is q;,, = 04, we
use Gauss’s law and find that the total flux through the gaussian
surface is:
O = 2EA = ki = ﬁ
€0  €o
E = o
2€ 0 .A.
Because the distance from each flat end of the cylinder to the
plane does not appear in E = og/2¢,, we conclude that E _ [
= 0/2€y at any distance from the plane. That is, the field is \ A cylindrical gaussian
uniform everywhere. |' surface penetrating an
E infinite  plane  of
charge. The flux is EA
through each end of
the gaussian surface
Gaussian and zero through its
surface curved surface.

Phys 104 - Ch. 24 - Dr. Alismail ©



Example 24.08

Suppose we place two infinite planes of charge parallel to each
other, one positively charged and the other negatively charged.
Both planes have the same surface charge density. What does the
electric field look like now?

In this situation, the electric fields due to the two planes add in
the region between the planes, resulting in a uniform field of
magnitude o/€,, and cancel elsewhere to give a field of zero.
This is a practical way to achieve uniform electric fields, such as
those needed in the CRT tube.

Application of Gauss’s Law to Various Charge Distributions

Gaussian
surface

g2 E1Joll

King Saud University

A cylindrical gaussian
surface penetrating an
infinite  plane  of
charge. The flux is EA
through each end of
the gaussian surface
and zero through its
curved surface.
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Problem 24.24

keQr 8.99 X 102 x 26.0 x 1076 x 0.1

(b) E=—3 047 =365 N/C
k,Q 8.99 x 10° x 26.0 x 107° .
(c) E= 2 = 0.4)? = 1.46 x 10° N/C
k,Q 8.99 x 10° x 26.0 x 107°
d = € — — 5
) E=—5 05 6.49 x 105 N/C

The direction for each electric field is radially outward.
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Problem 24.31

(@A) E=0

k.Q 899 x10%x32.0x107°
® £=-75 02 7.19 x 106 N/C

The direction of the electric field is radially outward.
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@ 5 _ 2k
T
_ 2x899x10° y 2.00x 1076
B 0.1 7.00

E =514x10*N/C ,radially outward
(b) &5 =EAcos6
& = E(2nrl) cos(0)

®p =514%x10*x2x%x3.14x0.1x0.02x1
& = 646 N-m?/C

Phys 104 - Ch. 24 - Dr. Alismail ©




Application of Gauss’s Law to Various Charge Distributions agesuclloll B
B King Saud University 7

Problem 24.37

. o
 2¢

9.00 X 107°

E =
2(8.85 x 10-12)

E =5.08 x 10° N/C ; upward

Phys 104 - Ch. 24 - Dr. Alismail ©
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sec. 24.04 Conductors in Electrostatic

» When there is no net motion of charge within a conductor, the

E i E Gaussian
conductor is in electrostatic equilibrium. — + —- g, surface
o~ . -
» A conductor in electrostatic equilibrium has the following properties: — T — il \{{
/ e N
1. The electric field is zero everywhere inside the conductor. e T I\ N
2. If an isolated conductor carries a charge, the charge resides T | 5 ;‘
on its surface. 9 |
% /
——— ———
+ 3 &
+ . > P 4
A conducting slab in an external A conductor of arbitrary
electric field E. The charges induced on shape. The broken line
the two surfaces of the slab produce an represents a gaussian surface
electric field that opposes the external that can be as close to the
field, giving a resultant field of zero surface of the conductor as
inside the slab. we wish.
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» When there is no net motion of charge within a conductor, the E i F
_I;_
conductor is in electrostatic equilibrium. V& ;-'““ +
..I' -'/ \ +
» A conductor in electrostatic equilibrium has the following properties: Fl/,——ﬁr\ y > N
1. The electric field is zero everywhere inside the conductor. o «: /:’ A
B
2. If an isolated conductor carries a charge, the charge resides b n
on its surface. o B
3. The electric field just outside a charged conductor is — ++
perpendicular to the surface of the conductor and has a ++ 5
magnitude o /€y, where o 1s the surface charge density at that e Electric field pattern surrounding a
: , charged conducting plate placed
point. A gaussian surface in the shape of a . S 2

near an  oppositely charged
conducting cylinder. Small pieces
of thread suspended in oil align
gaussian surface is EA. Remember that glla;[th ﬂ(lle) ele;:ltGrlc t?e ild hlril;::'s N;);Z
perpendicular to both conductors
and (2) there are no lines inside the
cylinder (E = 0).
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small cylinder is used to calculate the
electric field just outside a charged
density is greatest at locations where the radius of curvature conductor. The flux through the

4. On an irregularly shaped conductor, the surface charge

of the surface 1s smallest. = o
E is zero inside the conductor.



» Applying Gauss’s law to surface A, we obtain:

- A
fEdA=Ej£dA=EA=qﬂ=G—
€o €o

» Where we have used the fact that g;,, = oA. Solving for E gives for

the electric field just outside a charged conductor:

S 22k Conductors in Electrostatic Equilibrium
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i K\,/ -+
_I_
o +
L +
g +
+
+++

A gaussian surface in the shape of a
small cylinder is used to calculate the
electric field just outside a charged
conductor. The flux through the
gaussian surface is EA. Remember that

= . . .
E is zero inside the conductor.
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Electric field pattern surrounding a
charged conducting plate placed
near an  oppositely charged
conducting cylinder. Small pieces
of thread suspended in oil align
with the electric field lines. Note
that (1) the field lines are
perpendicular to both conductors
and (2) there are no lines inside the
cylinder (E = 0).
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Example 24.10

First note that the charge distributions on both the sphere and the shell are
characterized by spherical symmetry around their common center. To
determine the electric field at various distances r from this center, we
construct a spherical gaussian surface for each of the four regions of
interest. Such a surface for region (2) is shown in Fig. (a).

(b)

To find E inside the solid sphere (region (1)), consider a gaussian surface p 1 2kQ
of radius r < a. Because there can be no charge inside a conductor in r?
electrostatic equilibrium, we see that q;,, = 0; thus, on the basis of Gauss’s
law and symmetry, E; = 0 for r < a. I\E: ’%QQ
2
In region (2)—between the surface of the solid sphere and the inner PE— r

surface of the shell—we construct a spherical gaussian surface of radius r
where a < r < b and note that the charge inside this surface is +2Q (the A solid conducting sphere of radius A plot of E versus r for the two-
charge on the solid sphere). Because of the spherical symmetry, the a and carrying a charge 2Q conductor system

electric field lines must be directed radially outward and be constant in surrounded by a  conducting
magnitude on the gaussian surface. spherical shell carrying a charge —Q.
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Example 24.10

Following Example 24.4 and using Gauss’s law, we find that:

(b)

. 20
E,A = Ey(4nr?) = Im 2%
€0  €o
20 2keQ ‘
E, = = ora<r<b g2k
2 AT €T 2 r 2 (f ) E 2
In region (4), where r > c, the spherical gaussian surface we construct
surrounds a total charge of ¢, =2Q + (—Q) = Q . Therefore, E= %
application of Gauss’s law to this surface gives: I\ " ,
a b ¢
E, = keQ (forr > c) A solid conducting sphere of radius A plot of E versus r for the two-
4 2 c
r a and carrying a charge 20Q conductor system

surrounded by a  conducting
spherical shell carrying a charge —Q.
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Example 24.10

In region (3), the electric field must be zero because the spherical shell
1s also a conductor in equilibrium. Fig. (b) shows a graphical
representation of the variation of electric field with r.

If we construct a gaussian surface of radius r where b < r < ¢, we see
that g;, must be zero because E; = 0. From this argument, we
conclude that the charge on the inner surface of the spherical shell

(b)

must be —2Q to cancel the charge +2Q on the solid sphere. Because B E:Qk;Q
the net charge on the shell is —Q, we conclude that its outer surface "
must carry a charge +Q.
N
-
a b ¢

A solid conducting sphere of radius A plot of E versus r for the two-
a and carrying a charge 20Q conductor system
surrounded by a  conducting
spherical shell carrying a charge —Q.
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Problem ' 24.40

From Gauss’s Law:

ga=Y
€o

|

o=—=¢€yk

o = €yE

o =8.85% 10712 x (—130)
0 =-115x%x107% C/m?

o = —1.15 nC/m?
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Problem 24.42 Additional problem |

(a) All of the charge sits on the surface of the copper sphere at radius
15.0 cm. The field inside is zero.

(b) The charged sphere creates field at exterior points as if it were a
point charge at the center:

E_keq_8.99><109><40.Ox10‘9_ |24 % 10% N/C
oz (0.17)2 L /

keq 8.99 x 10° x 40.0 x 107°

(©) E=—5= (0.75)2

= 639N/C

(d) All three answers would be the same.
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Typical Electric Field Calculations Using Gauss’s Law

Charge Distribution Electric Field Location

Insulating sphere of radius R,
uniform charge density, and
total charge

r<R ke Q

R3'
Thin spherical shell of radius R k, % r=> R
and total charge Q g
0 r< R
Line charge of infinite length 2k, — Outside the line
and charge per unit length A !
Infinite charged plane having g ) .
surface charge density o Se, Everywhere outside the plane
Conductor having surface a .
i . — Just outside the conductor
charge density o €0 -
0 Inside the conductor

Phys 104 - Ch. 24 - Dr. Alismail ©
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