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Chapter 1
PROBABILITY THEORY

Contents
1.1 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Some properties of random variables . . . . . . . . . . . . . . . 12

1.5 Continuous random variables . . . . . . . . . . . . . . . . . . . 19

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Preliminary remarks

Nonparametric statistical methods: Not necessary to be an expert in probability theory to
understand the theory behind the methods.

With a few easily learned, elementary concepts, the basic fundamentals underlying most
nonparametric statistical methods become quite accessible.

Recommended procedure for study: Read the text, pencil through the examples, work the
exercises and problems.

1.1 Counting

Process of computing probabilities often depends on being able to count. Some sophisti-
cated methods of counting are developed to handle those complicated situations.

I Toss a coin once: H or T

I Toss a coin twice: HH,HT, TH or TT

I Toss a coin n times: 2n possible outcomes

Experiment: A process of following a well-defined set of rules, where the result of following
those rules is not known prior to the experiment.
Model:

I The value of coin tossing is that it serves as a prototype for many different models
in many different situations.
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I Good models: Tossing coins, rolling dice, drawing chips from a jar, placing balls into
boxes.

I They serve as useful and simple prototypes of many more complicated models arising
from experimentation in diverse areas.

I Excellent study of the diversity of models above is given by Feller (1968).

Event: Possible outcomes of an experiment.

Rule 1.1.1 If an experiment consists of n trials where each trial may result in one of k
possible outcomes, there are kn possible outcomes of the entire experiment.

Example 1.1.1 Suppose an experiment is composed of seven trials, where each trial con-
sist of throwing a ball into one of the three boxes.

I First throw: 3 different outcomes.

I First two throws: 32 = 9 outcomes.

I Seven throws: 37 = 2187 different outcomes. ¤

Rule 1.1.2 (Permutation) There are n! ways of arranging n distinguishable objects into
a row.

Example 1.1.2 Consider the number of ways of arranging the letters A, B and C in a
row.

I First letter can be any of the three letters.

I Second letter can be chosen two different ways once the first letter is selected.

I The remaining letter becomes the final letter selected.

I Total: (3)(2)(1) = 6 different arrangements:

ABC, ACB, BAC,BCA,CAB,CBA. ¤

Example 1.1.3 Suppose that in a horse race there are eight horses. If you correctly
predict which horse will win the race and which horse will come in second and wager to
that effect, you are said to “win the exacta”.

I Win the exacta: Need to purchase (8)(7) = 56 betting tickets.

I Outcomes of all eight positions: 8! = 40320 different ways. ¤

Rule 1.1.3 (Multinomial coefficient) If a group of n objects is composed of n1 objects
of type 1, n2 identical objects of type 2, . . . , nr, identical objects of type r, the number of
distinguishable arrangements into a row, denoted by

(
n

n1, . . . , nr

)
=

n!

n1! . . . nr!
.

In particular,
(

n
k

)
= n!

k!(n−k)!
if n1 = k and n2 = n− k.
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Example 1.1.4 (In example 2) Suppose A and B are identical. We will denote them
by the letter X, then

I Original 3! = 6 arrangements.

I Reduce to
(
3
2

)
= 3 distinguishable arrangements, XXC, XCX and CXX. ¤

Example 1.1.5 In a coin tossing experiment where a coin is tossed five times, the result
is two heads and three tails.

I The number of different sequences of two heads and three tails equals the number of
distinguishable arrangements of two objects of one kind and three objects of another,
which is

(
5
2

)
= 10.

HHTTT, THHTT, TTHHT,HTHTT, THTHT,

TTHTH, HTTHT, THTTH, TTTHH,HTTTH.

I How many different groups of k objects may be formed from n objects?
(

n
k

)
¤

Example 1.1.6 Consider again the three letters A,B and C. The number of ways of
selecting two of these letters is

(
3
2

)
= 3, that is, AB, BC and BC.

I To see how this relates to the previous discussion, we will “tag” two of the three
letters with an asterisk (*) denoting the tag.

A∗B∗C gives AB

A∗BC∗ gives AC

and AB∗C∗ gives BC ¤

Binomial coefficient

I Binomial coefficient:
(

n
i

)

I Binomial expansion:

(x + y)n =
n∑

i=0

(
n

i

)
xiyn−i

I Multinomial coefficient:
(

n
n1,...,nr

)

I Multinomial expansion:

(x1 + · · ·+ xr)
n =

∑
n1+···+nr=n

(
n

n1, . . . , nr

)
xn1

1 · · ·xnr
r

I Evaluate (2 + 3)4 by binomial expansion:

(2 + 3)4 =
4∑

i=0

(
4

i

)
2i34−i = 625
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1.2 Probability

Definition 1.2.1 (Sample space) The sample space is the collection of all possible dif-
ferent outcomes of an experiment.

Definition 1.2.2 (Sample point) A point in the sample space is a possible outcome of
an experiment.

Example 1.2.1 If an experiment consists of tossing a coin twice, the sample space con-
sists of the four points HH,HT, TH and TT . ¤

Example 1.2.2 An examination consisting of 10 “true or false” questions is administered
to one student as an experiment. There are 210 = 1024 points in the sample space, where
each point consists of the sequence of possible answers to the ten successive questions, such
as “TTFTFFTTTT”. ¤

Definition 1.2.3 (Event) An event is any set of points in the sample space.

I Empty set: A set with no points in it.

I Sure event: The event consisting of all points in the sample space.

I Mutually exclusive events: If two events have no points in common.

I Contained in: A ⊆ B

Probability

I To each point in the sample space there corresponds a number called the probability
of the point or the probability of the outcome.

Definition 1.2.4 (Probability of an event) If A is an event associated with an experi-
ment, and if nA represents the number of times A occurs in n independent repetitions of
the experiment, the probability of the event A, denoted by P (A), is given by

P (A) = lim
n→∞

nA

n
(1)

which is read “the limit of the ratio of the number of times A occurs to the number of
times the experiment is repeated, as the number of repetitions approaches infinity”.

Probability function

I The set of probabilities associated with a particular sample space is seldom known,
but the probabilities are assigns according to the experimenter’s preconceived notions.

Example 1.2.3 If an experiment consisting of the single toss of an unbiased coin, it is
reasonable to assume that the outcome H will occur about half the time.

I P (H) = 1/2 and P (T ) = 1/2. ¤
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Example 1.2.4 If an experiment consisting of three tosses of an unbi-
ased coin, it is reasonable to assume that each of the 23 = 8 outcomes
HHH,HHT, HTH, HTT, THH, THT, TTH, TTT is equally likely.

I The probability of each outcome is 1/8.

I P (3 tails)= 1/8, P (at least one head)= 7/8, and P (more heads than tails)= P (at
least two heads)= 4/8 = 1/2. ¤

Definition 1.2.5 (Probability function) A probability function is a function that assigns
probabilities to the various events in the sample space.

Conditional probability

Fig. 1

Definition 1.2.6 (Probability of joint events) If A and B are two events in a sample
space S, the event “both A and B occur”, representing those points in the sample space
that are in both A and B at the same time, is called the joint event A and B and is
represented by AB. The probability of the joint event is represented by P (AB).

P (A|B) = lim
n→∞

nAB

nB

= lim
n→∞

nAB/n

nB/n
=

P (AB)

P (B)
(3)

Definition 1.2.7 (Conditional probability) The conditional probability of A given B is
the probability that A occurred given that B occurred and is given by

P (A|B) =
P (AB)

P (B)
(4)

where P (B) > 0. If P (B) = 0, P (A|B) is not defined.

Example 1.2.5 Consider the rolling of a fair die, let A be the event “a 4,5, or 6 occurs”
and let B be the event “an even number occurs”.

I P (AB) = P (4 or 6) = 2/6 = 1/3.

I P (B) = 3/6 = 1/2.

I P (A|B) = P (AB)
P (B)

= 1/3
1/2

= 2
3
. ¤
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Independent events

Definition 1.2.8 (Independent events) Two events A and B are independent if

P (AB) = P (A)P (B). (5)

Example 1.2.6 In an experiment consisting of two tosses of a balanced coin, the four
points in the sample space are assumed to have equal probabilities. Let A be the event “a
head occurs on the first toss” and let B be the event “a head occurs on the second toss.”

I A: HH and HT .

I B: HH and TH.

I AB: HH.

I P (A) = 2/4, P (B) = 2/4 and P (AB) = 1/4.

I A and B are independent. ¤

Example 1.2.7 Consider the experiment consisting of one roll of a balanced die, where
the sample space consists of the six equally likely points.

I A: ”an even number occurs”

I B: ”at least a 4 occurs”

I C: ”at least a 5 occurs”

I A and B are not independent because P (A)P (B) = (1/2)(1/2), or 1/4 while P (AB) =
1/3.

I A and C are independent, because P (A)P (C) = 1/6, the same as P (AC). ¤

Independent experiments

Definition 1.2.9 (Two independent experiments) Two experiments are independent if
for every event A associated with one experiment and every event B associated with the
second experiment,

P (AB) = P (A)P (B).

It is equivalent to define two experiments as independent if every event associated with
one experiment is independent of every event associated the other experiment.

Definition 1.2.10 (n independent experiments) n experiments are mutually indepen-
dent if for every set of n events, formed by considering one event from each of the n
experiments, the following equation is true:

P (A1A2 · · ·An) = P (A1)P (A2) · · ·P (An) (6)

where Ai represents an outcome of the ith experiment, for i = 1, 2, . . . , n.

Example 1.2.8 Consider a biased coin, where H: probability p, and T : probability q =
1− p.
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I Consider three independent repetitions of the experiment,

P (H1T2H3) = P (H1)P (T2)P (H3) = pqp

P (exactly two heads) =

(
3

2

)
p2q = 3p2q

P (exactly k heads) =

(
n

k

)
pkqn−k

where P (H) = p. ¤

1.3 Random variables

Definition 1.3.1 (Random variable) A random variable is a function that assigns real
numbers to the points in a sample space.

Notation

I Random variables: W,X, Y or Z (capital cases)

I Observed values: w, x, y or z (lower cases)

Example 1.3.1 A consumer is given a choice of three products, soap, detergent, or Brand
A. Let the random variable assign the number 1 to the choice ”Brand A” and the number
0 to the other two possible outcomes. Then P (X = 1) equals the probability that the
consumer chooses Brand A. ¤

Example 1.3.2 Six girls and eight boys are each asked whether they communicate more
easily with their mother or their father.

I X: Number of girls who feel they communicate more easily with their mother.

I Y : Total number of children who feel they communicate more easily with their
mother.

I X = 3: The event ”3 girls feel they communicate more easily with their mothers.

I Y = 7: The event ”3 girls and 4 boys feel they communicate more easily with their
mothers. ¤

Example 1.3.3 Toss a coin twice. Let X denote the number of heads

I X = 1: The event contains only the points HT and TH. ¤

Definition 1.3.2 (Conditional probability) The conditional probability of X given Y ,
written

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
,

is the probability that the random variable X assumes the value x, given that the random
variable Y has assumed the value y.
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Example 1.3.4 (In Example 2.) Let Z = Y −X be the number of boys,

P (X = 3, Y = 7) = P (X = 3, Z = 4)

= P (X = 3)P (Z = 4)

=

(
6

3

)
p3(1− p)3

(
8

4

)
p4(1− p)4

P (Y = 7) =

(
14

7

)
p7(1− p)7

P (X = 3|Y = 7) =
P (X = 3, Y = 7)

P (Y = 7)
= .408 ¤

Definition 1.3.3 (Probability mass function, pmf) The probability mass function of the
random variable X, usually denoted by f(x), is the function that gives the probability of
X assuming the value x, for any real number x. In other words

f(x) = P (X = x). (5)

Definition 1.3.4 (Cumulative distribution function, cdf) The cumulative distribution
function of a random variable X, usually denoted by F (x), is the function that gives
the probability of X being less than or equal to any real number x. In other words,

F (x) = P (X ≤ x) =
∑
t≤x

f(t) (6)

where the summation extends over all values of t that do not exceed x.
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Definition 1.3.5 (Binomial distribution) Let X be a random variable. The binomial
distribution is the probability distribution represented by the probability function

f(x) = P (X = x)

=

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n (7)

where n is a positive integer, 0 ≤ p ≤ 1, and q = 1− p. Note that we are using the usual
convention that 0! = 1.

Example 1.3.5 An experiment consists of n independent trials where each trial may re-
sult in one of two outcomes, “success” or “failure”, with probabilities p and q, respectively,
such as with the tossing of a coin.

I X: Total number of success in the n trials.

I P (X = x) =
(

n
x

)
pxqn−x

I Thus X has the binomial distribution. ¤

Definition 1.3.6 (Discrete uniform distribution) Let X be a random variable. The dis-
crete uniform distribution is the probability distribution represented by the probability func-
tion

f(x) =
1

N
, x = 1, 2, . . . , N. (9)

Example 1.3.6 A jar has N plastic chips, numbered 1 to N . An experiment consists of
drawing one chip from the jar, where each chip is equally likely to be drawn. Let X equal
the number on the drawn chip. Then X has the discrete uniform distribution. ¤

Definition 1.3.7 (Joint probability mass function) The joint probability function
f(x1, x2, . . . , xn) of the random variables X1, X2, . . . , Xn is the probability of the joint
occurrence of X1 = x1, X2 = x2, . . . , and Xn = xn. Stated differently,

f(x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn). (10)

Definition 1.3.8 (Joint distribution function) The joint distribution function
F (x1, x2, . . . , xn) of the random variables X1, X2, . . . , Xn is the probability of the
joint occurrence of X1 ≤ x1, X2 ≤ x2, . . . , and Xn ≤ xn. Stated differently,

F (x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn). (11)

Example 1.3.7 Consider X and Y in Example 2:

f(3, 7) = P (X = 3, Y = 7) =

(
6

3

)(
8

4

)
p7(1− p)7

F (3, 7) = P (X ≤ 3, Y ≤ 7) =
∑

0≤x≤3
x≤y≤7

f(x, y)
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where

f(x, y) =

(
6

x

)
px(1− p)6−x

(
8

y − x

)
py−x(1− p)8−(y−x) ¤

Definition 1.3.9 (Conditional probability) The conditional probability function of X
given Y , f(x|y), is

f(x|y) = P (X = x|Y = y) =
f(x, y)

f(y)
. (14)

Example 1.3.8 As a continuation of Example 7, let f(x|y) denote the conditional prob-
ability function of X given Y = y. Then

I f(3|7) = P (X = 3|Y = 7) = .408

I f(y) = P (Y = y) =
(
14
y

)
py(1− p)14−y

f(x|y) =
f(x, y)

f(y)
=

(
6
x

)(
8

y−x

)
(
14
y

) 0 ≤ x ≤ 6,
0 ≤ y − x ≤ 8

(16)¤

Definition 1.3.10 (Hypergeometric distribution) Let X be a random variable. The hy-
pergeometric distribution is the probability distribution represented by the probability func-
tion

f(x) = P (X = x) =

(
A
x

)(
B

k−x

)
(

A+B
k

) 0 ≤ x ≤ A,
0 ≤ k − x ≤ B

(17)

where A, B and k are nonnegative integers and k ≤ A + B.

Definition 1.3.11 (Mutually independent) Let X1, X2, . . . , Xn be random variables with
the respective probability functions f1(x1), f2(x2), . . . , fn(xn) and with the joint probability
function f(x1, x2, . . . , xn). Then X1, X2, . . . , Xn are mutually independent if

f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn) (18)

for all combinations of values of x1, x2, . . . , xn.

Example 1.3.9 (In Example 8.)

I The probability function of X, the number of girls who feel they communicate more
easily with their mothers, out of 6 girls, is given by

f1(x) = P (X = x) =

(
6

x

)
px(1− p)6−x.

I The probability function of Y , the total number of children who feel they communi-
cate more easily with their mothers, out of 14 children, is given by

f2(y) = P (Y = y) =

(
14

y

)
py(1− p)14−y.
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I The joint probability function of X and Y being given by

f(x, y) = P (X = x|Y = y)P (Y = y) =

(
6

x

)(
8

y − x

)
py(1− p)14−y.

I f(x, y) 6= f1(x)f2(y) therefore, X and Y are not independent. ¤

1.4 Some properties of random variables

I We have already discussed some of the properties associated with random variables,
such as their probability functions and their distribution functions.

I The distribution function describes all of the properties of a random variable that are
of interest, because the distribution function reveals the possible values the random
variable may assume and the probability associated with each value.

I We will now introduce some other properties of random variables.

Quantile v.s. median, quartile, decile and percentile

I The most common method used in this book for summarizing the distribution of a
random variable is by giving some selected quantiles of the random variable.

I The term ”quantile” is not as well known as the terms ”median,” ”quartile,” ”decile,”
and ”percentile”.

Definition 1.4.1 (Quantile) The number xp for a given value of p between 0 and 1, is
called the pth quantile of the random variable X, if P (X < xp) ≤ p and P (X > xp) ≤ 1−p.

I If more than one number satisfies the definition of the pth quantile, we will use that
xp equals the average of the largest and the smallest number that satisfy Definition
1.

I Median: 0.5 quantile

I Third decile: 0.3 quantile

I Upper and lower quartiles: 0.75 and 0.25 quantiles

I Sixty-third percentile: 0.63 quantile

I The easiest method of finding the pth quantile involves using the graph of the distri-
bution function of the random variable.

Example 1.4.1 Let X be a random variable

P (X = 0) =
1

4
, P (X = 1) =

1

4
, P (X = 2) =

1

3
, P (X = 3) =

1

6
.
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Fig. 2

I .75 quantile: x.75 = 2

I Median: (1 + 2)/2 = 1.5 ¤

Test statistics

I Certain random variables called ”test statistics” play an important role in most
statistical procedures.

I Test statistics are useless unless their distribution functions are at least partially
known.

I Most of the tables in the appendix give information concerning the distribution func-
tions of various test statistics used in nonparametric statistics.

I This information is condensed with the aid of quantiles.

Definition 1.4.2 (Expected value) Let X be a random variable with the probability func-
tion f(x) and let u(X) be a real valued function of X. The expected value of u(X), written
E[u(X)], is

E[u(X)] =
∑

x

u(x)f(x). (1)

Our interest is confined mainly to two special expected values, the mean and the variance
of X.

Definition 1.4.3 (Mean) Let X be a random variable with the probability function f(x).
The mean of X,usually denoted by µ, is

µ = E(X). (2)

Example 1.4.2 (Mean of Bernoulli distribution) Consider a simple experiment.

I p: Success

I 1− p: Failure

I X ∼ binomial with n = 1

I E(X) = 1(p) + 0(1− p) = p ¤
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Example 1.4.3 Consider a businessman who always eats lunch at the same restaurant,
which has lunches priced at $4.00, $4.50, $5.00 and $5.50. Let X be the price of the lunch.

I P (X = 4) = .25, P (X = 4.5) = .35, P (X = 5) = .20, P (X = 5.5) = .20

I E(X) = 4(.25) + (4.5)(.35) + 5(.20) + (5.5)(.20) = 4.675 ¤

Scale

I The properties of the random variable that measure the amount of spread, or vari-
ability, of the random variable are called ”measures of scale.”

I Measure of location: mean and median.

I Measure of scale: interquartile range = x.75 − x.25, range and standard deviation.

I The most common measure of scale is the standard deviation, which equals the square
root of the variance.

Definition 1.4.4 (Variance) Let X be a random variable with mean µ and the probability
function f(x). The variance of X, usually denoted by σ2 or by Var(X), is

σ2 = E[(X − µ)2] = E[X2]− µ2. (5)

Example 1.4.4 (In Example 2.)

I σ2 = (1− p)2(p) + (0− p)2(1− p) = p(1− p) = pq

I E(X2) = (1)2(p) + (0)2(1− p) = p

I σ2 = E(X2)− µ2 = p− p2 = p(1− p)

I σ =
√

p(1− p) ¤

Example 1.4.5 (Mean and variance of a fair die) There are six identical chips
numbered 1 to 6. A monkey has been trained to select one chip and give its trainer.
Let X be the number on the chip. If each chip has probability 1/6 of being selected then
X has the discrete uniform distribution.

I E(X) =
∑6

k=1 k(1/6) = 31
2

I E(X2) =
∑6

k=1 k2(1/6) = 151
6

I Var(X) = E(X2)− µ2 = 151
6
− 31

2
= 211

12
¤

Definition 1.4.5 (Expected value of multivariate distribution) Let X1, X2, . . . , Xn be
random variables with the joint probability function f(x1, x2, . . . , xn), and let
u(X1, X2, . . . , Xn) be a real valued function of X1, X2, . . . , Xn. Then the expected value
of u(X1, X2, . . . , Xn) is

E[u(X1, X2, . . . , Xn)] =
∑

u(x1, x2, . . . , xn)f(x1, x2, . . . , xn).
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Theorem 1.4.1 (Mean of sum of random variables) Let X1, X2, . . . , Xn be random
variables and let

Y = X1 + X2 + · · ·+ Xn.

Then
E(Y ) = E(X1) + E(X2) + · · ·+ E(Xn).

Example 1.4.6 (Mean of binomial distribution) Y ∼ binomial with parameters n
and p. Then

E(Y ) = E(X1) + E(X2) + · · ·+ E(Xn)

= np. ¤

Lemma 1.4.1
∑N

i=a i = (N+a)(N−a+1)
2

and
∑N

i=1 i = (N+1)N
2

.

Example 1.4.7 (Mean of discrete uniform distribution) N chips in a jar, num-
bered from 1 to N . Y the sum of the numbers on the n drawn chips and Xi is the
number on the ith chip drawn.

I P (Xi = k) = 1
N

, k = 1, 2, . . . , N

I E(Xi) =
∑N

k=1 k
(

1
N

)
= N+1

2

I E(Y ) = E(X1) + · · ·+ E(Xn) = nN+1
2

¤

Definition 1.4.6 (Covariance) Let X1 and X2 be two random variables with means µ1

and µ2, probability functions f1(x1) and f2(x2), respectively, and joint probability function
f(x1, x2). The covariance of X1 and X2 is

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)]

= E(X1X2)− µ1µ2.

Cov(X1, X2) =
∑

(x1 − µ1)(x2 − µ2)f(x1, x2)

Example 1.4.8 Any particular person having an automobile accident within a given year
is about 0.1.

I This probability becomes .3 if it is known that the person had an automobile accident
the previous year.

I X1 = 0, 1 dependent on whether a particular person has no accident or at least one
accident during the first year of his or her insurance period.

I X2 defined for the second year.

I P (X1 = 0) = .9, P (X1 = 1) = .1

I E(X1) = .1, E(X2) = .1

I f(1, 1) = P (X1 = 1, X2 = 1) = P (X2 = 1|X1 = 1)P (X1 = 1) = (.3)(.1) = .03
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I E(X1X2) = (1)(1)f(1, 1) = .03

I Cov(X1, X2) = E(X1X2)− E(X1)E(X2) = .03− (0.1)(0.1) = .02 ¤

Correlation coefficient

I Correlation coefficient: a measure of linear dependence between two random vari-
ables.

I Although we will not prove it here, the correlation coefficient is always between −1
and +1.

I It equals zero when the two random variables are independent, although it may equal
zero in other cases also.

Definition 1.4.7 (Correlation coefficient) The correlation coefficient between two ran-
dom variables is their covariance divided by the product of their standard deviations. That
is, the correlation coefficient, usually denoted by ρ, between two random variables X1 and
X2 is given by

ρ =
Cov(X1, X2)√

Var(X1)Var(X2)
.

Lemma 1.4.2 (Sum of the first N positive integers)
∑N

i=1 i2 = N(N+1)(2N+1)
6

.

Proof. (Construct a telescoping series)

I Consider (i + 1)3 − i3 = 3i2 + 3i + 1.

I Sum of the previous identities for i = 0, 1, . . . , N , yields

N∑
i=0

(i + 1)3 − i3 =
N∑

i=0

3i2 + 3i + 1

(N + 1)3 − 03 = 3
N∑

i=0

i2 + 3
N∑

i=0

i +
N∑

i=0

1

= 3
N∑

i=0

i2 +
3N(N + 1)

2
+ (N + 1)

I It gives that
∑N

i=1 i2 = N(N+1)(2N+1)
6

. ¤

Example 1.4.9 Example 7 continued. N plastic chips numbered 1 to N , Xi equals the
number on the ith chip drawn from the jar,

I E(Xi) = N+1
2

I Var(Xi) = E(X2
i )− [E(Xi)]

2 = (N+1)(N−1)
12

I f(xi, xj) = 1
N−1

· 1
N

, xi 6= xj

Cov(Xi, Xj) = E[XiXj]− E(Xi)E(Xj)
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I Cov(() Xi, Xj) =
∑

k 6=s
ks

(N−1)N
− (

N+1
2

)2
= −N+1

12
¤

Theorem 1.4.2 (Independence implies zero covariance) If X1 and X2 are inde-
pendent random variables, the covariance of X1 and X2 is zero.

I The converse of Theorem 2 is not necessarily true as the following example illustrates.

Example 1.4.10 (Dependent random variables with zero covariance) Define
P (X = 0, Y = 0) = 1/2, P (X = 1, Y = 1) = 1/4, P (X = −1, Y = 1) = 1/4, then

I P (X = 0) = 1/2, P (X = 1) = 1/4,
P (X = −1) = 1/4

I P (Y = 0) = 1/2, P (Y = 1) = 1/2

I E(X) = 0, E(Y ) = 1/2

I Cov(X, Y ) = E(XY )− E(X)E(Y ) = (1)(1/4) + (−1)(1/4)− (0)(1/2) = 0

I X and Y are not independent, because

P (X = 0, Y = 0) = 1/2 6= P (X = 0)P (Y = 0) = 1/4. ¤

Theorem 1.4.3 (Variance of sum of random variables) Let X1, X2, . . . , Xn be ran-
dom variables and let

Y = X1 + X2 + · · ·+ Xn.

Then

Var(Y ) =
n∑

i=1

Var(Xi) +
n∑

i=1

n∑
j=1
j 6=i

Cov(Xi, Xj).

Proof.
To show that Cov

(∑n
i=1 Xi,

∑m
j=1 Yj

)
=

∑n
i=1

∑m
j=1 Cov(Xi, Yj).

Let µi = E[Xi] and νj = E[Yj]. Then E [
∑n

i=1 Xi] =
∑n

i=1 µi and E
[∑m

j=1 Yj

]
=

∑m
j=1 νj

Cov

(
n∑

i=1

Xi,

m∑
j=1

Yj

)
= E

[(
n∑

i=1

Xi −
n∑

i=1

µi

)(
m∑

j=1

Yj −
m∑

j=1

νj

)]

= E

[(
n∑

i=1

(Xi − µi)

) (
m∑

j=1

(Yj − νj)

)]

= E

[
n∑

i=1

m∑
j=1

(Xi − µi)(Yj − νj)

]

=
n∑

i=1

m∑
j=1

E [(Xi − µi)(Yj − νj)]
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Let Yj = Xj, j = 1, . . . , n. Then

Var

(
n∑

i=1

Xi

)
= Cov

(
n∑

i=1

Xi,

n∑
j=1

Xj

)

=
n∑

i=1

n∑
j=1

Cov (Xi, Xj)

=
n∑

i=1

Var(Xi) +
∑

i6=j

Cov(Xi, Xj) ¤

Example 1.4.11 (In Example 9) Let Xi equal the number on the ith chip drawn as
before, and let Y equal the sum of the Xis as in Example 7. Then

Var(Y ) = n
(N + 1)(N − 1)

12
+ n(n− 1)

(
−N + 1

12

)

=
n(N + 1)(N − n)

12
. ¤

Example 1.4.12 (Variance of binomial distribution) Consider n independent trials
with success probability p. Let Xi equal to 0 or 1, depending on whether the ith trial results
in “failure” or “success”, respectively. Then

Var(Y ) =
n∑

i=1

Var(Xi)

= npq. ¤

Theorem 1.4.4 (Mean and variance of binomial distribution) Let X be a random
variable with the binomial distribution

P (X = k) =

(
n

k

)
pkqn−k.

Then the mean and variance of X are given by

E(X) = np

Var(X) = npq.

Theorem 1.4.5 Let X be the sum of n integers selected at random, without replacement,
from the first N integers 1 to N . Then the mean and variance of X are given by

E(X) =
n(N + 1)

2

Var(X) =
n(N + 1)(N − n)

12
.

Example 1.4.13 An advertising agency drew 12 samples magazine ads for one of their
customers and ranked the ads from 1 to 12 on the basis of the agency’s opinion of which
ads would be the most effective in selling the product. The “most effective” ad was given
the rank 1, and so on. The customer, the manufacture of the product, selected 4 ads for
purchase. They were ranked 4, 6, 7, and 11 by the agency.
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I Assuming that the customer’s choice and the agency’s ranking were independent, the
sum of the ranks on the selected ads should be distributed the same as the sum of
the numbers on 4 chips selected at random out of 12 chips numbered 1 to 12.

I X: Sum of the ranks of 4 ads.

I From Theorem 5: E(X) = (4)(12+1)
2

= 26

I Var(X) = (4)(12+1)(12−4)
12

= 342
3

I σ =
√

Var(X) = 5.9

I The observed value of X is

X = 4 + 6 + 7 + 11 = 28

which is close to E(X) = 26. ¤

1.5 Continuous random variables

I All of the random variables that we have introduced so far in this chapter have one
property in common: their possible values can be listed.

I The list of possible values assumed by the binomial variables is 0, 1, 2, 3, 4, . . . , n−1, n.
No other values may be assumed by the binomial random variable.

I The list of values that may be assumed by the discrete uniform random variable could
be written as 1, 2, 3, . . . , N .

I Similar lists could be made for each random variable introduced in the previous
definitions and examples.

I A more precise way of stating that the possible values of a random variable may be
listed is to say that there exists a one-to-one correspondence between the possible
values of the random variable and some or all of the positive integers.

I This means that to each possible value there corresponds one and only one positive
integer, and that positive integer does not correspond to more than one possible value
of the random variable. Random variables with this property are called discrete.

I All of the random variables we have considered so far are discrete random variables.

I However, the theorems we have proven hold for all random variables, even though
we proved them only for discrete random variables.

Definition 1.5.1 (Discrete random variable) A random variable X is discrete if there
exists a one to one correspondence between the possible values of X and some or all of the
positive integers.

I The distribution function of a discrete random variable is a step function.
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I The graph of the distribution function of a continuous random variable has no steps
but rises only gradually.

Fig. 3

Definition 1.5.2 (Continuous random variable) A random variable X is continuous if
no two quantiles xp1 and xp2 of X are equal to each other, where p1 is not equal to p2.
Equivalently, a random variable X is continuous if P (X ≤ x) equals P (X < x) for all
numbers x.

Example 1.5.1 The distribution function graphed in Figure 4 is a continuous distribution
function.

I Typical continuous random variables: measuring time, weight, distance, volume, and
so forth.

I In practice, no actual random variable is continuous. ¤

Fig. 4

Example 1.5.2 The time it takes a racehorse to run a mile race is a continuous quantity,
because time is generally a continuous quantity. In practice, the time is measured to the
nearest 1/5 seconds. It is not unusual for a horse to run two races in identical lengths of
times. The actual lengths of time will be exactly equal with probability zero; therefore it is
reasonable to assume that the time of a rave, measured exactly, is a continuous random
variable that is approximately equal to the measured time of the race. ¤

I Another reason for considering continuous random variables is that the distribution
function of a discrete random variable sometimes may be approximated by a contin-
uous distribution function, resulting in a convenient method for computing desired
probabilities associated with the discrete random variable.

I Two continuous distribution functions commonly used for this purpose are the normal
distribution and the chi-squared distribution.
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Normal distribution

Definition 1.5.3 (Normal distribution) Let X be a random variable. Then X is said to
have the normal distribution if the distribution of X is given by

F (x) = P (X ≤ x) =

∫ x

−∞

1√
2πσ

e−
(y−µ)2

2σ2 dy.

I The normal distribution function cannot be evaluated directly, and so Table A1 may
be used to find approximate probabilities associated with normal random variables.

I Table A1 may be used to find approximate probabilities associated with normal
random variables.

I Quantiles of normal random variables with mean µ and variance σ2 may be found
from Table A1, with the aid of the equations gives in the following theorem.

Theorem 1.5.1 (Normalization) For a given value of p, let xp be the pth quantile of a
normal random variable with mean µ and variance σ2, and let zp be the pth quantile of a
standard normal random variable. The quantile xp may be obtained from zp by using the
relationship

xp = µ + σzp.

Similarly,

zp =
xp − µ

σ
.

Example 1.5.3 Let Z ∼ N(0, 1). Find P (Z ≤ 1.42).

I P (Z ≤ 1.4187) = .922, P (Z ≤ 1.4255) = .923.

I Interpolate to get P (Z ≤ 1.42) ∼= .9222. ¤

Example 1.5.4 Let X be the IQ of a person selected at random from a large group of
people. Assume that X ∼ N(100, 152). Find P (X > 125).

I P (X > 125) = 1− P (X ≤ 125)

I zp = xp−µ

σ
= 125−100

15
= 1.67

I P (X ≤ 125) = .95, P (X > 125) = .05

I P (X ≤ x.99) = .99

I x.99 = µ + σz.99 = 134.9 ¤

Example 1.5.5 A railroad company has observed over a period of time that the number
X of people taking a certain train seems to follow N(540, 322). How many seats should
the company provide on the train if it wants to be 95% certain that everyone will have a
seat?
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I x.95 = µ + σz.95 = 592.6 ¤

Central Limit Theorem

I The so-called central limit theorem appears in many different forms.

I All forms have in common the purpose of stating conditions under which the sum of
several random variables may be approximated by a normal random variable.

Theorem 1.5.2 (Central Limit Theorem) Let Yn be the sum of the n random variables
X1, X2, . . . , Xn, let µn be the mean of Yn and let σ2 be the variance of Yn. As n, the number
of random variables, goes to infinity, the distribution function of the random variable

Yn − µn

σn

approaches the standard normal distribution function.

I In practice, the number of random variables summed never goes to infinity.

I But the value of the central limit theorem is that in situations where the theorem
PROBABILITY THEORY holds, the normal approximation is usually considered to
be ”reasonably good” as long as n is ”large.”

I The terms ”reasonably good” and ”large” are subjective terms; therefore much lati-
tude exists in the practice of using the normal approximation.

I Usually if n is greater than 30 the normal approximation is satisfactory. However,
sometimes when n is as small as 5 or 10 the normal approximation can be quite good.

I If one of the following sets of conditions holds:

1. The Xi are independent and identically distributed, with 0 < Var(Xi) < ∞.

2. The Xi are independent but not necessarily identically distributed, but E(X3
i )

exists for all i and satisfies certain conditions.

3. The Xi are neither independent nor identically distributed, but represent the
successive drawings, without replacement, of values from a finite population of
size N , where N is greater than 2n. Also a condition stated in Fisz (1963, p.523)
should be satisfied.

Example 1.5.6 (Binomial distribution approximated by standard normal distribution)
Let Yn ∼ Binomial(n, p). Then for large n

Yn − np√
npq

≈ N(0, 1).

I Yn = X1 + X2 + · · ·+ Xn where Xi
iid∼ Binomial(1, p)

I E(Xi) = p and Var(Xi) = pq

I E(Yn) = np and Var(Yn) = npq ¤
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Example 1.5.7 Consider the sampling scheme where n integers are selected at random,
without replacement, from the first N integers, 1 to N .

I
Yn = X1 + X2 + · · ·+ Xn

the set C conditions hold and the distribution function

Yn − n(N+1)
2√

n(N+1)(N−n)
12

≈ N(0, 1).

I The expectation and variance of Yn are given in Theorem 1.4.5. ¤

Chi-squared distribution

Definition 1.5.4 (Chi-squared distribution) A random variable X has the chi-squared
distribution with k degrees of freedom if the distribution function of X is given by

F (x) = P (X ≤ x)

=

{∫ x

0
y(k/2)−1e−y/2

2k/2Γ(k/2)
dy if x > 0,

0 if x ≤ 0.

E(X) = k and Var(X) = 2k.

I X ∼ Gamma(k/2, 1/2)

I E(X) = k and Var(X) = 2k

I Table A2 gives some selected quantiles of a chi-squared random variables.

Theorem 1.5.3 (Distribution of sum of squares of independent standard normal random variables)
Let X1, X2, . . . , Xk be k independent and identically distributed standard normal random
variables. Let Y be the sum of the squares of the Xi.

Y = X2
1 + X2

2 + · · ·+ X2
k .

Then Y has the chi-squared distribution with k degrees of freedom.

Example 1.5.8 A child psychologist asks each of 100 children to tell which of two trucks
they would rather play with.

I 42 children selected green trucks

I 58 children selected red trucks

I X: represents the number of children who selected green trucks

I Assume X ∼ Binomial(100, .5)

I X−50
5

≈ N(0, 1)

I X∗ =
(

X−50
5

)2 ≈ χ2
1
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I P (X∗ ≤ 2.56) = 0.88 ¤

Example 1.5.9 (In Example 8.) The psychologist obtains two toy telephones, identical
except that one is white and the other is blue. She asks each of 25 children to choose one
to play with. Seventeen children chose the white telephone, and the other 8 preferred the
blue telephone. Let Y be the random variable equal to the number of 25 children selecting
the white telephone.

I Y−np√
npq

= Y−(1/2)(25)
5/2

≈ N(0, 1)

I Y ∗ =
(

Y−(1/2)(25)
5/2

)2

≈ χ2
1

I Combine data in Examples 8 and 9:

W = X∗ + Y ∗ ∼ χ2
2

I W = 2.56 + 3.24 = 5.80

I P (W ≥ 5.80) = 0.06 ¤

Theorem 1.5.4 (Distribution of sum of independent chi-squared random variables)
Let X1, X2, . . . , Xn be independent chi-squared random variables with k1, k2, . . . , kn degrees
of freedom, respectively. Let Y equal the sum of the Xi. Then Y is a chi-squared random
variable with k degrees of freedom, where

k = k1 + k2 + · · ·+ kn.

I MXi
(t) = 1/(1− 2t)ki/2

I MX(t) = 1/(1− 2t)
Pn

i=1 ki/2

I W = W1 + W2 + · · ·+ Wk where Wi
iid∼ χ2

1.

I E(W ) = k and Var(W ) = 2k.

I CLT: Z = W−k√
2k
≈ N(0, 1) if W ∼ χ2

k.

I wp = k +
√

2kzp

I wp =
(
zp +

√
2k − 1

)2
and k

(
1− 2

9k
+ zp

√
2
9k

)3

are better approximations given at

the bottom of Table A2.

1.6 Summary

1. Experiment: A process of following a well-defined set of rules, where the result of
following those rules is not known prior to the experiment. . . . . . . . . . . . . . . . . . . . . . . . 2

2. Event: Possible outcomes of an experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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3. If an experiment consists of n trials where each trial may result in one of k possible
outcomes, there are kn possible outcomes of the entire experiment. . . . . . . . . . . . . . . . 3

4. Permutation: There are n! ways of arranging n distinguishable objects into a row. 3

5. Multinomial coefficient: If a group of n objects is composed of n1 objects of type
1, n2 identical objects of type 2, . . . , nr, identical objects of type r, the number of
distinguishable arrangements into a row, denoted by

(
n

n1, . . . , nr

)
=

n!

n1! . . . nr!
.

In particular,
(

n
k

)
= n!

k!(n−k)!
if n1 = k and n2 = n− k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

6. Binomial coefficient:
(

n
i

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

7. Binomial expansion:

(x + y)n =
n∑

i=0

(
n

i

)
xiyn−i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

8. Multinomial coefficient:
(

n
n1,...,nr

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

9. Multinomial expansion:

(x1 + · · ·+ xr)
n =

∑
n1+···+nr=n

(
n

n1, . . . , nr

)
xn1

1 · · ·xnr
r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

10. Sample space: The collection of all possible different outcomes of an experiment. . 5

11. Sample point: A possible outcome of an experiment.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

12. Event: Any set of points in the sample space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

13. Empty set: A set with no points in it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

14. Sure event: The event consisting of all points in the sample space. . . . . . . . . . . . . . . . . 5

15. Mutually exclusive events: If two events have no points in common. . . . . . . . . . . . . . . 5

16. Contained in: A ⊆ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

17. Probability of an event: If A is an event associated with an experiment, and if
nA represents the number of times A occurs in n independent repetitions of the
experiment, the probability of the event A, denoted by P (A), is given by

P (A) = lim
n→∞

nA

n
(1)

which is read “the limit of the ratio of the number of times A occurs to the number of
times the experiment is repeated, as the number of repetitions approaches infinity”.
5
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18. Probability function: A function that assigns probabilities to the various events in
the sample space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

19. Probability of joint events: If A and B are two events in a sample space S, the event
“both A and B occur”, representing those points in the sample space that are in both
A and B at the same time, is called the joint event A and B and is represented by
AB. The probability of the joint event is represented by P (AB). . . . . . . . . . . . . . . . . . 6

20. Conditional probability: A given B is the probability that A occurred given that B
occurred and is given by

P (A|B) =
P (AB)

P (B)
(4)

where P (B) > 0. If P (B) = 0, P (A|B) is not defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

21. Two events A and B are independent if

P (AB) = P (A)P (B). (5)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

22. Two independent experiments: Two experiments are independent if for every event
A associated with one experiment and every event B associated with the second
experiment,

P (AB) = P (A)P (B)

It is equivalent to define two experiments as independent if every event associated
with one experiment is independent of every event associated the other experiment.7

23. n independent experiments: n experiments are mutually independent if for every set
of n events, formed by considering one event from each of the n experiments, the
following equation is true:

P (A1A2 · · ·An) = P (A1)P (A2) · · ·P (An) (6)

where Ai represents an outcome of the ith experiment, for i = 1, 2, . . . , n. . . . . . . . . . 7

24. Random variable: A function that assigns real numbers to the points in a sample
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

25. Conditional probability: The conditional probability of X given Y , written

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
,

is the probability that the random variable X assumes the value x, given that the
random variable Y has assumed the value y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

26. Probability mass function: The probability mass function of the random variable X,
usually denoted by f(x), is the function that gives the probability of X assuming the
value x, for any real number x. In other words

f(x) = P (X = x). (5)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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27. Distribution function: The distribution function of a random variable X, usually
denoted by F (x), is the function that gives the probability of X being less than or
equal to any real number x. In other words,

F (x) = P (X ≤ x) =
∑
t≤x

f(t) (6)

where the summation extends over all values of t that do not exceed x. . . . . . . . . . . . 9

28. Binomial distribution: Let X be a random variable. The binomial distribution is the
probability distribution represented by the probability function

f(x) = P (X = x)

=

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n (7)

where n is a positive integer, 0 ≤ p ≤ 1, and q = 1 − p. Note that we are using the
usual convention that 0! = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

29. Discrete uniform distribution: Let X be a random variable. The discrete uniform
distribution is the probability distribution represented by the probability function

f(x) =
1

N
, x = 1, 2, . . . , N. (9)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

30. Joint probability mass function: The joint probability function f(x1, x2, . . . , xn) of
the random variables X1, X2, . . . , Xn is the probability of the joint occurrence of
X1 = x1, X2 = x2, . . . , and Xn = xn. Stated differently,

f(x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn). (10)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

31. Joint distribution function: The joint distribution function F (x1, x2, . . . , xn) of the
random variables X1, X2, . . . , Xn is the probability of the joint occurrence of X1 ≤
x1, X2 ≤ x2, . . . , and Xn ≤ xn. Stated differently,

F (x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn). (11)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

32. Conditional probability function: The conditional probability function of X given Y ,
f(x|y), is

f(x|y) = P (X = x|Y = y) =
f(x, y)

f(y)
(14)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

33. Hypergeometric distribution: Let X be a random variable. The hypergeometric
distribution is the probability distribution represented by the probability function

f(x) = P (X = x) =

(
A
x

)(
B

k−x

)
(

A+B
k

) 0 ≤ x ≤ A,
0 ≤ k − x ≤ B

(17)
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where A,B and k are nonnegative integers and k ≤ A + B. . . . . . . . . . . . . . . . . . . . . . . 11

34. Mutually independent: Let X1, X2, . . . , Xn be random variables with the respective
probability functions f1(x1), f2(x2), . . . , fn(xn) and with the joint probability function
f(x1, x2, . . . , xn). Then X1, X2, . . . , Xn are mutually independent if

f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn) (18)

for all combinations of values of x1, x2, . . . , xn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

35. Quantile: The number xp for a given value of p between 0 and 1, is called the pth
quantile of the random variable X, if P (X < xp) ≤ p and P (X > xp) ≤ 1− p. . . . 12

36. Expected value: Let X be a random variable with the probability function f(x)
and let u(X) be a real valued function of X. The expected value of u(X), written
E[u(X)], is

E[u(X)] =
∑

x

u(x)f(x). (1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

37. Mean: Let X be a random variable with the probability function f(x). The mean of
X, usually denoted by µ, is

µ = E(X). (2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

38. Variance: Let X be a random variable with mean µ and the probability function
f(x). The variance of X, usually denoted by σ2 or by Var(X), is

σ2 = E[(X − µ)2] = E(X2)− µ2. (5)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

39. Expected value: Let X1, X2, . . . , Xn be random variables with the joint probability
function f(x1, x2, . . . , xn), and let u(X1, X2, . . . , Xn) be a real valued function of
X1, X2, . . . , Xn. Then the expected value of u(X1, X2, . . . , Xn) is

E[u(X1, X2, . . . , Xn)] =
∑

u(x1, x2, . . . , xn)f(x1, x2, . . . , xn).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

40. Mean of sum of random variables: Let X1, X2, . . . , Xn be random variables and let

Y = X1 + X2 + · · ·+ Xn.

Then
E(Y ) = E(X1) + E(X2) + · · ·+ E(Xn).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

41.
∑N

i=a i = (N+a)(N−a+1)
2

and
∑N

i=1 i = (N+1)N
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

42. Covariance: Let X1 and X2 be two random variables with means µ1 and µ2, probabil-
ity functions f1(x1) and f2(x2), respectively, and joint probability function f(x1, x2).
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The covariance of X1 and X2 is

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)]

= E(X1X2)− µ1µ2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

43. Correlation coefficient: The correlation coefficient between two random variables is
their covariance divided by the product of their standard deviations. That is, the
correlation coefficient, usually denoted by ρ, between two random variables X1 and
X2 is given by

ρ =
Cov(X1, X2)√

Var(X1)Var(X2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

44. Sum of the first N positive integers:
∑N

i=1 i2 = N(N+1)(2N+1)
6

. . . . . . . . . . . . . . . . . . . . . 16

45. Independence implies zero covariance: If X1 and X2 are independent random vari-
ables, the covariance of X1 and X2 is zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

46. Variance of sum of random variables: Let X1, X2, . . . , Xn be random variables and
let

Y = X1 + X2 + · · ·+ Xn.

Then

Var(Y ) =
n∑

i=1

Var(Xi) +
n∑

i=1

n∑
j=1
j 6=i

Cov(Xi, Xj).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

47. Mean and variance of binomial distribution: Let X be a random variable with the
binomial distribution

P (X = k) =

(
n

k

)
pkqn−k.

Then the mean and variance of X are given by

E(X) = np

Var(X) = npq.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

48. Let X be the sum of n integers selected at random, without replacement, from the
first N integers 1 to N . Then the mean and variance of X are given by

E(X) =
n(N + 1)

2

Var(X) =
n(N + 1)(N − n)

12
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

49. Discrete random variable: A random variable X is discrete if there exists a one to
one correspondence between the possible values of X and some or all of the positive
integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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50. Continuous random variable: A random variable X is continuous if no two quantiles
xp1 and xp2 of X are equal to each other, where p1 is not equal to p2. Equivalently, a
random variable X is continuous if P (X ≤ x) equals P (X < x) for all numbers x.20

51. Normal distribution: Let X be a random variable. Then X is said to have the normal
distribution if the distribution of X is given by

F (x) = P (X ≤ x) =

∫ x

−∞

1√
2πσ

e−
(y−µ)2

2σ2 dy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

52. Normalization: For a given value of p, let xp be the pth quantile of a normal random
variable with mean µ and variance σ2, and let zp be the pth quantile of a standard
normal random variable. The quantile xp may be obtained from zp by using the
relationship

xp = µ + σzp.

Similarly,

zp =
xp − µ

σ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

53. Central Limit Theorem: Let Yn be the sum of the n random variables X1, X2, . . . , Xn,
let µn be the mean of Yn and let σ2 be the variance of Yn. As n, the number of random
variables, goes to infinity, the distribution function of the random variable

Yn − µn

σn

approaches the standard normal distribution function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

54. Chi-squared distribution: A random variable X has the chi-squared distribution with
k degrees of freedom if the distribution function of X is given by

F (x) = P (X ≤ x)

=

{∫ x

0
y(k/2)−1e−y/2

2k/2Γ(k/2)
dy if x > 0

0 if x ≤ 0

E(X) = k and Var(X) = 2k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

55. Distribution of sum of squares of independent standard normal random variables:
Let X1, X2, . . . , Xk be k independent and identically distributed standard normal
random variables. Let Y be the sum of the squares of the Xi.

Y = X2
1 + X2

2 + · · ·+ X2
k .

Then Y has the chi-squared distribution with k degrees of freedom.. . . . . . . . . . . . . .23

56. Distribution of sum of independent chi-squared random variables: Let X1, X2, . . . , Xn

be independent chi-squared random variables with k1, k2, . . . , kn degrees of freedom,
respectively. Let Y equal the sum of the Xi. Then Y is a chi-squared random variable
with k degrees of freedom, where

k = k1 + k2 + · · ·+ kn.
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Preliminary remarks

I The concepts of probability theory introduced in the previous chapter do not cover
the entire field of probability theory.

I Bridge the gap between probability theory and its application to data analysis.

I Statistic: Concepts of the basic science for data analysis.

I The field of statistics owes many of its significant ideas to people in the applied
sciences who had difficult questions concerning their data.

2.1 Populations, samples, and statistics

I Much of our knowledge concerning the world we live in is the result of samples.

I E.g. We eat at a restaurant once and we form an opinion concerning the quality of
the food and the service at that restaurant.

I We know 12 people from England and we feel we know the English people.

I Quite often the opinions we form from the sample are not accurate.

I However, samples that are obtained according to scientifically derived methods can
give very accurate information about the entire population.

I The process of forming scientific opinions is often placed within the framework of an
experiment.
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I An experiment is the process of following a well-defined procedure, where the outcome
of following the procedure is not known prior to the experiment.

I The collection of all elements under investigation is called the population.

I A sample is a collection of some elements of a population.

. Convenient sample: A collection of the elements that are easiest to obtain, such
as ” citizen on the street ” interviews, or TV call-in surveys.

. Probability sample: Allows accurate statements to be made about the unknown
population parameters.

. Random sample: Later

I The population about which information is wanted is called the target population.

I The population to be sampled is called the sampled population.

I Random sample of size n from a population with N elements with (without) replace-
ment.

Definition 2.1.1 A sample from a finite population is a random sample if each of the
possible samples was equally likely to be obtained.

I
(

N
n

)
possible samples of size n for without replacement.

I Nn possible samples of size n for replacement.

Definition 2.1.2 A random sample of size n is a sequence of n independent and identi-
cally distributed random variables X1, X2, . . . , Xn.

Definitions 1 and 2 are identical only if the drawing in Definition 1 is with replacement,
for then and only then are the observations independent.
Multivariate random variable k-variate

Xi = (Yi1, Yi2, . . . , Yik)

I Xis are independent and identically distributed.

I Yij random variables within each Xi may or may not be independent and/ or identi-
cally distributed.

I Special case: Bivariate random variate

. Yi1: Number of dreams in the ith night.

. Yi2: Length of sleep in the ith night.

. Xi = (Yi1, Yi2)

. Xi and Xj are independent.

Example 2.1.1 A psychologist would like to obtain four subjects for individual train-
ing and examination. He advertises and 20 volunteers respond. He has several ways of
selecting a sample of 4 from his sampled population of size 20.
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I Two ways to select 4 people.

I
(
20
4

)
= 4845 pieces of paper that are identical and writes 4 names on each piece of

paper.

I Another way of obtaining a random sample: Write each of the names on a slip of
paper, 20 slips in all, and one by one draw 4 slips in some random manner. ¤

1. Measurement scale: An excellent paper by Stevens (1946).

I Nominal scale: Use numbers merely as a means of separating the properties of
elements into different classes or categories.

The number assigned to the observation serves only as a ”name” for the category
to which the observation belongs, hence the title ”nominal.”

. Toss a coin: 0 for tail and 1 for head.

. Blue, yellow, red.

. A, B, C.

I Ordinal scale: Refer to measurements where only the comparisons “greater”,
“less”, or “equal” between measurements are relevant.

. Assign the number 1 to the most preferred of three brands, number 3 to
the least preferred.

. It is this ability to order the elements, on the basis of the relative size of
their measurements, that gives the name of the ordinal scale.

I Interval scale: Consider as pertinent information not only the relative order of
the measurements as in the ordinal scale but also the size of the interval between
measurements.

. Scale used in temperature.

. The actual numerical value of the temperature is merely a comparison with
an arbitrary point called ”zero degree”.

. The interval scale of measurement requires a zero point as well as a unit
distance.

. Two scales: Fahrenheit (F ) and Celsius (C)

F =
9

5
C + 32

I Ratio scale: Not only the order and interval size are important, but also the
ratio between two measurements is meaningful.

. Crop yields, distances, weights, heights, income.

I Most of the usual parametric statistical methods require an interval (or stronger)
scale of measurement.

I Most nonparametric methods assume either the nominal scale or the ordinal
scale to be appropriate.

I Statistical methods requiring only a weaker scale may be used with the stronger
scales also.

Statistics
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I The word statistic originally referred to numbers published by the state, where
the numbers were the result of a summarization of data collected by the gov-
ernment.

I Extend our idea of a statistic from being only a number to being a rule for
finding the number.

I A statistic also conveys the idea of a summarization of data, so usually a statistic
is considered to be a random variable that is a function of several other random
variables.

Definition 2.1.3 A statistic is a function which assigns real numbers to the points
of a sample space, where the points of the sample space are possible values of some
multivariate random variable. In other words, a statistic is a function of several
random variables.

Example 2.1.2 Let X1, X2, . . . , Xn represent test scores of n students. Then each
Xi is a random variable. Let W equal the average of these test scores.

I W = X1+X2+···+Xn

n
= 1

n

∑n
i=1 Xi

I W is a statistic.

I If X1 = 76, X2 = 84, and X3 = 85, then W = 812
3
.

I Sample mean: W ¤

Ordered observation
x(1) ≤ x(2) ≤ · · · ≤ x(n)

Definition 2.1.4 The order statistic of rank k, X(k), is the statistic that takes
as its value the kth smallest element x(k) in each observation (x1, x2, . . . , xn) of
(X1, X2, . . . , Xn ).

If (X1, X2, . . . , Xn) is a random sample, sometimes (X(1), X(2), . . . , X(n)) is called the
ordered random sample.

2.2 Estimation

I One of the primary purposes of a statistic is to estimate unknown properties of the
population.

I The estimate is based on a sample.

I The estimate is an educated guess concerning some unknown property of the proba-
bility distribution of a random variable.

I For example, we might use the proportion of defective items in a sample of transistors
as an estimate the unknown proportion of defective transistors in some population
of transistors.

I A statistic that is used to estimate is called an estimator.

I Sample mean, sample variance and sample quantiles.
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The true distribution function F (x) of a random variable is almost never known. Use the
empirical function S(x) to estimate F (x).

Definition 2.2.1 Let X1, X2, . . . , Xn be a random sample. The empirical distribution
function S(x) is a function of x, which equals the fraction of Xis that are less than or
equal to x, −∞ < x < ∞.

S(x) =
number of Xi’s ≤ x

number of Xi’s

Example 2.2.1 In a physical fitness study five boys were selected at random. They were
asked to run a mile, and the time it took each of them to run the mile was recorded. The
times were 6.23, 5.58, 7.06, 6.42, 5.20. The empirical distribution function S(x) is repre-
sented graphically in Figure 1.

Fig. 1
¤

I S(x) is a random function.

I The empirical function is always a step function with jumps of height 1/n at each of
the n numbers x1, x2, . . . , xn.

Example 2.2.2 The random variable, which has a distribution function identical to the
function S(x) of Example 1, is the random variable X with the following probability dis-
tribution.

P (X = 5.20) = .2, P (X = 5.58) = .2, P (X = 6.23) = .2,
P (X = 6.42) = .2, P (X = 7.06) = .2

I E[X] =
∑

x xf(x) = 6.098

I Var(X) =
∑

x(x− E[X])2f(x) = .424 ¤

Estimators
Sample (population) mean, variance, quantiles

Definition 2.2.2 Let X1, X2, . . . , Xn be a random sample. The pth sample quantile is
that number Qp satisfies the two conditions:

1. The fraction of the Xis that are less than Qp is ≤ p.

2. The fraction of the Xis that exceed Qp is ≤ 1− p.
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Qp =

{
X(np)+X(np+1)

2
if np is an integer,

X(dnpe) otherwise.

Example 2.2.3 Six married women were selected at random and the number of children
belonging to each was recorded.

0, 2, 1, 2, 3, 4

I Empirical distribution function given in Figure 2.

I Q.5 = 2, Q.25 = 1, Q.75 = 3

I Q1/3 =
x(2)+x(3)

2
= 1.5

Fig. 2
¤

Definition 2.2.3 Let X1, X2, . . . , Xn be a random sample. The sample mean X̄ is defined
by

X̄ =
1

n

n∑
i=1

Xi.

The sample variance S2 is

S2 =
1

n

n∑
i=1

(Xi − X̄)2 =
1

n

n∑
i=1

X2
i − X̄2.

Sample standard deviation S is the square root of the sample variance.

Example 2.2.4 In the random sample 0, 2, 1, 2, 3, 4 of Example 3.

I X̄ = 1
6
(0 + 2 + 1 + 2 + 3 + 4) = 2

I S2 = 1
6
(22 + 0 + 12 + 0 + 12 + 22) = 12

3

I Estimate of the unknown mean is 2 and estimate of the unknown variance is 5/3. ¤

Point estimation (above) v.s. interval estimation

I We are 95% confident that the unknown mean lies between 1.3 and 2.7.

I An interval estimator consists of two statistics, one for each end of the interval, and
the confidence coefficient, which is the probability that the interval estimator will
contain the unknown population quantity.
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I To make a point estimate we need only to think of a number.

I Criteria for comparing point estimators may be found in any introductory text in
probability or statistics.

Definition 2.2.4 An estimator θ̂ is an unbiased estimator of a population parameter θ

if E
[
θ̂
]

= θ.

Theorem 2.2.1 Let X1, X2, . . . , Xn be independent random variables from a population
with mean µ and variance σ2. Then E

[
X̄

]
= µ and Var(X̄) = σ2/n.

Proof.

E
[
X̄

]
= E

[
1

n

∑
Xi

]
=

1

n

∑
E[Xi] = µ

Var
(
X̄

)
= Var

(
1

n

∑
Xi

)
=

1

n2

∑
Var(Xi) =

σ2

n
¤

The standard deviation of an estimator is called its standard error. For example, standard
error of X̄: std(X̄) = σ/

√
n

S2 is not an unbiased estimator for σ2,
Unbiased estimator for σ2:

s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

Approximate 1− α confidence interval

I Central Limit Theorem says if X1, X2, . . . , Xn are independent random variables,
each with mean µ and variance σ2, then

X̄ − µ

σ/
√

n
≈ N(0, 1).

I
P

(
X̄ − z1−α/2

σ√
n

< µ < X̄ + z1−α/2
σ√
n

)
≈ 1− α

I For most practical purposes sample sizes larger than 30 are considered “large enough”.

Example 2.2.5 Large litters of pig mean more profit for a hog farmer. A state experiment
station is studying a new method of raising hogs that may result in large litter sizes. In
55 litters the average number of surviving pigs was 9.8, with s = 1.4.

I A 95% confidence interval:

9.8± 1.96
1.4√
55

= X̄ − z1−α/2
s√
n

= (9.43, 10.17) ¤

Bootstrap

I Many statistics of estimator used are difficult to derive. The bootstrap is a way to
simulate these statistics.
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I The bootstrap method samples n values with replacement from the observations in
the original random sample of size n.

I Everything in the bootstrap procedure depends on the original sample values.

I For simply estimating the mean and the standard error of an estimator, the number
of bootstrap replications seldom needs to be more 100 or 200, and as few as 25
replications can be very informative.

I Larger numbers of replications are needed to find confidence intervals.

I One method of obtaining an approximate confidence interval for θ is to use the α/2
and 1− α/2 sample quantiles from the bootstrap sample estimator θ̂∗.

I For approximate 1 − α confidence interval Efron and Tibshirane (1986) recommend
a minimum of 250 bootstrap replications.

Example 2.2.6 In Example 5 we found an approximate 95% confidence interval for the
mean number of pigs per litter using the central limit theorem that applies to X̄. Now use
the bootstrap method to find an approximate 95% confidence interval for σ.

I Obs. 1 2 3 4 . . . 55
Litter size 9 9 8 6 . . . 11

s = 1.4 (original sample)

I Obs. 4 17 4 28 . . . 16
Litter size 6 9 6 10 . . . 9

s∗1 = 1.6 (Bootstrap sample #1)

I Obs. 28 23 3 16 . . . 39
Litter size 10 10 8 9 . . . 8

s∗2 = 1.8 (Bootstrap sample #2)

I And so on, to

I Obs. 6 1 55 14 . . . 17
Litter size 10 9 11 11 . . . 9

s∗250 = 1.1 (Bootstrap sample #250)

I Approximate 95% confidence interval:

(s∗(d.025(250)e), s∗(d.975(250)e)) = (s∗(7), s∗(244)) = (1.0, 2.0)

I The expected value of s is estimated by computing on the 250 values of s∗. ¤

Daison and Hinkley (1997, resampling) contains a library of routines for use with S-Plus.

Parameter estimation in general
Two main questions in estimating an unknown parameter θ:

1. What estimator should be used? empirical distribution

I µ̂ = X̄, σ̂ = S and the quantile estimator x̂p = Qp.
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2. How good is the estimator? standard error
For example, std(X̄) = σ/

√
n

Theory

I S(x)
n→∞−→ F (x) in probability.

I In most cases of interest those estimators will approach the parameters they are
estimating.

I For an introduction to the bootstrap concept see Efron and Tibshirani (1986).

Survival function:
P (x) = 1− F (x)

I Useful in life testing, medical follow-up, and other fields.

I Natural estimator: The empirical survival function

P̂ (x) = 1− S(x)

is the relative frequency of the sample X1, X2, . . . , Xn that exceeds x in value.

The Kaplan-Meier estimator (1958)

I X: time to death

I X may be unobservable in some cases because of the loss of the item from the exper-
iment (subjects moving away, subjects entering the experiment late, the experiment
ending before all subjects die, etc.)..

I Kaplan and Meier (1958) provide a method for using some information from the lost
data, namely that death did not occurred before the loss.

I They use the fact that if death occurs after time x, then the death also occurred after
all times prior to x.

I P (X > x1) = P (X > x1, X > x0) = P (X > x1|X > x0)P (X > x0)

I Suppose that 100 items are put on test at the beginning of Year 1, and at the end of
Year 1 only 30 survive.

I Then at the beginning of Year 2 suppose an additional 1000 items are put on test.

I At the end of Year 2, 250 of the 1000 items survive, and 10 of the 30 items survive
from the original 100 items.

. P̂ (1) = P̂ (X > 1) = 30/100

. P̂ (2) = P̂ (X > 2) = 10/100 (use only the original 100 items)

. Since a total of 1100 items have been on test one year, with a total of 250+30 =
280 survivors, an improved estimate of P (1) would be

P̂ (1) = P̂ (X > 1) = 280/1100 (use both sets of data)
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. Unfortunately we are unable to improve our estimate of P (X > 2/X > 1)
because we don’t how what happens to the 1000 observations in the second year
of the test. So we use the estimator

P̂ (X > 2|X > 1) = 10/30.

. Use this improved estimate of P (1) to get an improved estimate of P (2), one
which uses the fact that 280 of 1100 items survived past 1 year

P̂ (2) = P̂ (X > 2|X > 1)P̂ (X > 1) = (10/30)(280/1100) = 0.085.

I Let u1 < u2 < · · · < uk represent k ” lifetimes ”.

I pi = P (X > ui|X > ui−1)

I p̂i = Number of items known to survive past time ui

Number of items known to survive past time ui−1

I Kaplan-Meier estimator of P (x):

P̂ (x) =

{
1 for x < u1∏

ui≤x p̂i for x ≥ u1

I This estimator is a decreasing step function that takes steps only at observed deaths.

I S(x) = 1− P̂ (x)

Computer assistance: Splus

Example 2.2.7 Ten fanbelts are tested by placing them on cars and records are kept of
the mileage on each car when the fanbelt breaks. At the end of the test five fanbelts have
broken, with lifetimes of 77, 47, 81, 56, and 80. The other five fanbelts are still unbroken,
and the mileage on those cars are 62, 60, 43, 71, and 37. The Kaplan-Meier estimate of
the survival function is found as follows.

i ui result p̂i P̂ (ui)
1 37 lost 10/10 1
2 43 lost 9/9 1
3 47 death 7/8 0.875
4 56 death 6/7 0.75
5 60 lost 6/6 0.75
6 62 lost 5/5 0.75
7 71 lost 4/4 0.75
8 77 death 2/3 0.5
9 80 death 1/2 0.25

10 81 death 0/1 0

Graph of P̂ (x) in Fig. 3.
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Fig. 3
¤

I The Kaplan-Meier is the same as 1− S(x) if there are no loses.

I There are losses as well as deaths, P̂ (x) starts at 1.0, but the decreasing steps may
no longer be of uniform height.

I If there is a loss after the final known death, P̂ (x) will not decrease to zero, and is
not defined for x beyond the final known loss.

I In this case S(x) is not suitable for the estimation of some parameters associated
with F (x) such as the mean and the variance using the usual methods described
earlier in this section, but may be used to estimate some quantiles.

Point estimation is always a nonparametric statistical method. It is more difficult to tell
whether the methods of forming confidence intervals are parametric or nonparametric.

I If no knowledge of the form of the distribution function is required in order to find a
confidence interval that method is nonparametric.

I If the method requires that the unknown distribution function be a normal distrib-
ution function or some specified form the method is parametric.

2.3 Hypothesis testing

Hypothesis testing is the process of inferring from a sample whether or not a given state-
ment about the population appears to be true.

1. Women are more likely than man to have automobile accidents.

2. Nursery school helps a child achieve better marks in elementary school.

3. The defendant is guilty.

4. Toothpaste A is more effective in preventing cavities than toothpaste B.

Outline of the steps involved in a test

1. Alternative (research) hypothesis: The statement that the experimenter would like
to prove.
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I The new product is better than the old product.

I This medication is effective in curing the illness.

2. Null hypothesis: The negation of the alternative hypothesis.

I The new product is no better than the old product.

I This medication is not effective in curing the illness.

If the data in the sample strongly disagree with the null hypothesis, the null hypoth-
esis is rejected. If the data in the sample do not conflict with the null hypothesis, or
if there are insufficient data to show a conflict with the null hypothesis, the experi-
menter “fails to reject” the null hypothesis.

3. Test statistic: A good test statistic is a sensitive indicator of whether the data agree
or disagree with the null hypothesis.

4. Decision rule: Decide whether to accept or reject the null hypothesis.

5. On the basis of a random sample from the population, the test statistic is evaluated,
and a decision is made to accept or reject the null hypothesis.

Example 2.3.1 A certain machine manufactures parts. The machine is considered to be
operating properly if 5% or less of the manufactured parts are defective. If more than 5%
of the parts are defective the machine needs remedial attention.

I Null hypothesis:
H0 : The machine is operating properly

I Alternative hypothesis:
H1 : The machine needs attention

I H0 : p ≤ .05 and H1 : p > .05

I T : Total number of defective items.

I T ∼ Binomial(10, p)

I Under H0, P (T ≤ 2) ≥ 0.9885

I Critical region: T > 2

I Suppose a random sample consisting of 10 machined parts is observed and 4 of the
parts are found to be defective.

I Then T = 4 and the null hypothesis is rejected. We conclude that the machine needs
attention. ¤

Definition 2.3.1 The hypothesis is simple if the assumption that the hypothesis is true
leads to only one probability function defined on the sample space. The hypothesis is
composite if the assumption that the hypothesis is true leads to only two or more probability
functions defined on the sample space.

Definition 2.3.2 A test statistic is a statistic used to make the decision in a hypothesis
test.
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I Upper-tailed test: The rejection region corresponds to the largest values of the test
statistic.

I Lower-tailed test: The rejection region corresponds to the smallest values of the test
statistic.

I One-tailed test: Previous two cases.

I Two-tailed test: If the test statistic is selected so that the largest values of the test
statistic and the smallest values of the test statistic.

Definition 2.3.3 The critical (rejection) region is the set of all points in the sample space
that result in the decision to reject the null hypothesis.

Definition 2.3.4 The type I error is the error of rejecting a true null hypothesis.

Definition 2.3.5 The type II error is the error of accepting a false null hypothesis.

Definition 2.3.6 The level of significance, or α, is the maximum probability of rejecting
a true null hypothesis.

Definition 2.3.7 The null distribution of the test statistic is its probability distribution
when the null hypothesis is assumed to be true.

Definition 2.3.8 The power, denoted by 1− β, is the probability of rejecting a false null
hypothesis.

The decision
Accept H0 Reject H0

The true H0 is true Correct decision Type I error
situation 1− α α

H0 is false Type II error Correct decision
β 1− β

Definition 2.3.9 The p-value is the smallest significance level at which the null hypothesis
would be rejected for the given observation.

I Let tobs represent the observed value of a test statistic T .

I In an upper-tailed test the p-value is P (T ≥ tobs) computed using the null distribution
of T .

I In a lower-tailed test the p-value is P (T ≤ tobs).

I In a two-tailed test, the p-value can be stated as twice the smaller of the one-tailed
p-values.

Example 2.3.2 In order to see if children with nursery school experience perform differ-
ently academically than children without nursery school experience, 12 third-grade students
are selected, 4 of whom attended nursery school. The hypothesis to be tested is
H0: The academic performance of third-grade children does not depend on whether or not
they attended nursery school
H1: There is a dependence between academic performance and attendance at nursery
school.
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I Assume that the 12 children are a random sample of all third-grade children, and
also that the children can be ranked from 1 to 12 (best to worst) academically.

H0: The ranks of the four children with nursery school experience are a
random sample of ranks from 1 to 12

H1: The ranks of the four children with nursery school experience tend
to be higher or lower as a group than a random sample of 4 ranks
out of 12

I T : Sum of the ranks of the 4 children who attended nursery school.

I
(
12
4

)
= 495 points in the sample space.

I Observed ranks: 2, 5, 6, and 9 (T = 22).

I Under H0: E[T ] = 26 and Var(T ) = 34.67

I P (T ≤ 22) ≈ P
(
Z ≤ 22−26

5.888

)
= 0.248

I Above procedure is called the Mann-Whitney test or the Wilcoxon test and will be
discussed extensively in Chap. 5 along with its many variations.

I The data in Example 2 have the ordinal scale of measurement.

I Example 1 illustrated the analysis of nominal type data. ¤

Computer assistance

I Most statistics computer packages perform hypothesis tests.

I In some packages, the user specifies the null hypothesis and the alternative hypothesis,
and the package returns the correct p-value.

I In other packages, the computer always returns a p-value for a two-sided test and
the user must decide if that is the desired p-value, or if it must be halved to obtain
a one-tailed p-value.

I If the p-value is less than or equal to the desired level of significance, which is selected
by the user, then the null hypothesis is rejected.

I Many computer packages use approximate methods for finding p-values.

I More and more computer packages are following the example of StatXacf, which
computes exact p-values or uses monte carlo simulation to approximate the exact
p-value when the exact p-values are impractical to obtain.
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2.4 Some properties of hypothesis tests

Once the hypotheses are formulated, there are usually several hypothesis tests available
for testing the null hypotheses.
Select one test:

I Are these assumptions of this test valid assumptions in my experiment?

I If the answer is “No,” that test probably should be discarded.

I For example, in most parametric tests one of the stated assumptions is that the
random variable being examined has a normal distribution.

The use of a test in a situation where the assumptions of the test are not valid is dangerous
for two reasons.

I The data may result in rejection of the null hypothesis, not because the data indi-
cate that the null hypothesis is false, but because the data indicate that one of the
assumptions of the test is invalid.

I Sometimes the data indicate strongly that the null hypothesis is false, and a false
assumption in the model is also affecting the data, but these two effects neutralize
each other.

Properties of a good test:

1. The test should be unbiased.

2. The test should be consistent.

3. The test should be more efficient in some sense than the other tests.

Power function
If H1 is composite, the power may vary as the probability function varies. If H1 is stated
in terms of some unknown parameter, the power usually may be given as a function of that
parameter.

Example 2.4.1 (Calculate power function) In Example 2.3.1 the critical region con-
sisted of all points with more than two defectives in the 10 items examined.

I P (reject H0) =
∑10

i=3

(
10
i

)
pi(1− p)10−i = 1−∑2

i=0

(
10
i

)
pi(1− p)10−i

p P (reject H0) p P (reject H0)
0 0.0000 0.50 0.9453

0.05 0.0115 0.55 0.9726
0.10 0.0702 0.60 0.9877
0.15 0.1798 0.65 0.9952
0.20 0.3222 0.70 0.9984
0.25 0.4744 0.75 0.9996
0.30 0.6172 0.80 0.9999
0.35 0.7384 0.85 1.0000
0.40 0.8327 0.90 1.0000
0.45 0.9004 1.00 1.0000
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I Under H0, 0 < p < 0.05 (Fig. 4)

I The power ranges from 0.0115 for p close to 0.05 to 1.0000 for p equal to 1.0.

Fig. 4
¤

Two tests may be compared on the basis of their power functions. This basis of comparison
is discussed again later in this section when relative efficiency is defined.
Computer assistance

I The power of a test is a function of the level of significance, the simple alternative
hypothesis of interest, and the sample size.

I SAS concentrates on computing power of a test, given the level of significance, the
range of alternatives of interest, and the sample size.

I It can also compute the sample size required for a given power.

Definition 2.4.1 An unbiased test is a test in which the probability of rejecting H0 when
H0 is false always greater than or equal to the probability of rejecting H0 when H0 is true.

I An unbiased test is one where the power is always at least as large as the level of
significance.

I A test that is not unbiased is called a biased test.

Definition 2.4.2 A sequence of tests is consistent against all alternatives in the class H1

if the power of the tests approaches 1.0 as the sample size approaches infinity, for each
fixed alternative possible under H1. The level of significance of each test in the sequence
is assumed to be as close as possible to but not exceeding some constant α > 0.

Example 2.4.2 We wish to determine whether human births tend to produce more babies
of one sex, instead of both sexes being equally likely. We are testing

H0: A human birth is equally likely to be male or female, (p = 1/2)
H1: Male births are either more likely, or less likely, to occur than female

births (p 6= 1/2)

I The sampled population consists of births registered in a particular country.

I The sample consists of the last n births registered, for some selected value of n.
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I It is also assumed that the probability p (say) of a male birth remains constant from
birth to birth and that the births are mutually independent as far as the events
”male” and ”female” go.

I Then the hypotheses are equivalent to the following

H0 : p = 1/2 v.s. H1 : p 6= 1/2.

I T : Number of male births.

I Critical region: Symmetrically to the largest values and smallest values of T , of the
largest size not exceeding 0.05.

I We have described an entire sequence of tests, one for each value of the sample size.

I Each test is two tailed and has a level of significance of 0.05 or smaller.

I T ∼ Binomial(n, p)

I Critical region are given by Dixon (1953):

Values of T corresponding
n to the critical region α
5 None 0
6 T = 0 and T = 6 0.03125
8 T = 0 and T = 8 0.00781

10 T ≤ 1 and T ≥ 9 0.02148
15 T ≤ 3 and T ≥ 12 0.03516
20 T ≤ 5 and T ≥ 15 0.04139
30 T ≤ 9 and T ≥ 21 0.04277
60 T ≤ 21 and T ≥ 39 0.02734

100 T ≤ 39 and T ≥ 61 0.03520

I For n ≤ 20 these same values can be obtained from Table A3. For n > 20 the normal
approximation could be used.

I A comparison of several power functions (Fig. 5).

I We can see that as the sample size increases, the power at each fixed value of p
(except p = 0.5) increases toward 1.0.

Fig. 5 A comparison of several power functions.
¤
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This example merely demonstrates the idea behind the term consistent as it applies to a
sequence of tests.
This demonstration is not a proof that the sequence of tests is consistent.
A rigorous proof of consistency usually requires more mathematics than we care to use in
this introductory book.
Relative efficiency

I Efficiency is a relative term and is used to compare the sample size of one test with
that of another test under similar conditions.

I Suppose two tests may be used to test a particular H0 against a particular H1.

I Also suppose that the two tests have the same α or and the same β and therefore
are ”comparable” with respect to level of significance and power.

I Then the test requiring the smaller sample size is preferred over the other test, because
a smaller sample size means less cost and effort is required in the experiment.

I The test with the smaller sample sue is said to be more efficient than the other test,
and its relative efficiency is greater than one.

Definition 2.4.3 Let T1 and T2 represent two tests that test the same H0 against the
same H1, with the critical regions of the same size α and with the same value of β. The
relative efficiency of T1 to T2 is the ratio n2/n1, where n1 and n2 are the sample sizes of
the tests T1 and T2, respectively.

If the alternative hypothesis is composite, the relative efficiency may be computed for each
probability function defined by the alternative hypothesis.

Example 2.4.3 Two tests are available for testing the same H0 against the same H1.
Both tests have α = 0.01 and β = 0.14.

I n1 = 75 and n2 = 50

I Relative efficiency of the first test to the second test 50/75 = 0.67.

I Relative efficiency of the second test to the first test 75/50 = 1.5.

I If the efficiency of the first test relative to the second test at α = 0.05, β = 0.30, n1 =
40 is 0.75, then the sample size required by the second test: 0.75 = n2/40 ⇒ n2 = 30.
¤

Asymptotic relative efficiency

I The relative efficiency depends on the choice of α, the choice of β, and the particular
alternative being considered if H1 is composite.

I In order to provide an overall comparison of one test with another it is clear that
relative efficiency leaves much to be desired.

I We would prefer a comparison that does not depend on our choice of α, β, or a
particular alternative possible under H0 if H1 is composite, which it usually is.
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Definition 2.4.4 Let n1 and n2 be the sample sizes required for two tests T1 and T2 to
have the same power under the same level of significance. If α and β remain fixed the limit
of n2/n1, as n1 approaches infinity, is called the asymptotic relative efficiency (A.R.E) if
the first test to the second test, if that limit is independent of α and β.

I In our quest to select the test with greatest power, we usually are forced to select the
test with the greatest A.R.E. because the power depends on too many factors.

I The A.R.E. of two tests is usually difficult to calculate (Noether, 1967).

I Studies of the exact relative efficiency for very small sample sizes show that A.R.E.
provides a good approximation to the relative efficiency in many situations of prac-
tical interest.

I The A.R.E. often provides a compact summary of the relative efficiency between two
tests.

Definition 2.4.5 A test is conservative if the actual level of significance is smaller than
the stated level of significance.

I At times it is difficult to compute the exact level of significance of a test, and then
some methods of approximating α are used.

I The approximate value is then reported as being the level of significance.

I If the approximate level of significance is larger than the true (but unknown) level of
significance, the test is conservative, and we know the risk of making a type I error
is not as great as it is stated to be.

2.5 Some comments on nonparametric statistics

I We will attempt to distinguish between the terms parametric statistics and nonpara-
metric statistics, although the distinction is not always clear even in the minds of
professional statisticians.

I We will use the term nonparametric and the more descriptive term distribution-free
interchangeably even though some statisticians distinguish between the two.

I Also we will provide some guidance for when to use nonparametric methods in the
analysis of data, and when parametric methods should be preferred.

Nonparametric v.s. parametric statistic

I Good methods to use:

. First discuss hypothesis testing and confidence intervals.

. A test of hypothesis relies on a good test statistic, one that is sensitive to the
difference between the null hypothesis and the alternative hypothesis, and one
whose probability distribution under the null hypothesis is known.



2.5. SOME COMMENTS ON NONPARAMETRIC STATISTICS 51

. A confidence interval is the inversion of a hypothesis test in that the confidence
interval is the collection of the null hypotheses that are not rejected by the
data, so a good (powerful) hypothesis test relates to a good (short) confidence
interval.

. The sample mean X̄ is a good test statistic for testing hypotheses about the
population mean µ because it is sensitive to differences in the population mean.

. S and s are good statistics to use for inferences about the population standard
deviation σ.

. However, the probability distributions of X̄, S and s depend on the population
probability distribution of Xs, which is usually unknown.

I Parametric methods

. If the population probability distribution is normal distribution then X̄ is nor-
mal.

. Any hypothesis test or confidence interval that is based on the assumption
that the population distribution function is known, or known except for some
unknown parameters, is called a parametric method.

. Most parametric methods are based on the normality assumption because the
theory behind the test can be worked out with the normal population distribu-
tion.

. The resulting procedures are efficient and powerful procedures for normally dis-
tributed data.

. Other parametric procedures have been developed by assuming the population
has other distributions, such as the exponential, Weibull, and so on.

I Robust methods

. No population has exactly a normal distribution, or any other known distribu-
tion.

. If the population distribution is approximately normal, then usually (but not
always) it is safe to use a method based on the normal distribution.

. However, if the data appear to come from a distinctly nonnormal distribution,
or a distribution not covered by the parametric methods, then a nonparametric
method should be considered.

. A method of analysis that is approximately valid even if one of the assump-
tions behind the method is not true is considered to be robust against that
assumption.

. One-sample t test or two-sample t test are robust against the assumption of
normality.

. A method is robust is no assurance that the method is still powerful when the
population is nonnormal.

I Nonparametric methods

. Nonparametric methods are based on some of the same assumptions on which
parametric methods are based, such as the assumption that the sample is a
random sample.
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. However, nonparametric methods do not assume a population probability distri-
bution, and are therefore valid for data from any population with any probability
distribution, which can remain unknown.

. Nonparametric methods are perfectly robust for distribution assumptions on the
population, because they are equally valid for all assumptions.

. If the population distribution function has lighter tails than the normal distri-
bution, such as the uniform distribution, then the parametric procedures based
on the normality assumption generally have good power, equal to or greater
than the power of nonparametric methods based on ranks, presented in Chap.
5.

. On the other hand, if the population distribution function has heavier tails than
the normal distribution, such as with the exponential distribution (presented in
Chap. 6), the lognormal distribution (where the logs of the data follow a normal
distribution), the chi-squared distribution (or its parent family of gamma distri-
butions), and many other distributions that appear to be reasonable population
models, then the parametric methods based on the normality assumption may
have low power compared to nonparametric methods based on ranks.

. Data containing outliers are good examples for considering to use nonparametric
methods.

. In those cases it is important to consider using nonparametric methods, such
as the rank methods introduced in Chap. 5, to analyze the data because of
the superior power of those rank methods when compared with the parametric
methods based on the normal assumption.

I Asymptotically distribution-free

. Many parametric tests that are robust against the assumption of nonnormality
are also asymptotically distribution-free.

. As the sample size gets larger the method become more robust, approaching the
point where for an infinite sample size the method becomes exact, no matter
what the population distribution may be.

. The central limit theorem is usually the basis for showing parametric methods
based on the sample mean to be asymptotically distribution-free.

. A statistical procedure should not be preferred over others simply because it is
nonparametric, or robust, or asymptotically distribution-free.

. The relative power of the parametric test, or the relative size of the confidence
interval, as compared with its nonparametric alternative, usually remains good
or remains bad regardless of the size of the sample, even if the procedure is
asymptotically distribution-free.

. Keep in mind that most methods we are considering are consistent, which means
that larger sample sizes mean more absolute power.

. Carefully selecting the more powerful procedure may be unnecessary if the sam-
ple size is large enough to reject the null hypothesis using a less-powerful test, or
if the confidence interval is small enough for the experimenter’s purposes using
a less efficient method.

I Methods for analyzing nominal data
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. Most people think of nonparametric methods they think of methods based on
ranks presented in Chap. 5 and 6.

. Nonparametric methods also may be used on qualitative data, with nominal
scale of measurement, or with ordinal scale data.

. The concept of a population probability distribution for nominal or ordinal data
is difficult to imagine without treating such data as if it were at least interval,
so there are no parametric methods for purely nominal or ordinal data.

. Chap. 3 and 4 present methods for analyzing qualitative data.

. Most of the methods in Chap. 5 and 6 are valid for ordinal data.

Definition of nonparametric

Definition 2.5.1 A statistical method is nonparametric if it satisfies at least one of the
following criteria.

1. The method maybe used on data with a nominal scale of measurement.

2. The method may be used on data with an ordinal scale of measurement.

3. The method may be used on data with an interval or ratio scale of measurement,
where the distribution function of the random variable producing the data is either
unspecified or specified except for an infinite number of unknown parameters.

I Nearly all nonparametric hypothesis tests satisfy one of these two criteria.

I This book primarily concerned with hypothesis testing and the forming of confidence
intervals.

I Several types of problems are not covered in this book: bioassay, survival curves,
longitudinal studies, multivariate methods, discrimination analysis. Robust methods
are methods that depend to some extent on the population distribution function but
are not very sensitive to departures from the assumed distributional form.

I Robust methods are discussed briefly in Section 5.12.

2.6 Summary

1. Statistic: Concepts of the basic science for data analysis. . . . . . . . . . . . . . . . . . . . . . . . . 32

2. Population: The collection of all elements under investigation. . . . . . . . . . . . . . . . . . . . 33

3. Sample: A collection of some elements of a population. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4. Target population: The population about which information is wanted. . . . . . . . . . . 33

5. Sampled population: The population to be sampled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6. Random sample: A sample from a finite population is a random sample if each of
the possible samples was equally likely to be obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7. A random sample of size n is a sequence of n independent and identically distributed
random variables X1, X2, . . . , Xn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
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8. Multivariate random variable: k-variate

Xi = (Yi1, Yi2, . . . , Yik)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9. Measurement scale: An excellent paper by Stevens(1946). . . . . . . . . . . . . . . . . . . . . . . . 34

10. Nominal scale: Use numbers merely as a means of separating the properties of ele-
ments into different classes or categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11. Ordinal scale: Refer to measurements where only the comparisons “greater”, “less”,
or “equal” between measurements are relevant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

12. Interval scale: Consider as pertinent information not only the relative order of the
measurements as in the ordinal scale but also the size of the interval between mea-
surements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13. Ratio scale: Not only the order and interval size are important, but also the ratio
between two measurements is meaningful. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

14. A statistic is a function which assigns real numbers to the points of a sample space,
where the points of the sample space are possible values of some multivariate random
variable. In other words, a statistic is a function of several random variables. . . . . 35

15. Ordered observation: x(1) ≤ x(2) ≤ · · · ≤ x(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

16. The order statistic of rank k, X(k), is the statistic that takes as its value the kth
smallest element x(k) in each observation (x1, x2, . . . , xn) of (X1, X2, . . . , Xn ).. . . .35

17. Estimator: A statistic that is used to estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

18. Let X1, X2, . . . , Xn be a random sample. The empirical distribution function S(x)
is a function of x, which equals the fraction of Xis that are less than or equal to x,
−∞ < x < ∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

19. Let X1, X2, . . . , Xn be a random sample. The pth sample quantile is that number Qp

satisfies the two conditions:

1. The fraction of the Xis that are less than Qp is ≤ p.

2. The fraction of the Xis that exceed Qp is ≤ 1− p.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

20. Let X1, X2, . . . , Xn be a random sample. The sample mean X̄ is defined by

X̄ =
1

n

n∑
i=1

Xi

The sample variance S2 is

S2 =
1

n

n∑
i=1

(Xi − X̄)2 =
1

n

n∑
i=1

X2
i − X̄2

Sample standard deviation S is the square root of the sample variance. . . . . . . . . . . 37
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21. Interval estimator: An interval estimator consists of two statistics, one for each end
of the interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

22. Confidence coefficient: The probability that the interval estimator will contain the
unknown population quantity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

23. An estimator θ̂ is an unbiased estimator of a population parameter θ if E
[
θ̂
]

= θ.38

24. Let X1, X2, . . . , Xn be independent random variables from a population with mean
µ and variance σ2. Then E

[
X̄

]
= µ and Var

(
X̄

)
= σ2/n. . . . . . . . . . . . . . . . . . . . . . . . . 38

25. Standard error: The standard deviation of an estimator. . . . . . . . . . . . . . . . . . . . . . . . . .38

26. Unbiased estimator for σ2

s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2
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27. Survival function: P (x) = 1− F (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

28. Kaplan-Meier estimator of P (x):

P̂ (x) =

{
1 for x < u1∏

ui≤x p̂i for x ≥ u1

where pi = P (X > ui|X > ui−1) and p̂i = Number of items known to survive past time ui

Number of items known to survive past time ui−1
. . .41

29. Alternative (research) hypothesis: The statement that the experimenter would like
to prove. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

30. Null hypothesis: The negation of the alternative hypothesis. . . . . . . . . . . . . . . . . . . . . . 43

31. Test statistic: A good test statistic is a sensitive indicator of whether the data agree
or disagree with the null hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

32. Decision rule: Decide whether to accept or reject the null hypothesis. . . . . . . . . . . . . 43

33. Null hypothesis: H0 : The machine is operating properly . . . . . . . . . . . . . . . . . . . . . . . . 43

34. Alternative hypothesis: H1 : The machine needs attention . . . . . . . . . . . . . . . . . . . . . . . 43

35. The hypothesis is simple if the assumption that the hypothesis is true leads to only
one probability function defined on the sample space. The hypothesis is composite
if the assumption that the hypothesis is true leads to only two or more probability
functions defined on the sample space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

36. A test statistic is a statistic used to make the decision in a hypothesis test. . . . . . . 43

37. The critical (rejection) region is the set of all points in the sample space that result
in the decision to reject the null hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

38. The type I error is the error of rejecting a true null hypothesis. . . . . . . . . . . . . . . . . . . 44

39. The type II error is the error of accepting a false null hypothesis. . . . . . . . . . . . . . . . . 44
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40. The level of significance, or α, is the maximum probability of rejecting a true null
hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

41. The null distribution of the test statistic is its probability distribution when the null
hypothesis is assumed to be true.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

42. The power, denoted by 1 − β, is the probability of rejecting a false null hypothesis.
44

43. The p-value is the smallest significance level at which the null hypothesis would be
rejected for the given observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

44. Power function: If H1 is composite, the power may vary as the probability function
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be given as a function of that parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

45. An unbiased test is a test in which the probability of rejecting H0 when H0 is false
always greater than or equal to the probability of rejecting H0 when H0 is true. . 47

46. A sequence of tests is consistent against all alternatives in the class H1 if the power
of the tests approaches 1.0 as the sample size approaches infinity, for each fixed
alternative possible under H1. The level of significance of each test in the sequence
is assumed to be as close as possible to but not exceeding some constant α > 0. . 47

47. Relative efficiency: Efficiency is a relative term and is used to compare the sample
size of one test with that of another test under similar conditions. . . . . . . . . . . . . . . . 49

48. Let T1 and T2 represent two tests that test the same H0 against the same H1, with
the critical regions of the same size α and with the same value of β. The relative
efficiency of T1 to T2 is the ratio n2/n1, where n1 and n2 are the sample sizes of the
tests T1 and T2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

49. Asymptotic relative efficiency: The relative efficiency depends on the choice of α, the
choice of β, and the particular alternative being considered if H1 is composite. . . .49

50. Let n1 and n2 be the sample sizes required for two tests T1 and T2 to have the same
power under the same level of significance. If α and β remain fixed the limit of n2/n1,
as n1 approaches infinity, is called the asymptotic relative efficiency (A.R.E) if the
first test to the second test, if that limit is independent of α and β. . . . . . . . . . . . . . .50

51. A test is conservative if the actual level of significance is smaller than the stated level
of significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

52. A statistical method is nonparametric if it satisfies at least one of the following
criteria.

(a) The method maybe used on data with a nominal scale of measurement.

(b) The method may be used on data with an ordinal scale of measurement.

(c) The method may be used on data with an interval or ratio scale of measure-
ment, where the distribution function of the random variable producing the
data is either unspecified or specified except for an infinite number of unknown
parameters.
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Chapter 3
SOME TESTS BASED ON THE BINOMIAL
DISTRIBUTION
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Binomial probability distribution

I Probabilities associated with the number of heads when a coin is tossed n times.

I P (Head) = p and P (tail) = 1− p = q

I The binomial distribution describes the probability of obtaining exactly k heads.

I Table A3 presents some of the binomial distribution functions.

I Many experimental situations in the applied sciences may be modeled this way.

. Several customers enter a store and independently decide to buy or not to buy
a particular product.

. Several animals are given a certain medicine and either the are cured or not
cured.

. Examples can be found in almost any field.

I Data obtained in these situations may be analyzed by methods based on the binomial
distribution.

I In this chapter we present a few of the available methods. The literature abounds
with other procedures based on the binomial distribution.

I After studying the variety of tests presented in this chapter, the reader should be
able to invent variations to match a given experimental situation.
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3.1 The binomial test and estimation of p

I In Example 2.3.1 the binomial test was applied to a quality control problem.

I This entire chapter (Chap. 3) is little more than an elaboration of Example 2.3.1,
showing the many uses and amazing versatility of that simple little binomial test.

I The binomial test may be adapted to test almost any hypothesis, with almost any
type of data amenable to statistical analysis.

I In some situations the binomial test is the most powerful test; in those situations the
test is claimed by both parametric and nonparametric statistic.

I In other situations more powerful tests are available, and the binomial test is claimed
only by nonparametric statistic.

I However, even in situations where more powerful tests are available, the binomial test
is sometimes preferred because it is usually simple to perform, simple to explain, and
sometimes powerful enough to reject the null hypothesis when it should be rejected.

The binomial test

Data The sample consists of the outcomes of n independent trials. Each outcome is
in either “class 1” or “class 2”, but not both. The number of observations in class 1
is O1 and the number of observations in class 2 is O2 = n−O1.

Assumptions

1. The n trials are mutually independent.

2. Each trial has probability p of resulting in the outcome “class 1”, where p is the
same for all n trials.

Test statistic T : Number of times the outcome is “class 1”.

Null distribution

. Table A3 for n ≤ 20 and selected values of p.

. For other values of n and p the normal approximation is used.

xq = np + zq

√
np(1− p)

Hypothesis

A. Two-tailed test:
H0 : p = p∗ H1 : p 6= p∗

∗ α1: Size of the lower tail.

∗ α2: Size of the upper tail.

∗ α = α1 + α2: Size of test.

∗ Table A3 for t1 and t2 such that P (Y ≤ t1) = α1 and P (Y ≥ t2) = α2.

∗ If n > 20 use the normal approximation.

∗ Reject H0 if T is less than or equal to t1 or if T is greater than t2. Otherwise
accept the null hypothesis.
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∗ The p-value is twice the smaller of the probabilities that Y is less than or
equal to the observed value of T , or greater or equal to the observed value
of T .

∗ For n > 20, using

P (Y ≤ tobs) ≈ P

(
Z ≤ tobs − np∗ + 0.5√

np∗(1− p∗)

)

P (Y ≥ tobs) ≈ 1− P

(
Z ≤ tobs − np∗ − 0.5√

np∗(1− p∗)

)

B. Lower-tailed test:
H0 : p ≥ p∗ H1 : p < p∗

∗ Table A3 for t such that P (Y ≤ t) = α.

∗ If n > 20 use the normal approximation.

∗ Reject H0 if T is less than or equal to t. Otherwise accept the null hypoth-
esis.

∗ The p-value is the probability that Y is smaller than or equal to the observed
value of T .

∗ For n > 20, using

P (Y ≤ tobs) ≈ P

(
Z ≤ tobs − np∗ + 0.5√

np∗(1− p∗)

)

C. Upper-tailed test:
H0 : p ≤ p∗ H1 : p > p∗

∗ Table A3 for t such that P (Y ≤ t) = 1− α.

∗ If n > 20 use the normal approximation.

∗ Reject H0 if T is greater than t. Otherwise accept the null hypothesis.

∗ The p-value is the probability that Y is greater than or equal to the observed
value of T .

∗ For n > 20, using

P (Y ≥ tobs) ≈ 1− P

(
Z ≤ tobs − np∗ − 0.5√

np∗(1− p∗)

)

Computer assistance Minitab, SAS, S-Plus, and StatXact can perform binomial test.

Example 3.1.1 It is estimated that at least half of the men who currently undergo an
operation to remove prostate (前列腺) cancer suffer a particular undesirable side effect.
In an effort to reduce the likelihood of this side effect the FDA studied a new method of
performing the operation. Out of 19 operations only 3 men suffered the unpleasant side
effect. Is it safe to conclude the new method of operating is effective in reducing the side
effect?

I p: Probability of the patient experiencing the side effect.

I H0 : p ≥ 0.5 H1 : p < 0.5 (Lower-tailed test)
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I α = 0.05, n = 19 and p = 0.5.

I P (Y ≤ 5) = 0.0318 (Table A3)

I Reject H0 since the observed value of T = 3 is smaller than 5 (P (Y ≤ 3) = 0.0022).

I One should always use exact methods when exact methods are available.

I Normal approximation:

. x0.05 = 19(0.5) + (−1.6449)
√

19(0.5)(0.5) = 5.9 resulting in the same rejection
region as before.

. P (Y ≤ 5) ≈ P

(
Z ≤ 5−19(0.5)+0.5√

19(0.5)(0.5)

)
= 0.033 is close to the exact α, 0.032.

. P (Y ≤ 3) ≈ P

(
Z ≤ 3−19(0.5)+0.5√

19(0.5)(0.5)

)
= 0.003 is close to the exact p-value, 0.002.

¤

Example 3.1.2 Under simple Mendelian inheritance (孟德爾遺F) a cross between plants
of two particular genotypes may be expected to produce progeny one-fourth of which are
“dwarf” and three-fourths of which are “tall”. In an experiment to determine if the as-
sumption of simple Mendelian inheritance is reasonable in a certain situation, a cross
results in progeny (後_) having 243 dwarf plants and 682 tall plants.

I If “class 1” denotes “tall”, then p∗ = 3/4 and T equals the number of tall plants.

I H0 : p = 3/4 v.s. H1 : p 6= 3/4

I α = 0.05, n = 925 and p∗ = 3/4.

I t1 = (925)(3/4) + (−1.960)
√

(925)(3/4)(1/4) = 667.94

I t2 = (925)(3/4) + (1.960)
√

(925)(3/4)(1/4) = 719.56

I Accept H0 since t1 < 682 < t2.

I P (Y ≤ 682) ≈ P
(
Z ≤ 682−693.75+0.5

13.17

)
= P (Z ≤ −0.8542) = 0.196

I p-value: 2P (Y ≤ 682) = 0.392 ¤

The previous example illustrates the two-tailed form of the binomial test. The one-tailed
binomial test was also illustrated in Example 2.3.1.
Theory

I That the test statistic in the binomial test has a binomial distribution is easily seen
by comparing the assumptions in the binomial test with the assumptions in Examples
1.3.5 and 1.2.8.

I If T equals the number of trials that result in the outcome ”class 1,” where the trials
are mutually independent and where each trial has probability p of resulting in that
outcome (as stated by the assumptions), then T has the binomial distribution with
parameters p and n. The size of the critical region is a maximum when p equals p∗,
under the null hypothesis, and so Table A3 is entered with n and p∗ to determine
the exact value of α.
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Hypothesis testing is only one branch of statistical inference. We will now discuss another
branch, interval estimation.

Confidence interval

I Interval estimator (L,U) where L and U are the lower and upper interval boundary
respectively.

I Confidence coefficient: The probability that the unknown population parameter lies
within its interval estimates.

I The interval estimator together with the confidence coefficient provide us with the
confidence interval.

Confidence interval for a probability or population proportion

Data A sample consisting of observations on n independent trials is examined, and
the number Y of times the specified event occurs is noted.

Assumptions

1. The n trial are mutually independent.

2. The probability p of the specified event occurring remains constant from one
trial to the next.

Method A For n less than or equal to 30, and confidence coefficients of 0.90, 0.95,
or 0.99, use Table A4. Simply enter the table with sample size n and the observed
Y . Reading across gives the exact lower and upper bounds in the columns for the
desired confidence interval.

Method B For n greater than 30, use the normal approximation.

L =
Y

n
− z1−α/2

√
Y (n− Y )/n3

U =
Y

n
+ z1−α/2

√
Y (n− Y )/n3

Example 3.1.3 In a certain state 20 high schools were selected at random to see if they
met the standards of excellence proposed by a national committee on education. It was
found that 7 schools did qualify and accordingly were designated “excellent.” What is a
95% confidence interval for p, the proportion of all high schools in the state that would
qualify for the designation “excellent”?

I The high schools are classified “excellent” or “not excellent” independently of one
another.

I n = 20 and Y = 7.

Method A: (L,U) = (.154, .592) and P (.154 < p < .592) = .95 by Table A4.
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Method B:

L =
Y

n
− z.975

√
Y (n− Y )/n3

= .35− (1.960)
√

(7)(13)/(20)3

= .141

U = .35 + .209 = .559

P (.141 < p < .559) = .95

The confidence interval furnished by the normal approximation is from 0.141 to 0.559,
which is close to the exact confidence interval, but still different enough to show the
clear advantage of using exact intervals when they are available. ¤

Theory

I Exact Method A: The confidence interval consists of all values of p∗ such that the
data obtained in the sample would result in acceptance of

H0 : p = p∗ v.s. H1 : p 6= p∗

For the given values of Y , which values may we use for p∗ in the hypothesis such that
a two-tailed binomial test (at level α) would result in acceptance of H0?

. Since each tail of the binomial test has probability α/2, the value of L is selected
as the value of p∗ that would barely result in rejection of H0, for the given value
of Y , say y, or a larger value. Thus p∗1 is selected so that

P (Y ≥ y|p = p∗1) =
α

2
=

n∑
i=y

(
n

i

)
(p∗1)

i(1− p∗1)
n−i

and then L = p∗1.

. Another value of p∗ is selected so the same value y is barely in the lower tail.
That is, p∗2 is selected so

P (Y ≤ y|p = p∗2) =
α

2
=

y∑
i=0

(
n

i

)
(p∗2)

i(1− p∗2)
n−i

and we set U = p∗2.

More information on confidence intervals for the binomial parameter p in Clopper
and Pearson (1934).

I Large sample approximation:

. If Y is a binomially distributed random variable with parameters p and large n,
then

Z =
Y − np√

npq
≈ N(0, 1).

. 1− α ≈ P

(
−z1−α/2 < Y−np√

n(Y/n)(1−Y/n)
< z1−α/2

)
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. 1− α ≈ P

(
p ∈ Y

n
± z1−α/2

√
Y (n−Y )

n3

)

I Multiplication by the sample size n in the preceding procedures gives nL and nU as
the lower and upper bounds of the confidence interval for np, used to test hypotheses
involving the mean of a binomial random variable.

I Other methods of obtaining binomial confidence limits are given by Anderson and
Burstein (1967 and 1968).

I Methods dealing with simultaneous confidence intervals for multinomial proportions
are given by Quesenberry and Hurst (1964) and Goodman (1965).

3.2 The quantile test and estimation of xp

The binomial test may be used to test hypotheses concerning the quantiles of a random
variable.
Test whether the median of X is 17.

I If the median of X is 17, then about half of the observations should fall on either
side of 17.

I If very few of the sample observations are less than 17, the median of X appears to
be larger than 17.

I If by far most of the sample observations are less than 17, the median of X appears
to be less than 17.

I The measurement scale is usually at least ordinal for the quantile test, although the
binomial test only required the weaker nominal for its measurements.

I For continuous random variable:

H0 : The p∗th quantile of X is x∗ ≡ H0 : P (X ≤ x∗) = p∗

Two-tailed binomial test may be used.

I In general (including the discrete random variable):

H0 : The p∗th quantile of X is x∗ ≡ H0 : P (X ≤ x∗) ≥ p∗ and P (X < x∗) ≤ p∗

The quantile test

Data Let X1, X2, . . . , Xn be a random sample. The data consist of observations on
the Xi.

Assumptions

1. The Xis are a random sample.

2. The measurement scale of the Xis is at least ordinal.

Test statistic
Let T1 equal the number of observations less than or equal to x∗, and let T2 equal
the number of observations less x∗. Then T1 = T2 if none of the numbers in the data
exactly equals x∗. Otherwise, T1 is greater than T2.



CHAPTER 3. SOME TESTS BASED ON THE BINOMIAL DISTRIBUTION 64

Null distribution
The null distribution of the test statistic T1 and T2 is the binomial distribution, with
parameters n = sample size, and p = p∗ as given in the null hypothesis.

. The null distribution is given in Table A3 for n ≤ 20 and selected values of p.

. For other values of n and p the normal approximation is used:

xq ≈ np + zq

√
np(1− p)

Hypotheses

A. Two-tailed test
H0 : xp = x∗ H1 : xp 6= x∗

H0 : P (X ≤ x∗) ≥ p∗ and P (X < x∗) ≤ p∗

∗ α1: Size of the lower tail.

∗ α2: Size of the upper tail.

∗ α = α1 + α2: Size of test.

∗ Table A3 for t1 and t2 such that P (Y ≤ t1) = α1 and P (Y ≤ t2) = 1− α2.

∗ If n > 20 use the normal approximation.

∗ Reject H0 if T1 is less than or equal to t1 [indicating that perhaps P (X ≤ x∗)
is less than p∗] or if T2 is greater than t2 [indicating that perhaps P (X < x∗)
is greater than p∗]. Otherwise accept the null hypothesis.

∗ The p-value is twice the smaller of the probabilities that Y is less than or
equal to the observed value of T1, or greater or equal to the observed value
of T2.

∗ For n > 20, using

P (Y ≤ T1) ≈ P

(
Z ≤ T1 − np∗ + 0.5√

np∗(1− p∗)

)
(4)

P (Y ≥ T2) ≈ 1− P

(
Z ≤ T2 − np∗ − 0.5√

np∗(1− p∗)

)
(5)

B. Lower-tailed test:
H0 : xp ≤ x∗ H1 : xp > x∗

H0 : P (X < x∗) ≥ p∗ H1 : P (X < x∗) < p∗

∗ Table A3 for t1 such that P (Y ≤ t1) = α.

∗ If n > 20 use the normal approximation.

∗ Reject H0 if T1 is less than or equal to t1. Otherwise accept the null hy-
pothesis.

∗ The p-value is the probability that Y is smaller than or equal to the observed
value of T1.

∗ For n > 20, using

P (Y ≤ T1) ≈ P

(
Z ≤ T1 − np∗ + 0.5√

np∗(1− p∗)

)
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C. Upper-tailed test:
H0 : xp ≥ x∗ v.s. H1 : xp < x∗

H0 : P (X < x∗) ≤ p∗ v.s. H1 : P (X < x∗) > p∗

. Table A3 for t2 such that P (Y ≤ t2) = 1− α.

. If n > 20 use the normal approximation.

. Reject H0 if T2 is greater than t2. Otherwise accept the null hypothesis.

. The p-value is the probability that Y is greater than or equal to the observed
value of T2.

. For n > 20, using

P (Y ≥ T2) ≈ 1− P

(
Z ≤ T2 − np∗ − 0.5√

np∗(1− p∗)

)

Example 3.2.1 (The two-tailed quantile test) Entering college freshmen have taken
a particular high school achievement examination for many years, and the upper quartile
is well established at a score of 193. A particular high school sends 15 of its graduates to
college, where they take the exam and get the following scores

189 233 195 160 212
176 231 185 199 213
202 193 174 166 248

I H0: The upper quantile is 193
H1: The upper quantile is not 193

I α = 0.05, n = 15 and p = 0.75 from Table A3:

P (Y ≤ 7) = 0.0173

P (Y ≤ 14) = .9866 = 1− 0.0134

α = 0.0173 + 0.0134 = 0.0307

I In this example T1 = 7 the number of observations less than or equal to 193, and
T2 = 6, since one observation exactly equals 193. Reject H0 since T1 is too small.

I p-value is 2P (Y ≤ 7) = 0.0346. ¤

Example 3.2.2 (The one-tailed quantile test with the large sample approximation)
The time interval between of Old Faithful geyser is recorded 112 times to see whether
the median interval is less than or equal to 60 minutes (null hypothesis) or whether the
median interval is greater than 60 minutes (alternative hypothesis). If the median interval
is 60, 60 is x0.50, or the median. If the median interval is less than 60, 60 is a p quantile
for some p ≥ 0.50.

I Let X be the time interval between eruptions.

H0 : P (X ≤ 60) ≥ .50 v.s. H1 : P (X ≤ 60) < .50
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I Use lower-tailed quantile test.

I T1 = Number of intervals that are less than or equal to 60 minutes.

I Critical region of size 0.05 corresponds to values of T1 less than or equal to

t1 = np∗ + z.05

√
np∗(1− p∗)

= (112)(.50)− (1.645)
√

(112)(.50)(.50)

= 47.3

I Reject H0 since T1 = 8.

I p-value by Equation 4:

P (Y ≤ 8) ∼= P

[
Z ≤ 8− (112)(.50)√

(112)(.50)(.50)

]
= P (Z ≤ −8.977) ¿ .0001 ¤

Theory

I Why the hypotheses within the parentheses in A, B, and C are equivalent to the
hypotheses not in parentheses. Refer to Fig. 1.

I xp∗ ≤ x∗ implies p∗ ≤ p0 if x∗ = xp0 .

I P (X > x∗) ≤ 1− p0 is the same as p0 ≤ 1− P (X > x∗) = P (X ≤ x∗).

I Since p∗ ≤ p0, this implies
p∗ ≤ P (X ≤ x∗) (15)

which is the equivalent form of H0 in set B of hypotheses.

I The negation of H0 is H1, and the negation of Equation 15 is

p∗ > P (X ≤ x∗).

I Fig. 1 is used to visualize that xp0 ≤ xp∗ (H0 in C) implies that p0 ≤ p∗.

I If x∗ = xp0 then by Definition 1.4.1

P (X < x∗) ≤ p0 ≤ p∗

is true, which furnishes the equivalent form of H0.

I The binomial test is applied directly to test the hypothesis in parentheses. H0 in C
is tested by defining the “class 1” of the binomial test as those observations at least
as great as x∗.

I H0 in B is tested by considering “class 1” to represent those observations less than
or equal to x∗.

I The two tests in B and C are combined to give the two-tailed test in A.

1. Previous section shows how to find a confidence interval for a probability p.

2. The same method is used to find a confidence interval for F (x0).
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3. In the previous section we showed how to find a confidence interval for a probability
p (vertical confidence interval).

4. This section shows how to find a confidence interval for a quantile by using the
ordered statistics (horizontal confidence interval).

P
(
X(r) ≤ xp∗ ≤ X(s)

)
= 1− α

where 1 − α is a known confidence coefficient and where X(r)) and X(s) are order
statistics with rand s specified.

5. This statistical method may be applied freely to any random sample from any pop-
ulation.

Confidence interval for a quantile

Data The data consist of observations on X1, X2, . . . , Xn, which are independent and
identically distributed. We wish to find a confidence interval for p∗ quantile, where
p∗ is some specified number between zero and one.

Assumptions

1. The sample X1, X2, . . . , Xn is a random sample.

2. The measurement scale of the Xis is at least ordinal.

Method A (small samples)

. For n ≤ 20 Table A3 may be used to find y, r = y + 1 and s = y + 1.

. P
(
X(r) ≤ xp∗ ≤ X(s)

) ≥ 1− α1 − α2 provides the confidence interval.

. If the unknown distribution is continuous, then P
(
X(r) ≤ xp∗ ≤ X(s)

)
= 1 −

α1 − α2

Method B (large sample approximation)

. For n greater than 20 the approximation based on the central limit theorem
may be used.

. r∗ = np∗ + zα/2

√
np∗(1− p∗) and s∗ = np∗ + z1−α/2

√
np∗(1− p∗)

. Let r and s be the integers obtained by rounding r∗ and s∗ upward to the next
higher integers.

. One-sided confidence intervals:

P
(
X(r) ≤ xp∗

)
= 1− α1 and P

(
xp∗ ≤ X(s)

)
= 1− α2

if the distribution function is continuous.

P
(
X(r) ≤ xp∗

) ≥ 1− α1 and P
(
X(s) ≤ xp∗

) ≥ 1− α2

otherwise.

Example 3.2.3 Sixteen transistors are selected at random from a large batch of transis-
tors and are tested. The number of hours until failure is recorded for each one. We wish
to find a confidence interval for the upper quartile, with a confidence coefficient close to
90%.
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I α1 = 0.0271, y = 8, r = 9 from Table A3 with n = 16, p = 0.75.

I The probability closest to 0.95 is 0.9365 = 1−α2 which has a corresponding y of 14.
Thus s = 15.

I CI: P
(
X(9) = 63.3 ≤ x.75 ≤ X(15) = 73.3

)
= 0.9094

I Large sample approximation:

r∗ = (16)(.75) + (−1.645)
√

(16)(.75)(.25)

= 12− 2.86

= 9.14

s∗ = 12 + 2.86

= 14.86

Therefore r = 10 and s = 15, so the 90% CI becomes (63.4, 73.3). ¤

Theory: Consider first the simpler case where the distribution function is continuous. If
xp∗ is the p∗th quantile, we have the exact relationship

P (X ≥ xp∗) = P (X > xp∗) = 1− p∗

where the distribution function of X is the same as that of the random sample.

I P
(
xp∗ < X(1)

)
= (1− p∗)n

I P
(
xp∗ < X(2)

)
=

∑1
i=0

(
n
i

)
(p∗)i(1− p∗)n−i

I P
(
xp∗ < X(r)

)
=

∑r−1
i=0

(
n
i

)
(p∗)i(1− p∗)n−i

I Confidence coefficient:
1− α ≈ P

(
X(r) ≤ xp∗ ≤ X(s)

)

I P
(
xp∗ ≤ X(s)

) ≈ 1− α/2

I P
(
xp∗ < X(r)

) ≈ α/2

If X is not continuous: conservative, = changes to ≥ or ≤.

I P (X > xp∗) ≤ 1− p∗ and P (X ≥ xp∗) ≥ 1− p∗

I P
(
xp∗ < X(r)

) ≤ ∑r−1
i=0

(
n
i

)
(p∗)i(1− p∗)n−i ≤ α1

I P
(
xp∗ ≤ X(s)

) ≥ ∑s−1
i=0

(
n
i

)
(p∗)i(1− p∗)n−i ≥ 1− α2

I

P
(
X(r) ≤ xp∗ ≤ X(s)

)
= P

(
xp∗ ≤ X(s)

)− P
(
xp∗ < X(r)

)

≥ P
(
xp∗ ≤ X(s)

)− α1

≥ 1− α1 − α2
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I This method may be conservative with discrete random variables, or ordinal data
with ties.

I The method of finding a confidence interval for a quantile has been justified for the
case where exact tables of the binomial distribution function are available.

I The large sample method of obtaining r and s is based on the use of the standard
normal distribution to approximate the binomial distribution.

3.3 Tolerance limits

Confidence intervals of Sec. 3.1 and 3.2 provide interval estimates for unknown population
parameters p and xp.
Tolerance limits provide an interval within which at least a proportion q of the population
lies, with probability 1−α or more that stated interval does indeed contain the proportion
q of the population.

I A typical application: How large must the sample size n be so that at least a propor-
tion q of the population is between X(1) and X(n) with probability 1− α or more?

I In general: How large must the sample size n be so that at least a proportion q of
the population is between X(r) and X(n+1−m) with probability 1− α or more?

I The numbers q, r,m, and 1−α are known (or selected) beforehand, and only n needs
to be determined.

I Another typical situation: When a random sample is available, we want 95% confi-
dence that the limits we choose will contain at least q of the population.

I What will the population proportion q be if we choose the two extreme values in the
sample, X(1) and X(n), as our limits?

I In this version of the problem, q is the unknown quantity and is obtained after we
know, or set, values for α, n, r, and m.

I One-sided tolerance limits: At least a proportion q of the population is greater than
X(r), with probability 1− α.

Data The data consist of a random sample X1, X2, . . . , Xn from a large population. Choose
a confidence coefficient 1 − α and a pair of positive integers r and m. Either we
wish to determine the required sample size n after selecting a desired population
proportion q (see Method A), or we wish to determine the population proportion q
for a given sample size n (see Method B). We are trying to make the statement, “The
probability is 1−α that the random interval from X(r) to X(n+1−m) inclusive contains
a proportion q or more of the population.” Note that we are using the convention
X(0) = −∞ and X(n+1) = ∞, so that one-sided tolerance limits may be obtained by
setting either r or m equal to zero.

Assumptions

1. The X1, X2, . . . , Xn constitute a random sample.

2. The measurement scale is at least ordinal.
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Method A (to find n) If r + m equals 1, that is, if either r or m equals zero as in
one-sided tolerance limit, read n directly from Table A5 for the appropriate values of
α and q. If r + m equals 2, read n directly from Table A6 for the appropriate values
of α and q. If Table A5 and A6 are not appropriate, use the approximation

n ≈ 1

4
x1−α

1 + q

1− q
+

1

2
(r + m− 1)

where x1−α is the (1 − α) quantile of a chi-squared random variable with 2(r + m)
degrees of freedom, obtained from A2.

Method B (to find q) For a given sample size n and selected values of α, r, and m,
the approximate value of q, the proportion of the population, is given by

q =
4n− 2(r + m− 1)− x1−α

4n− 2(r + m− 1) + x1−α

Tolerance limit With a sample of size n, there is probability at least 1 − α that q
of the population is between X(r) and X(n+1−m) inclusive. For one-sided tolerance
regions let either r or m equal zero.

Example 3.3.1 (Two-sided tolerance limit) Probability the most widely used two-
sided tolerance limits are those where r = 1 and m = 1. Electric seat adjusters are
available on a popular luxury car. The manufacturer wants to know what range of verti-
cal adjustment is necessary to be 90% certain that at least 80% of population of potential
buyers will be able to adjust their seats to the desired height. What must n be so that X(n)

and X(1) furnish our upper and lower limits?

I n = 18 from Table A6 with q = 0.80 and 1− α = 0.90.

I Approximation by Equation 1:

n ∼= 1

4
x1−α

1 + q

1− q
+

1

2
(r + m− 1)

=
1

4
(7.779)

1.80

0.20
+

1

2
= 18.003

I Largest and smallest value in sample:

X(18) = 7.57, X(1) = 1.21

I There is a probability 0.90 that at least 80% of the population requires a vertical
seat adjustment to or between 1.21 and 7.57 inches. ¤

Example 3.3.2 (One-sided tolerance limit) Along with each lot of steel bars, the
manufacturer guarantees that at least 90% of the bars will have a breaking point above
a number specified for each lot. Because of variable manufacturing conditions the guaran-
teed breaking points is established separately for each lot by breaking a random sample of
bars from each lot and setting the guaranteed breaking point equal to the minimum breaking
point in the sample. How large should the sample be so that the manufacture can be 95%
sure the guarantee statement is correct?
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I n = 29 from Table A5 with q = 0.90 and 1− α = 0.95.

I In each lot a sample of size 29 is selected at random, and the smallest breaking point
of these bars in the sample is stated as the guaranteed breaking point, at which at
least 90% of the bars in the lot will still be intact, with probability 0.95. ¤

Example 3.3.3 A large population of drums (i桶) containing radioactive waste is being
stored for safe keeping. Each drum has marked on it the amount of radioactive waste
contained in the drum. Periodic audits are made where randomly selected drums are
scanned externally to estimate the amount of radioactive waste contained in the drum,
and the estimate is compared with the label to obtain the discrepancy X. Over a period
of three months 122 drums have been examined in this way, and the results are a random
sample X1, . . . , X122, where each Xi is the discrepancy between the amount marked on the
drum and the amount estimated by the scan.

I Select r = 2,m = 2 and 1− α = 0.95.

I Approximate by Equation 2 with 0.95 quantile from χ2
2(r+m)=8:

q =
4n− 2(r + m− 1)− x1−α

4n− 2(r + m− 1) + x1−α

=
488− 6− 15.51

488− 6 + 15.51
= 0.938

I We can be 95% confident that at least 93.8% of the drums have discrepancies between
the second smallest and the second largest observed discrepancies in the 122 observed
drums. ¤

Theory

I A careful examination of the statement furnished by the one-sided tolerance limit
reveals the similarity it has with one-sided confidence interval for quantiles.

I One sided tolerance limit:

P
(
at least q of the population is ≤ X(n+1−m)

)

=P
(
the q quantile is ≤ X(n+1−m)

)

=P
(
xq ≤ X(n+1−m)

) ≥ 1− α (5)

From Equation 3.2.43 it gives

P
(
xq ≤ X(n+1−m)

) ≥
n−m∑
i=0

(
n

i

)
qi(1− q)n−i (6)

Rewrite the right side of Equation 6 as

n−m∑
i=0

(
n

i

)
qi(1− q)n−i = 1−

n∑
i=n−m+1

(
n

i

)
qi(1− q)n−i (7)
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A change of index, j = n− i, on the right side of Equation 7 results in

n−m∑
i=0

(
n

i

)
qi(1− q)n−i = 1−

m−1∑
j=0

(
n

j

)
(1− q)jqn−j (8)

Equations 8 and 6 shows that we could find n by solving for the smallest value of n
that satisfies

1−
m−1∑
j=0

(
n

j

)
(1− q)jqn−j ≥ 1− α (9)

m−1∑
j=0

(
n

j

)
(1− q)jqn−j ≤ α (10)

I The other one-sided tolerance limit:

P
(
X(r) ≤ at least q of the population

) ≥ 1− α

P
(
X(r) ≤ x1−q

) ≥ 1− α (12)

Equation 12 becomes

1− P
(
X(r) ≤ x1−q) = P (x1−q < X(r)

) ≤ α (13)

From Equation 3.2.41 we see that the solution to Equation 13 is the smallest value
of n such that

r−1∑
i=0

(
n

i

)
(1− q)iqn−i ≤ α

I It can be shown, with the aid of calculus (see Noether, 1967a), that for the two-sided
tolerance limits and for both two types of one-sided tolerance limits, the sample size
n depends on the solution to

r+m−1∑
i=0

(
n

i

)
(1− q)iqn−i ≤ α.

which depends on r + m only.

I The approximation in Equation 1 is furnished without proof by Scheffé and Tukey
(1944).

I Equation 2 is obtained by solving Equation 1 for q.

3.4 The sign test

I The sign test is the oldest of all nonparametric tests.

I The sign test is just the binomial test with p∗ = 1/2.

I Dating back to 1710.
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I p∗ = 1− p∗ = 1/2 makes it even simpler than the binomial test.

I Useful for testing whether one random variable in a pair (X, Y ) tends to be larger
than the other random variable in the pair.

I Test for trend in a series of ordinal measurements or as a test for correlation.

I In many situations where the sign test may be used, more powerful nonparametric
tests are available for the same model.

I However, the sign test is usually simpler and easier to use, and special tables to find
the critical region are sometimes not needed.

The sign test

Data The data consist of observations on a bivariate random sample (X1, Y1), . . . , (Xn′ , Yn′),
where there are n′ pairs of observations. There should be some natural basis for pair-
ing the observations; otherwise the Xs and Y s are independent, and the more pow-
erful Mann-Whitney test of Chap. 5 is more appropriate. Within each pair (Xi, Yi)
a comparison is made, and the pair is classified as “+” or “plus” if Xi < Yi as “−”
or “minus” if Xi > Yi, or as “0” or “tie” if Xi = Yi. Thus the measurement scale
needs only to be ordinal.

Assumptions

1. The bivariate random variables Xi, Yi are mutually independent.

2. The measurement scale is at least ordinal within each pair. That is, each pair
(Xi, Yi) may be determined to be a “plus”, “minus”, or “tie”.

3. The pairs (Xi, Yi) are internally consistent, in that if P (+) > P (−) for one pair
(Xi, Yi), then P (+) > P (−) for all pairs. The same is true for P (+) < P (−),
and P (+) = P (−).

Test statistic T : Number of “plus” pairs.

Null distribution The null distribution of T is the binomial distribution with p = 1/2
and n = the number of nontied pairs.

Hypothesis

A. Two-tailed test:

H0 : P (+) = P (−) H1 : P (+) 6= P (−)

∗ For n ≤ 20, use Table A3 with the proper value of n and p = 1/2.

∗ α1 = α/2: P (Y ≤ t) = α1

∗ Reject H0 if T is less than or equal to t or if T is greater than n − t.
Otherwise accept the null hypothesis.

∗ If n > 20 use the normal approximation (Table A3).

t = (n + zα/2

√
n)/2

∗ The p-value is twice the smaller of the probabilities that Y is less than or
equal to the observed value of T , or greater or equal to the observed value
of T .
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∗ For n > 20, using

P (Y ≤ tobs) ≈ P

(
Z ≤ 2tobs − n + 1√

n

)

P (Y ≥ tobs) ≈ 1− P

(
Z ≤ 2tobs − n− 1√

n

)

B. Lower-tailed test:

H0 : P (+) ≥ P (−) H1 : P (+) < P (−)

. Table A3 with p = 1/2 and n for t such that P (Y ≤ t) = α.

. If n > 20 use the normal approximation.

t = (n + zα

√
n)/2

. Reject H0 if T is less than or equal to t. Otherwise accept the null hypothesis.

. The p-value is the probability that Y is smaller than or equal to the observed
value of T .

. For n > 20, using

P (Y ≤ tobs) ≈ P

(
Z ≤ 2tobs − n + 1√

n

)

C. Upper-tailed test:

H0 : P (+) ≤ P (−) H1 : P (+) > P (−)

. Table A3 for t such that P (Y ≤ t) = α.

. If n > 20 use the normal approximation.

. Reject H0 if T is greater than n− t. Otherwise accept the null hypothesis.

. The p-value is the probability that Y is greater than or equal to the observed
value of T .

. For n > 20, using

P (Y ≥ tobs) ≈ 1− P

(
Z ≤ 2tobs − n− 1√

n

)

Remarks: The sign test is unbiased and consistent when testing these hypotheses.
The sign test is also used for testing the following counterparts of the hypotheses,
in which case it is neither unbiased nor consistent unless additional assumptions
concerning the distributions of (Xi, Yi) are made.

A. Two-tailed test: Xi and Yi have the same location parameter,

H0 : E(Xi) = E(Yi) H1 : E(Xi) 6= E(Yi)

or

H0: The median of Xi equals the median of Yi for all i.
H1: Xi and Yi have different medians for all i.
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B. Lower-tailed test:

H0 : E(Xi) ≤ E(Yi) H1 : E(Xi) > E(Yi)

C. Upper-tailed test:

H0 : E(Xi) ≥ E(Yi) H1 : E(Xi) < E(Yi)

Example 3.4.1 An item A is manufactured using a certain process. Item B serves the
same function as A but is manufactured using a new process. The manufacturer wishes to
determine whether B is preferred to A by the consumer, so she selects a random sample
consisting of 10 consumers, gives each of them one A and one B, and asks them to use
the items for some period of time.

The sign test (one-tailed) will be used to test

H0 : P (+) ≤ P (−) H1 : P (+) > P (−)

“+”: Item B is preferred over item A
“−”: Item A is preferred over item B

I T = Number of + signs.

I Critical region corresponds to values of T greater than or equal to n− t.

I Consumers report:
8 = number of +′ s

1 = number of−′ s
1 = number of ties

n = number of + ’s and − ’s

= 8 + 1 = 9

T = number of + ’s = 8

I P (Y ≥ 8 = 9− 1) = P (Y ≤ 1) = 0.0195 from Table A3 with n = 9 and p = 1/2.

I Reject H0. ¤

Example 3.4.2 (Use of the large sample approximation) In what was perhaps the
first published report of a nonparametric test, Arbuthnott (1710) examined the available
London birth records of 82 years and for each year compared the number of males born
with the number of female born. If for each year we denote the event “more males than
females were born” by “+” and the opposite event by “−”, (there were no ties), we may
consider the hypotheses to be

H0 : P (+) = P (−) H1 : P (+) 6= P (−)

I T = number of + signs.
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I Critical region of size α = 0.05 corresponds to values of T less than

t = .5(82− (1.960)
√

82) = 32.1

and values of T greater than n− t = 82− 32.1 = 49.9.

I From the records there were 82 plus signs and no ties.

I H0 could be have been rejected at an α as small as

α̂ = P (T = 0) + P (T = 82)

=

(
1

2

)82

+

(
1

2

)82

=

(
1

2

)81

¤

Example 3.4.3 Ten homing (歸巢的) pigeons were taken to a point 25 kilometers west
of their loft and released singly to see whether they dispersed at random in all di-
rections (the null hypothesis) or whether they tended to proceed eastward toward their
loft (鴿房). Field glasses were used to observed the birds until they disappeared from
view, at which time the angle of the vanishing point was noted. These 10 angles are
20, 35, 350, 120, 85, 345, 80, 320, 280, and 85 degrees.

I +: directions more eastward than westward
−: directions away from the loft

H0 : P (+) ≤ P (−) H1 : P (+) > P (−)

I Critical region consists of large values of T , the number of “+” signs.

I From Table A3, for n = 10 and p = 1/2, the critical region of size α = 0.0547
corresponds to values of T greater than or equal to 10− 2 = 8.

I Reject H0 since T = 9.

I p-value P (T ≥ 9) = 0.0107. ¤

Theory Omitting ties:

I H0 : P (+) = P (−) ≡ H0 : P (+) = 1/2

I The binomial test procedure is used with p∗ = 1/2.

I When the sign test is used with the original sets A, B, and C of hypotheses, it is
unbiased and consistent (Hemelrijk, 1952).

I Power functions graphed in Fig. 2.4.4 in that example are power functions for the
sign test.

I If, in addition to the assumptions in the sign test, we can also assume legitimately
that the differences Yi −Xi are random variables with a symmetric distribution, the
is more appropriate.
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I Furthermore, if the differences Yi − Xi are independent and identically distributed
normal random variables, the appropriate parametric test is called the paired t test.

I Data that occur naturally in pairs are usually analyzed by reducing the sequence of
pairs to a sequence of single values, and then the data are analyzed as if only one
sample were involved.

3.5 Some variations of the sign test

I Suppose that the data are not ordinal as in the sign test but nominal, with two
categories “0” and “1.”

I Data: (Xi, Yi), Xi, Yi = 0, 1

I Can we detect a difference between the probability of (0, 1) and the probability of
(1, 0)?

I Such a question arises when Xi in the pair (Xi, Yi) represents the condition of the
subject before the experiment and Yi represents the condition of the same subject
after the experiment.

The McNemar test for significance of changes

Data The data consist of observations on n′ independent bivariate random sample
(X1, Y1), . . . , (Xn′ , Yn′). The measurement scale for Xi and Yi is nominal with two
categories, which we call “0” and “1”; that is, the possible values of (Xi, Yi) are
(0, 0), (0, 1), (1, 0), and (1, 1). In the McNemar test the data are usually summarized
in a 2× 2 contingency table, as follows.

Yi = 0 Yi = 1
Xi = 0 a = # of (Xi, Yi) = (0, 0) b = # of (Xi, Yi) = (0, 1)
Xi = 1 c = # of (Xi, Yi) = (1, 0) d = # of (Xi, Yi) = (1, 1)

Assumptions

1. The pairs (Xi, Yi) are mutually independent.

2. The measurement scale is nominal with two categories for all Xi and Yi.

3. The difference P (Xi = 0, Yi = 1) − P (Xi = 1, Yi = 0) is negative for all i, or
zero for all i, or positive for all i.

Test statistic T1 = (b−c)2

b+c
and T2 = b if b + c ≤ 20.

. Neither T1 nor T2 depends on a or d.

Null distribution The null distribution of T1 is approximately the chi-squared distri-
bution with 1 degree of freedom when (b + c) is large. The exact distribution of T2

is the binomial distribution with p = 1/2 and n = b + c.

Hypotheses

Two-tailed test:
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H0: P (Xi = 0, Yi = 1) = P (Xi = 1, Yi = 0) for all i
H1: P (Xi = 0, Yi = 1) 6= P (Xi = 1, Yi = 0) for all i

∗ For n = b + c ≤ 20, use Table A3 with the proper value of n and p = 1/2.

∗ α1 = α/2: P (Y ≤ t) = α1

∗ Reject H0 if T2 is less than or equal to t or if T2 is greater than n − t.
Otherwise accept the null hypothesis.

∗ If n > 20 uses T1 and Table A2.

∗ The p-value is twice the smaller of the probabilities that Y is less than or
equal to the observed value of T1(T2), or greater or equal to the observed
value of T1(T2).

Add P (Xi = 0, Yi = 0) to both sides of H0 and H1 to get

H0: P (Xi = 0) = P (Yi = 0) for all i
H1: P (Xi = 0) 6= P (Yi = 0) for all i

Add P (Xi = 1, Yi = 1) to both sides of H0 and H1 to get

H0: P (Xi = 1) = P (Yi = 1) for all i
H1: P (Xi = 1) 6= P (Yi = 1) for all i

The latter sets of hypotheses are usually easier to interpret in terms of the experiment.

I Let n = b + c. If n ≤ 20, use Table A3.

I If α is the desired level of significance, enter Table A3 with n = b + c and p = 1/2
to find the table entry approximately equal to α/2 . Call this entry α1, and the
corresponding value of y is called t.

I Reject H0 if T2 ≤ t, or if T2 ≥ n− t, at a level of significance of 2α1.

I Otherwise accept H0. The p-value is twice the probability of T2 being less than or
equal to the observed value, or greater than or equal to the observed value, whichever
is smaller. The probabilities are found from Table A3 using p = 1/2 and n = b + c.

I If n exceeds 20, use T1, and Table A2. Reject H0 at a level of significance a if
T1 exceeds the (1 − α) quantile of a chi-squared random variable with 1 degree of
freedom.

I Otherwise accept H0. The p-value is the probability of T1 exceeding the observed
value, as found in Table A2 for the chi-squared distribution with 1 degree of freedom.

I A more precise p-value can be found by comparing the negative square root of T1

with Table A1, and doubling the lower-tailed probability.

Example 3.5.1 Prior to nationally televised debate between the two presidential can-
didates, a random sample of 100 persons stated their choice of candidates as follows.
Eighty-four persons favored the Democratic candidate, and the remaining 16 favored the
Republican. After the debate the same 100 people expressed their preference again. Of
the persons who formerly favored the Democrat, exact one-fourth of them changed their
minds, and also one-fourth of the people formerly favoring the Republican switched to the
Democratic side.
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After Total
Democrat Republican before

Before Democrat 63 21 84
Republican 4 12 16

100

H0: The population voting alignment was not altered by the debate
H1: There has been a change in the proportion of all voters who favor the Democrat.

I Xi is 0 if the ith person favored the Democrat before or 1 if the Republican was
favored before.

I Yi represents the choice of the ith person after the debate.

I T1 = (b−c)2

b+c
= (21−4)2

21+4
= 11.56

I The critical region of size α = 0.05 corresponds to all values of T1 greater than 3.814,
the 0.95 quantile of a chi-squared random variable with 1 degree of freedom, obtained
from Table A2.

I Reject H0 since 11.56 > 3.841. ¤

Theory

I Variation of the sign test.

I (0, 1) = “ + ”, (1, 0) = “− ” and (1, 1), (0, 0) ties.

I H0 : P (+) = P (−)

I Critical region for T2 is just as in the sign test for n ≤ 20.

I For n > 20,

Z =
T2 − n/2√
n(1/2)(1/2)

=
b− n/2√

n/2

=
b− c√
b + c

T1 = Z2

I Another modification of the sign test is one introduced by Cox and Stuart (1955), it
is used to test for the presence of trend.

I A sequence of numbers is said to have trend if the later numbers in the sequence
tend to be greater than the earlier numbers (upward trend) or less than the earlier
numbers (downward trend).

Cox and Stuart test for trend

Data X1, X2, . . . , Xn′ are grouped into pairs (X1, X1+c), (X2, X2+c), . . . ,
(Xn′−c, Xn′) where c = n′/2 if n′ is even, and c = (n′+1)/2 if n′ is odd. Replace each
pair (Xi, Xi+c) with a ”+” if Xi < Xi+c, or a ”−” if Xi > Xi+c, eliminating ties. The
total number of untied pairs is called n.

Assumptions
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1. The random variables X1, X2, . . . , Xn′ are mutually independent.

2. The measurement scale of the Xi is at least ordinal.

3. Either the Xi’s are identically distributed or there is a trend; that is, the later
random variables are likely to be greater than instead of less than the earlier
random variables.

Test statistic
T = total number of +’s.

Null distribution T ∼ B(n, 1/2)

Example 3.5.2 The total annual precipitation is recorded each year for
19 years, and this record is examined to see if the amount of precip-
itation is tending to increase or decrease. The precipitation in inches
was 45.25, 45.83, 41.77, 36.26, 45.37, 52.25, 35.37, 57.16, 35.37, 58.32, 41.05,
33.72, 45.73, 37.90, 41.72, 36.07, 49.83, 36.24, and 39.90. Because n′ = 19 is odd, the
middle number 58.32 is omitted.

I n = 9 and T equals the number of pairs in which the second number exceeds the first
number.

I The critical region of size 0.039 corresponds to values of T less than or equal to 1
and values of T greater than or equal to 8.

I Accept H0 since the observed T = 4. ¤

Sufficient assumptions:

I The bivariate random variables (Xi, Xi+c) are mutually independent.

I The probabilities P (Xi < Xi+c) and P (Xi > Xi+c) have the same relative size for all
pairs.

I Each pair (Xi, Xi+c) may be judged to be a +, a −, or a tie.

Example 3.5.3 On a certain stream (ç流) the average rate of water discharge is recorded
each month (in cubic feet per second) for a period of 24 months.

H0: The rate of discharge is not decreasing
H1: The rate of discharge is decreasing

The rate of discharge is known to follow a yearly cycle, so that nothing is learned by
pairing stream discharges for two different months. However, by pairing the same months
in two successive years the existence of a trend can be investigated. The following data
were collected.

Month First year Second year Month First year Second year
Jan 14.6 14.2 Jul 92.8 88.1
Feb 12.2 10.5 Aug 74.4 80.0
Mar 104.0 123.0 Sep 75.4 75.6
Apr 220.0 190.0 Oct 51.7 48.8
May 110.0 138.0 Nov 29.3 27.1
Jun 86.0 98.1 Dec 16.0 15.7
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I T = 5: Number of pairs where the second year had a higher discharge than the first
year.

I Critical region of size 0.073 corresponds to all values of T ≤ 3 (Table A3, n = 12, p =
1/2).

I p-value P (T ≤ 5|H0 is true) = 0.3872 which is too large to be an acceptable α. ¤

Sign test is used to detect correlation:

I The test involves arranging the pairs (the pairs remain intact) so that one member
of the pair (usually the variable with the fewer ties, which may be either the first
member or second) is arranged in increasing order.

I If there is correlation the other member of the pair will exhibit a trend, upward if
the correlation is positive, and downward if the correlation is negative.

I The Cox and Stuart test for trend may be used on the sequence formed by the other
member of the pair.

Example 3.5.4 Cochran (1937) compares the reactions of several patients with each of
two drugs, to see if there is a positive correlation between the two reactions for each patient.

Patient Drug 1 Drug 2 Patient Drug 1 Drug 2
1 +0.7 +1.9 6 +3.4 +4.4
2 −1.6 +0.8 7 +3.7 +5.5
3 −0.2 +1.1 8 +0.8 +1.6
4 −1.2 +0.1 9 0.0 +4.6
5 −0.1 −0.1 10 +2.0 +3.4

Ordering the pairs according to the reaction from drug 1 gives

Patient Drug 1 Drug 2 Patient Drug 1 Drug 2
2 −1.6 +0.8 1 +0.7 +1.9
4 −1.2 +0.1 8 +0.8 +1.6
3 −0.2 +1.1 10 +2.0 +3.4
5 −0.1 −0.1 6 +3.4 +4.4
9 0.0 +4.6 7 +3.7 +5.5

I One-tailed Cox and Stuart test for trend is applied to the newly arranged sequence
of observations on drug 2.

I Resulting pairs: (+0.8, +1.9), (+0.1, +1.6),
(+1.1, +3.4), (−0.1, +4.4), and (+4.6, +5.5).

H0: There is no positive correlation
H1: There is positive correlation

I T = 5

I Critical region of size 0.0312 (Table A3 for n = 5, p = 1/2, and hence t = 0).

I Reject H0. ¤
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Sign test is used to test for the presence of a predicted pattern:

Example 3.5.5 The number of eggs laid by a group of insects in a laboratory is counted
on an hourly basis during a 24-hour experiment, to test

H0: The 24 eggs counts constitute observations on 24 identically distributed random
variables

H1: The number of eggs laid tends to be a minimum at 2:15 pm increasing to a
maximum at 2:15 am and decreasing again until 2:15 pm. ¤

Time Number Time Number Time Number
9 A.M. 151 5 P.M. 83 1 A.M. 286
10 A.M. 119 6 P.M. 166 2 A.M. 235
11 A.M. 146 7 P.M. 143 3 A.M. 223
Noon 111 8 P.M. 116 4 A.M. 176
1 P.M. 63 9 P.M. 163 5 A.M. 176
2 P.M. 84 10 P.M. 208 6 A.M. 174
3 P.M. 60 11 P.M. 283 7 A.M. 139
4 P.M. 109 Midnight 296 8 A.M. 137

If the alternative hypothesis is true, the egg counts nearest 2:15 P.M. should tend to be the
smallest and those nearest 2:15 A.M. should tend to be largest. Therefore the number of
eggs is rearranged according to times, from the time nearest 2:15 P.M. to the times nearest
2:15 A.M.

Time Number Time Number
2 P.M. 84 8 A.M. 137
3 P.M. 60 9 A.M. 163
1 P.M. 63 7 A.M. 139
4 P.M. 109 10 A.M. 208
Noon 111 6 A.M. 174
5 P.M. 83 11 P.M. 283
11 A.M. 146 5 A.M. 176
6 P.M. 166 Midnight 296
10 A.M. 119 4 A.M. 176
7 P.M. 143 1 A.M. 286
9 A.M. 151 3 A.M. 223
8 P.M. 116 2 A.M. 235

I If H1 is true these numbers should exhibit an upward trend.

I Cox and Stuart one-tailed test for trend is used.

I T = 12

I Critical region of size 0.0193 for T ≥ 12− 2 = 10 (Table A3, n = 12, p = 1/2).

I Reject H0.

I p-value: P (T ≥ 12) = 0.0002.

Theory



3.6. SUMMARY 83

I The Cox and Stuart test for trend is an obvious modification of the sign test and the
distribution of the test statistic when H0 is true is binomial.

I The test is unbiased and consistent when the first sets A, B, and C of hypotheses are
being used.

3.6 Summary

1. Binomial distribution: the probability of obtaining exactly k heads. . . . . . . . . . . . . . 57

2. Binomial test: The binomial test may be adapted to test almost any hypothesis, with
almost any type of data amenable to statistical analysis.. . . . . . . . . . . . . . . . . . . . . . . . .58

3. Interval estimator: (L,U) where L and U are the lower and upper interval boundary
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Preliminary remarks

Contingency table: An array of natural numbers in matrix form where those natural num-
bers represent counts, or frequencies.

An entomologist observing insects:
1× 3 contingency table:

Moths Grasshoppers Others Total
12 22 3 37

The entomologist may wish to be more specific and use a 2×3 contingency table, as follows.
2× 3 contingency table:

Moths Grasshoppers Others Total
Alive 3 21 3 27
Dead 9 1 0 10
Total 12 22 3 37

I Two row (three column) totals and grand total, are optional and are usually included
only for the reader’s convenience.

I may be extended to r × c contingency table.

I Contingency table with three or more dimensions also may occur.
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4.1 The 2× 2 contingency table

I r = 2 and c = 2 (fourfold contingency table)

I Arise when N objects (persons), possibly selected at random from some population,
are classified into one of two categories before a treatment is applied or an event takes
place. After the treatment is applied is applied the same N objects are examined
and classified into two categories.

I The question to be answered is, ”Does the treatment significantly alter the proportion
of objects in each of the two categories?”

I McNemar test (one random sample, Sec. 3.5)

. Able to detect subtle differences, primarily because the same sample is used in
the two situations.

I Chi-squared test (two random samples)

. Is the proportion of the population with characteristic A the same for both
populations?

The chi-squared test for differences in probabilities, 2× 2

Data A random sample of n1 observations is drawn from one population and each
observation is classified into either class 1 or class 2, the total numbers in the two
classes being O11 and O12, respectively, where O11 + O12 = n1. A second random
sample of n2 observations is drawn from a second population and the number of
observations in class 1 or class 2 is O11 or O12, respectively, where O21 + O22 = n2.

Class 1 Class 2 Total
Population 1 O11 O12 n1

Population 2 O21 O22 n2

Total C1 C2 N = n1 + n2

Assumptions

1. Each sample is a random sample.

2. The two samples are mutually independent.

3. Each observation may be categorized either into class 1 or class 2.

Test statistic If any column total is zero, the test statistic is defined as T1 = 0.
Otherwise,

T1 =

√
N(O11O22 −O12O21)√

n1n2C1C2

Null distribution The exact distribution of T1 is difficult to tabulate because of all
the different combinations of values possible for O11, O12, O21, and O22. Therefore
the large sample approximation is used, which is the standard normal distribution
whose quantiles are given in Table A1.

Hypotheses Let the probability that a randomly selected element will be in class 1
be denoted by p1 in population 1 and p2 in population 2. Note that it is not necessary
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for p1 and p2 to be known. The hypotheses merely specify a relationship between
them.

A. Two-tailed test: H0 : p1 = p2 v.s. H1 : p1 6= p2. Reject H0 at the approximate
level α if T1 is less than the zα/2 or greater than z1−α/2. The p-value is twice
the smaller of the probabilities that Z is less than the observed value of T1 or
greater than the observed value of T1.

B. Lower-tailed test: H0 : p1 ≥ p2 v.s. H1 : p1 < p2. Reject H0 at the approximate
level α if T1 is less than the zα/2. The p-value is the probability that Z is less
than the observed value of T1.

C. Upper-tailed test: H0 : p1 ≤ p2 v.s. H1 : p1 > p2. Reject H0 at the approximate
level α if T1 is greater than the z1−α/2. The p-value is the probability that Z is
greater than the observed value of T1.

Example 4.1.1 (Two-tailed Chi-squares test) Two carloads of manufactured items are
samples randomly to determine if the proportion of defective items is different for the two
carloads. From the first carload 13 of the 86 items were defective. From the second carload
17 of the 74 items were considered defective.

Defective Nondefective Totals
Carload 1 13 73 86
Carload 2 17 57 74
Totals 30 130 160

I Two-tailed test is used.

I H0 : The proportion of defectives is equal in the two carloads using the test statistic:

T1 =

√
N(O11O22 −O12O21)√

n1n2C1C2

=

√
160((13)(57)− (73)(17))√

(86)(74)(30)(130)

= −1.2695

I Accept H0 since z0.975 = 1.96.

I p-value: 2P (Z < −1.2695) = 0.102

I Therefore the decision to accept H0 seems to be a fairly safe one. ¤

Example 4.1.2 (One-tailed Chi-squares test) At the U.S. Naval Academy a new light-
ing system was installed throughout the midshipmen’s (見習軍官) living quarters. It was
claimed that the new light system resulted in poor eyesight due to a continual strain on
the eyes of the midshipmen. Consider a study to test the null hypothesis,

H0 : The probability of a graduating midshipman having 20-20 (good) vision is the
same or greater under the new lighting system, than it was under the old lighting
system.

H1 : The probability of (good) vision is less now than it was.
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I p1 (p2): Probability that a randomly selected graduating midshipman had good vision
under the old (new) lighting system.

I H0 : p1 ≤ p2 v.s. H1 : p1 > p2

Good vision Poor vision Totals
Old lights O11 = 714 O12 = 111 n1 = 825
New lights O21 = 662 O22 = 154 n2 = 816
Totals 1376 265 N = 1641

T1 =

√
N(O11O22 −O12O21)√

n1n2C1C2

= 2.982

I Reject H0 since z0.95 = 1.645.

I p-value: P (Z > 2.982) = 0.002

I Conclude that the populations represented by the two graduation classes do differ
with respect to the proportions having poor eyesight, and in the direction predicted.
¤

Theory

I The 2 × 2 contingency table just presented is actually a special case of the r × c
contingency table. The exact distribution of the test statistic is difficult to find
unless r and c are very small.

I Exact probability distribution of T1 when H0 : p1 = p2 = p.

P ((x1, n1 − x1)|Population 1) =

(
n1

x1

)
px1(1− p)n1−x1

P ((x2, n2 − x2)|Population 2) =

(
n2

x2

)
px2(1− p)n2−x2

I Two samples are independent

P

((
x1, n1 − x1

x2, n2 − x2

) ∣∣∣∣
(

Population 1
Population 2

))
=

(
n1

x1

)(
n2

x2

)
px1+x2(1− p)N−x1−x2

I n1 = 2 and n2 = 2 there are nine different points in the sample space:

Tables (p = 1/2) (p = 1) T1(
2 0
2 0

)
p4 1/16 1 Undefined

(
2 0
1 1

)
2p3(1− p) 1/8 0 1.1547

(
2 0
0 2

)
p2(1− p)2 1/16 0 2.0000
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(
1 1
2 0

)
2p3(1− p) 1/8 0 −1.1547

(
1 1
1 1

)
4p2(1− p)2 1/4 0 0

(
1 1
0 2

)
2p(1− p)3 1/8 0 1.1547

(
0 2
2 0

)
p2(1− p)2 1/16 0 −2.0000

(
0 2
1 1

)
2p(1− p)3 1/8 0 −1.1547

(
0 2
0 2

)
(1− p)4 1/16 1 Undefined

I The undefined values for T1 arise from the indeterminate form 0/0.

I However, since the two outcomes that result in undefined values for T1 are strongly
indicative that H0 is true, just as the fifth outcome is strongly indicative that T1 is
true, we may arbitrarily define T1 to be 0 for the first and last outcomes in agreement
with the fifth outcome.

I Then T1 has the following probability distribution.

p = 1/2 p = 1
P (T1 = −2) = 1/16 P (T1 = 0) = 1
P (T1 = −1.1547) = 1/4
P (T1 = 0) = 3/8
P (T1 = 1.1547) = 1/4
P (T1 = 2) = 1/16

I Similarly for any sample sizes n1, and n2, the exact probability distributions may be
found after the appropriate defining of the undefined values of T1.

I Normal approximation for large sample

. E(O11/n1 −O21/n2) = p1 − p2

. Var
(

O11

n1
− O21

n2

)
= p1q1

n1
+ p2q2

n2

. p̂ = C1/N and q̂ = C2/N

. O11/n1 and O21/n2 ≈ independent normal distribution

T1 =
O11/n1 −O21/n2√

C1C2

N2

(
1
n1

+ 1
n2

) ≈ N(0, 1) ¤

I Another use for 2 × 2 contingency table appears when each observation in a single
sample of size N is classified according to two properties, where each property may
take one of two forms.

I This use of 2 × 2 contingency table is a special case of r × c contingency table and
does not have any special variation (such as the one-sided test of this section, see
Section 2).
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I The primary difference between this type of contingency table and the first one is
that in this contingency table the row totals are random variables whose values are
unknown until after the data are examined.

I In the first table the row totals represented sample sizes for the two samples, which
are known prior to the examination of the data and are therefore not random. In
both tables the column totals are random variables.

I The third type of contingency table is one with nonrandom row and column totals.

I That is, both row totals and both column totals are known prior to an examination
of the data.

I This situation does not occur as often as the first two types of contingency tables,
but the following statistical procedure is often employed, no matter which of the
three types of contingency tables actually occurs, because the exact p-value can be
determined fairly easily.

I The procedure was developed almost simultaneously in the mid 1930’s by R. A. Fisher
(1935), J. 0. Irwin (1935), and F. Yates (1934). It is widely known as Fisher’s exact
test.

Data types:

1. Row totals are fixed and column totals are random variables.

2. Row totals and column totals are random variables.

3. Row totals and column totals are known prior to an examination of the data.

I No matter which of the three types of contingency tables actually occurs, the Fisher’s
exact test is often employed.

. Simultaneously developed in the mid 1930’s by Fisher (1935), Irwin (1935) and
Yates (1934).

Fisher’s exact test

Data The N observations in the data are summarized in a 2× 2 contingency table
as in the previous test, except both of the row totals, r and N − r, and both of the
column totals, c and N − c, are determined beforehand, and are therefore fixed, not
random.

Col 1 Col 2
Row 1 x r − x r
Row 2 c− x N − r − c + x N − r

c N − c N

Assumptions

1. Each observation is classified into exactly one cell.

2. The row and column totals are fixed, not random.

Test statistic The test statistic T2 is the number of observations in the cell in row
1, column 1.
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Null distribution The exact distribution of T2 when H0 is true is given by the
hypergeometric distribution:

P (T2 = x) =

(
r
x

)(
N−r
c−x

)
(

N
c

) , x = 0, 1, . . . , min(r, c) (6)

For a large sample approximation use

T3 =
T2 − rc

N√
rc(N−r)(N−c)

N2(N−1)

≈ N(0, 1)

Hypotheses Let p1 be the probability of an observation in row 1 being classified
into column 1, and let p2 be the corresponding probability for row 2.

A. Two-tailed test: H0 : p1 = p2 v.s. H1 : p1 6= p2. First find the p-value using
Equation 6. The p-value is twice the smaller of P (T2 ≤ tobs) or P (T2 ≥ tobs).
Reject H0 at the level of significance α if the p-value is ≤ α.

B. Lower-tailed test: H0 : p1 ≥ p2 v.s. H1 : p1 < p2. Find the p-value P (T2 ≤ tobs)
using Equation 6. Reject H0 at the level of significance α if P (T2 ≤ tobs) is ≤ α.

C. Upper-tailed test: H0 : p1 ≤ p2 v.s. H1 : p1 > p2. Find the p-value P (T2 ≥ tobs)
using Equation 6. Reject H0 at the level of significance α if P (T2 ≥ tobs) is ≤ α.

Comment

I Valid for contingency tables with random row totals, random column totals, or both.

. This exact test finds the p-value for one subset of the sample space, the one
with the given row and column totals.

. Each different set of row and column totals represents another mutually exclusive
subset, thus partitioning the entire sample space into mutually exclusive subsets.

. If the critical region in each regions has an unconditional probability ≤ α under
H0, then the union of all critical regions has an unconditional probability ≤ α
under H0, and the test is valid.

I The power of this exact test is usually less than the power of a more appropriate,
approximate, test in those cases where row totals, or column totals, or both, are
random.

Comment (continuity correction)
The large sample approximation for T3 is improved by using a continuity correction. That
is, for lower-tailed probabilities, add 0.5 to the numerator of T3 before looking up the
p-value in Table 1. For upper-tailed probabilities subtract 0.5 from the numerator.

Example 4.1.3 Fourteen newly hired business majors, 10 males and 4 females, all equally
qualified, are being assigned by the bank president to their new jobs. Ten of the new jobs
are as tellers, and four are as account representatives. The null hypothesis is that males
and females have equal chances at getting more desirable account representative jobs. The
one-sided alternative of interest is that females are more likely than males to get the
account representative jobs.
Only one female is assigned a teller position. Can the null hypothesis be rejected?



4.1. THE 2× 2 CONTINGENCY TABLE 91

Account
Representative Teller

Males 1 9 10
Females 3 1 4

4 10 14

I H0 : p1 ≥ p2 v.s. H1 : p1 < p2

I Exact lower-tailed p-value by Equation 6:

P (T2 ≤ 1) = P (T2 = 0) + P (T2 = 1)

=

(
10
0

)(
4
4

)
(
14
4

) +

(
10
1

)(
4
3

)
(
14
4

)

= 0.041

I Reject H0 at α = 0.05.

Comment
Compare the exact p-value in Example 3 with the exact p-value if the column totals were
random.

I The exact p-value using Eq. 4 (p = 0.3) is 0.012 < 0.041 (Problem 4.1.3).

I Normal approximation for T1 = −2.4321 is about 0.008 which is close to the true
p-value.

I This illustrates that Fisher’s exact test is exact only if the row and column totals are
nonrandom.

Theory Show that T2 has the hypergeometric distribution:
Proof.

I A contingency table with fixed row totals, whose probability is given

(
r

x

)(
N − r

c− x

)
pc(1− p)N−c. (8)

I The probability of getting the column totals c and N − c:

P ((c,N − c)) =

(
N

c

)
pc(1− p)N−c (9)

I Conditional probability of getting the table results: (8)/(9).

I The large sample normal approximation is obtained by subtracting the mean and
dividing by the standard deviation of the hypergeometric distribution to obtain T3.
¤

I Combine results of several 2× 2 contingency tables into one overall analysis.
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I This situation occurs when the overall experiment consists of several smaller experi-
ments conducted in various environments, the common probability p under H0 may
be different from one environment to another, and each sub-experiment results in its
own 2× 2 contingency table.

I One method for combining several 2× 2 contingency tables was presented by Mantel
and Haenszel (1959).

The Mantel-Haenszel test (1959)

Data The data are summarized in several 2 × 2 contingency tables, each with
nonrandom row and column totals. Let the number of tables be k ≥ 2, and let the
ith table be represented with the following notation.

Col 1 Col 2 Total
Row 1 xi ri − xi ri

Row 2 ci − xi Ni − ri − ci + xi Ni − ri

Total ci Ni − ci Ni

Assumptions

1. The assumptions for each contingency table are the same as for the Fisher exact
test.

2. The several contingency tables are obtained from independent experiments.

Test statistic

T4 =

∑
xi −

∑
rici

Ni√∑ rici(Ni−ri)(Ni−ci)

N2
i (Ni−1)

Null distribution

. T4 ≈ N(0, 1) when H0 is true.

. The exact probabilities are improved by using a continuity correction (±0.5).

. The resulting probabilities will be more accurate in most cases.

Hypotheses Let p1i be the probability of an observation in row 1 being classified into
column 1, in the ith contingency table, and let p2i be the corresponding probability
for row 2.

A. Two-tailed test:
H0 : p1i = p2i v.s. H1 : p1i 6= p2i

Reject H0 at the level of significance α if T4 > z1−α/2 or T4 < zα/2.
The p-value is 2 min(P (Z ≤ T4), P (Z ≥ T4)).

B. Lower-tailed test:
H0 : p1i ≥ p2i v.s. H1 : p1i < p2i

Reject H0 at the level of significance α if T4 < zα.
The p-value is P (Z ≤ T4).

C. Upper-tailed test:
H0 : p1i ≤ p2i v.s. H1 : p1i > p2i

Reject H0 at the level of significance α if T4 > z1−α.
The p-value is P (Z ≥ T4).
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Comment

I This test is valid even though the row totals or column totals are random.

I However, in that case it is more accurate to use the test statistic

T5 =

∑
xi −

∑
rici

Ni√∑ rici(Ni−ri)(Ni−ci)

N3
i

instead of T4.

I The continuity correction should not be used to find p-values when T5 is used.

Example 4.1.4 From Li, Simon, and Gart (1979), three groups of cancer patients are
given an experimental treatment to see if the success rate is improved. The numbers of
successes and failures are summarized as follows.

Group 1 Group 2 Group 3
Success Failure Success Failure Success Failure

Treatment 10 1 9 0 8 0
Control 12 1 11 1 7 3

I The upper-tailed test is used:

T4 =
(10 + 9 + 8)− (

11·22
24

+ 9·20
21

+ 8·15
18

)
√

11·22·13·2
242·23

+ 9·20·12·1
212·20

+ 8·15·10·3
182·17

= 1.4323

I Accept H0 at size 5% since T4 = 1.4323 < z0.95 = 1.6449.

I The corrected upper-tailed p-value is

P (T4 ≥ 1.0057 (corrected)) = 0.157.

I Treat as random column totals.

. T5 = 1.4690 and the upper-tailed p-value 0.071.

. The greater power associated with using the more appropriate T5 in the case of
random row totals or column totals, or both.

. The null hypothesis is still accepted at α = .05. ¤



CHAPTER 4. CONTINGENCY TABLES 94

Theory

I Numerator of T4 is the sum of Fisher exact test statistic T2 in each table.

I As in T3, the mean is subtracted, and the result is divided by the standard devia-
tion.

I By CLT, T4 ≈ N(0, 1).

I The statistic T5 is obtained by rearranging T1 to look like T3, and noting that
the only difference between T1 and T3 is in the term N instead of N − 1 in the
denominator.

I T5 ≈ N(0, 1). ¤

Confidence intervals may be performed for any unknown probabilities associated with the
2×2 contingency table or any contingency table, for that matter, by applying the procedure
described in Section 3.1.

4.2 The r × c contingency table

Three applications:

I Present a tabulation of the data contained in several samples, where the data rep-
resent at least a nominal scale of measurement, and to test the hypothesis that the
probabilities do not differ from sample to sample.

I Another use for the r × c contingency table is with the single sample, each element
may be classified into one of r different categories according to one criterion and, at
the same time, into one of c different categories according to a second criterion.

I A third application will also be discussed.

r samples with c categories, random column sums:

I Because of the many rows and columns, the one-sided hypotheses of the previous
section are no longer appropriate.

I Two-sided hypothesis will be considered.

I Test statistic is the square of T1 generalized to the r × c case.

The Chi-squared test for differences in probabilities, r × c

Data There are r populations in all, and one random sample is drawn from each
population. Let ni represent the number of observations in the ith sample. Each
observation in each sample may be classified into one of c different categories. Let
Oij be the number of observations from ith sample that fall into category j, so

ni =
∑

j

Oij
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Class 1 Class 2 · · · Class c Totals
Population 1 O11 O12 · · · O1c n1

Population 2 O21 O22 · · · O2c n2

· · · · · · · · · · · · · · · · · ·
Population r Or1 Or2 · · · Orc nr

Totals C1 C2 · · · Cc N

N = n1 + n2 + · · ·+ nr

Cj = O1j + O2j + · · ·+ Orj

Assumptions

1. Each sample is a random sample.

2. The outcomes of the various samples are mutually independent.

3. Each observation may be categorized into exactly one of the c categories or
classes.

Test statistic

T =
∑

i

∑
j

(Oij − Eij)
2

Eij

=
∑

i

∑
j

O2
ij

Eij

−N

Eij = niCj/N represents the expected number of observations in cell (i, j), if H0 is
true.

Null distribution

. T ≈ χ2
(r−1)(c−1)

. Very difficult to find the exact distribution of T .

. Chi-squared approximation is satisfactory if the Eijs in the test statistic are not
too small.

. Chi-squared approximation appears to be satisfactory in most cases if all Eijs
are greater than 0.5 and at least half are greater than 1.0.

Hypotheses pij: Probability of a randomly selected value from ith population being
classified in the jth class.

H0: p1j = p2j = · · · = prj for all j
H1: At least two of the probabilities in the same column are not equal

to each other.

Comment

I The approximate value of α is a good approximation to the true value of α if the Eij

are fairly large.

I If some of Eijs are small, the approximation may be poor.

I Cochran (1952) states that if any Eij is less than 1 or if more than 20% of the Eijs
are less than 5, the approximation may be poor.
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I Cochran’s conclusion seems to be overly conservative according to unpublished stud-
ies by various researchers.

I If some of the Eijs are too small, several categories should be combined to eliminate
the Eijs that are too small.

Example 4.2.1 A sample of students randomly selected from private high schools and
a sample of students randomly selected from public high schools were given standardized
achievement tests with the following results.

Test scores
0-275 276-350 351-425 426-500 Totals

Private 6 14 17 9 46
Public 30 32 17 3 82
Totals 36 46 34 12 128

I To test the null hypothesis that the distribution of test scores is the same for private
and public high school students.

I (r − 1)(c− 1) = (2− 1)(4− 1) = 3

I Eij:

Column
1 2 3 4

Row 1 12.9 16.5 12.2 4.3
Row 2 23.1 29.5 21.8 7.7

I (O11−E11)2

E11
= (6−12.9)2

12.9
= 3.69

I T = 3.69 + 0.38 + 1.89 + 5.14 + 2.06 + 0.21 + 1.06 + 2.87 = 17.3

I Reject H0 at size 0.05 since T > χ2
3,.95 = 7.815.

I p-value is approximately .001.

I Test scores are distributed differently among public and private high school students.
¤

I In Example 1 the data possessed at least an ordinal scale of measurement.

I If the alternative hypothesis of interest was that students from the private schools
tended to score higher (or lower) than that students from the public schools, then a
more powerful test based on ranks could have been used, such as the Mann-Whitney
test.

I The alternative hypothesis in this example included differences of all types, such as
higher scores, lower scores, a smaller variance in scores, a larger variance in scores,
and so forth, so this Chi-squared test is more appropriate.
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Theory

I The exact distribution of T in the r × c case may be found in exactly the same
way as it was found in the previous section for the 2× 2 case.

I The row totals are held constant, and then all possible contingency tables having
those same row totals are listed, and their probabilities are calculated using the
multinomial distribution for each row.

I In all three applications of contingency tables in this section, the asymptotic dis-
tribution of T is the same, χ2

(r−1)(c−1). ¤

The second application of the r × c contingency table involves a single random sample of
size N , where each observation may be classified according to two criteria.
The Chi-squared test for independence

Data A random sample of size N is obtained. The observations in the random
sample may be classified according to two criteria. Using the first criterion each
observation is associated with one of the r rows, and using the second criterion
each observation is associated with one of the c columns. Let Oij be the number of
observations associated with row i and column j simultaneously.

1 2 · · · c Totals
Row 1 O11 O12 · · · O1c R1

Row 2 O21 O22 · · · O2c R2

· · · · · · · · · · · · · · · · · ·
Row r Or1 Or2 · · · Orc Rr

Totals C1 C2 · · · Cc N

Assumptions

1. The sample of N observations is a random sample.

2. Each observation may be categorized into exactly one of the r different categories
according to one criterion and into exactly one of c different categories according
to a second criterion.

Test statistic

T =
∑

i

∑
j

(Oij − Eij)
2

Eij

=
∑

i

∑
j

O2
ij

Eij

−N

Eij = RiCj/N represents the expected number of observations in cell (i, j), if H0 is
true.

Null distribution

. T ≈ χ2
(r−1)(c−1)

. Very difficult to find the exact distribution of T .

. Chi-squared approximation is satisfactory if the Eijs in the test statistic are not
too small.

. Chi-squared approximation appears to be satisfactory in most cases if all Eijs
are greater than 0.5 and at least half are greater than 1.0.
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Hypotheses

H0 : P (row i, column j) = P (row i)P (column j) for all i, j

H1 : P (row i, column j) 6= P (row i)P (column j) for some i, j

Reject H0 if T exceeds χ2
(r−1)(c−1),1−α.

Example 4.2.2 A random sample of students at a certain university were classified ac-
cording to the college in which they were enrolled and also according to whether they
graduated from a high school in the state or out of state. The results were put into a 2× 4
contingency table.

Arts and Home
Engineering Sciences Economics Other Totals

In state 16 14 13 13 56
Out of state 14 6 10 8 38

Totals 30 20 23 21 94

I To test the null hypothesis that the college in which each student is enrolled is
independent of whether high school training was is in state or out state, the Chi-
squared test for independence is selected.

I (r − 1)(c− 1) = 3

I T = 1.52

I Accept H0 at size 0.05 since T < χ2
3,.95 = 7.815.

I p-value > 0.25. ¤

Theory Exact distribution of T with N = 4

I Let pij be the probability of an observation being classified in row i and column j
(cell i, j).

I Then the probability of the particular outcome

Column
1 2

Row 1 a b
Row 2 c d

N

I Multinomial distribution: N !
a!b!c!d!

(p11)
a(p12)

b(p21)
c(p22)

d

I The maximum size of the upper tail of T when H0 is true, is found by setting all of

the pijs equal to each other: N !
a!b!c!d!

(
1
4

)N

I There are
(
7
3

)
= 35 (a + b + c + d = 4) different contingency tables (Fig. 1).

I P (T = 0) = 84/256 = 0.33



4.2. THE R× C CONTINGENCY TABLE 99

I P (T = 4/9) = 48/256 = 0.19

I P (T = 4/3) = 96/256 = 0.37

I P (T = 4) = 28/256 = 0.11

I The distribution of T is more complicated to obtain than the row totals are fixed. ¤

Figure 4.1: The exact distribution of T , when all pis equal 1/4

The third application of the contingency table is the row totals and column totals are fixed.

I The exact distribution of T is easier to find than in both applications previously
introduced.

I The exact distribution is still too complicated for practical purposes.

I The chi-squared approximation is recommended for finding the critical region and α.

The Chi-squared test with fixed marginal totals

Data The data are summarized in an r × c contingency table:

1 2 · · · c Totals
Row 1 O11 O12 · · · O1c n1

Row 2 O21 O22 · · · O2c n2

· · · · · · · · · · · · · · · · · ·
Row r Or1 Or2 · · · Orc nr

Totals c1 c2 · · · cc N

Assumptions
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1. Each observation is classified into exactly one cell.

2. The observations are observations on a random sample. Each observation has
the same probability of being classified into cell (i, j) as any other observation.

3. The row and column totals are given, not random.

Test statistic

T =
∑

i

∑
j

(Oij − Eij)
2

Eij

=
∑

i

∑
j

O2
ij

Eij

−N

Eij = nicj/N represents the expected number of observations in cell (i, j), if H0 is
true.

Null distribution

. T ≈ χ2
(r−1)(c−1)

. Very difficult to find the exact distribution of T .

. Chi-squared approximation is satisfactory if the Eijs in the test statistic are not
too small.

. Chi-squared approximation appears to be satisfactory in most cases if all Eijs
are greater than 0.5 and at least half are greater than 1.0.

Hypotheses Variations of the independence hypotheses of the previous test. Reject
H0 if T exceeds χ2

(r−1)(c−1),1−α.

Example 4.2.3 The chi-squared test with fixed marginal totals may be used to test the
hypothesis that two random variables X and Y are independent. Starting with a scatter
diagram of 24 points, which represent independent observations on the bivariate random
variable (X, Y ), a contingency table may be constructed. The x-coordinate of each point is
the observed value of X and the y-coordinate is the observed value of Y in each observation
(X,Y ). Assume the observed pairs (X, Y ) are mutually independent. We wish to test

H0 : X and Y are independent of each other

against the alternative hypothesis of dependence.

I To form the contingency table so that all Eij are equal, we note that 3 and 4 both
are factors of the sample size 24.

I Divide the points into 3 rows of 8 points each, and 4 columns of 6 points each, using
dotted lines as in Figure 2.

I One way of accomplishing this is by having equal row totals and equal column totals.)

I (r − 1)(c− 1) = 6

1 2 3 4 Totals
Row 1 0 4 4 0 8
Row 2 2 1 2 3 8
Row 3 4 1 0 3 8
Totals 6 6 6 6 24
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Figure 4.2: Random points

I Eij = (6)(8)/24 = 2 and T = 14

I Reject H0 at size 0.05 since T > χ2
6,.95 = 12.59.

I p-value is 0.03.

I Conclude that X and Y are not independent. ¤

Example 4.2.4 A psychologist asks a subject to learn 25 words. The subject is given 25
blue cards, each with one word on it. Five of the words are nouns, 5 are adjectives, 5 are
adverbs, 5 are verbs, and 5 are prepositions. She must pair these blue cards with 25 white
cards, each with one word on it and also containing the different parts of speech, 5 words
each. The subject is allowed 5 minutes to pair the cards and 5 minutes to study the pairs
thus formed. Then she is asked to close her eyes, and the words on the white cards are
read to her one by one. When each word is read to her, she tries to furnish the word on
the blue card associated with the word read.

The psychologist is not interested in the number of correct words but, instead, in examining
the pairing structure to see if it represents an ordering of some sort.

H0 : There is no organization of pairs according to parts of speech

H1 : The subjects tends to pair particular parts of speech on the blue cards with
particular parts of speech on the white cards.

The pairing are summarized in a 5× 5 contingency table.

Noun Adjective Adverb Verb Preposition Totals
Noun 3 2 5
Adjective 4 1 5
Adverb 5 5
Verb 5 5
Preposition 1 1 3 5
Totals 5 5 5 5 5 25

I (r − 1)(c− 1) = 16 and Eij = (5)(5)
25

= 1

I T = 66

I Reject H0 at size 0.05 since T > χ2
16,.95 = 26.3.



CHAPTER 4. CONTINGENCY TABLES 102

I p-value < 0.001. ¤

Theory

I The exact distribution of O11 is the hypergeometric distribution for 2× 2 case.

I Row totals and column totals are all equal 2.

Table Probability T(
2 0
0 2

)
(2
2)(

2
0)

(4
2)

= 1/6 4
(

1 1
1 1

)
(2
1)(

2
1)

(4
2)

= 2/3 0
(

0 2
2 0

)
(2
0)(

2
2)

(4
2)

= 1/6 4

I Fixed row totals and fixed column totals greatly reduce the contingency tables
possible. When r = c = 2, the test is known as “Fisher’s exact test”.

I For r and c in general, the exact probability of the table with fixed marginal totals
is given by

probability =

(
n1

O1i

) · · · ( nr

Ori

)
(

N
ci

)

where the multinomial coefficients
(

nm

Omi

)
= nm!

Om1!Om2!·Omc!
. ¤

Two-way contingency table can be written as

T =
∑

(
Oij −N Ri

N

Cj

N

)2

N Ri

N

Cj

N

Three (or more) way contingency table test:

I Ri =
∑

Oijk

I Cj =
∑

Oijk

I Bk =
∑

Oijk

I Eijk = N Ri

N

Cj

N
Bk

N

I T =
∑ (Oijk−Eijk)2

Eijk
≈ χ2

rct−r−c−t+2

So-called “loglinear models” have been used successfully to analyze multidimensional con-
tingency tables and are discussed in the final section of this book.

An excellent and readable survey article on contingency tables is one by Mosteller (1968).
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4.3 The median test

I Designed to examine whether several samples came from population having the same
median.

I A special application of the chi-squared test with fixed marginal totals in the previous
section.

I To test whether c populations have the same median, a random sample is drawn from
each population.

I A 2 × c contingency table is constructed and the two entities in the ith column are
the numbers of observations in the ith sample that are above and below the grand
median.

The median test

Data From each of c populations a random sample of size ni is obtained. The
combined sample median is determined; that is, the number that is exceeded by
about half of the observations in the entire array of N =

∑
ni sample values is

determined. This is called the grand median.

Sample 1 2 · · · c Totals
> Median O11 O12 · · · O1c a
≤ Median O21 O22 · · · O2c b
Totals n1 n2 · · · nc N

Assumptions

1. Each sample is a random sample.

2. The samples are independent of each other.

3. The measurement scale is at least ordinal.

4. If all populations have the same median, all populations have the same proba-
bility p of an observation exceeding the grand median.

Test statistic Rearrange the test statistic given in Sec. 4.2:

T =
N2

ab

∑ (O1i − nia/N)2

ni

=
N2

ab

∑ O2
1i

ni

− Na

b

Note that (O2i − nib/N)2 = (ni −O1i − nib/N)2 = (nia/N −O1i)
2.



CHAPTER 4. CONTINGENCY TABLES 104

. If a = b, then T =
∑ (O1i−O2i)

2

ni
.

T =
c∑

i=1

(O1i − ani/N)2

ani/N
+

(O2i − bni/N)2

bni/N

=
c∑

i=1

(O1i − ni/2)2

ni/2
+

(O2i − ni/2)2

ni/2
(a = b = N/2)

=
c∑

i=1

2O2
1i + 2O2

1i − n2
i

ni

=
c∑

i=1

(O1i −O2i)
2

ni

(ni = O1i + O2i)

. If a ≈ b, then T ≈ ∑ (O1i−O2i)
2

ni
.

Null distribution T ≈ χ2
c−1

Hypotheses

H0: All c populations have the same median
H1: At least two of the populations have different medians

. Reject H0 at size α if T > χ2
c−1,1−α.

Multiple comparisons If the null hypothesis is rejected, pairwise multiple compar-
isons may be made between populations by using median test repeatedly on 2 × 2
contingency tables.

Example 4.3.1 Four different methods of growing corn were randomly assigned to a large
number of different plots of land and the yield per acre was computed for each plot.

Method
1 2 3 4
83 91 101 78
91 90 100 82
94 81 91 81
89 83 93 77
89 84 96 79
96 83 95 81
91 88 94 80
92 91 81
90 89

84

In order to determine whether there is a difference in yields as a result of the method used,
the median test was employed because it was felt that a difference in population medians
could be interpreted as a difference in the value of the method used. The hypotheses may
be stated as follows.

H0 : All methods have the same median yield per acre.
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H1 : At least two of the methods differ with respect to the median yield per acre.

I The average of 17th and 18th smallest observations is the grand median 89.

Method
1 2 3 4 Totals

> 89 6 3 7 0 16
≤ 89 3 7 0 8 18
Totals 9 10 7 8 34

I T = 4.01(0.34 + 0.29 + 1.97 + 1.78) = 17.6 which can be also approximated by

T =
c∑

i=1

(O1i −O2i)
2

ni

= 9/9 + 16/10 + 49/7 + 64/8 = 17.6

since a ≈ b.

I Reject H0 at size .05 since T > χ2
3,.95 = 7.815.

I p-value is slightly less than 0.001.

I Multiple comparisons for 2× 2 contingency tables: χ2
1,.95 = 3.841

Methods Median T
1 and 2 89 2.55∗

1 and 3 92.5 6.35
1 and 4 83 13.43
2 and 3 91 13.25
2 and 4 82.5 14.40
3 and 4 82 15.00

¤

Multiple comparisons of the populations by repeatedly using the same test on subgroups
of the original data always distorts the true level of significance of all tests but the first.

Median test v.s. one-way ANOVA

I In Example 1 the experiment has been arranged in a so-called complete randomized
design.

I The usual parametric method of analyzing the data is called a one-way analysis of
variance.

I For normal distributions the A.R.E. is only 2/π = 64%.

I For double exponential distributions the A.R.E. is only 200%.

The median test may be extended to become a “quantile test” for testing the null hypothesis
that several populations have the same quantile.
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Theory

P

((
O11 O12 · · · O1c

O21 O22 · · · O2c

))
=

(
n1

O11

)(
n2

O12

)
· · ·

(
nc

O1c

)
pa(1− p)b (A)

P ((a, b)|N) =

(
N

a

)
pa(1− p)b (B)

(A)÷ (B)

P







O11 O12 · · · O1c a
O21 O22 · · · O2c b
n1 n2 · · · nc N





 =

(
n1

O11

)(
n2

O12

) · · · ( nc

O1c

)
(

N
a

)

which is the same as

Probability =

[(
a

O1i

)][(
b

O2i

)]

[(
N
ni

)]

which is the same as

Probability =

[(
a

O1i

)][(
b

O2i

)]

[(
N
ni

)] ¤

An extension of the median test

Example 4.3.2 Four different fertilizers are used on each of six different fields, and the
entire experiment is replicated using three different types of seed. The yield per acre is
calculated at the conclusion of the experiment under each of 72 different conditions with
the following results. To test the null hypothesis

H0 : There is no difference in median yields due to the different fertilizers

Figure 4.3: Yield per acre for different fertilizers, fields and seeds

I xi1i2i3 : observed yield using fertilizer i1 in field i2 with seed i3.

I For example, x213 is the yield using fertilizer 2 in field 1 with seed 3, which is 92.3.
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I Then x213 s compared with the median of x113, x213, x313 and x413, the four yields
obtained under identical circumstances except for fertilizers.

I Thus x213 is compared with the median of 85.4, 92.3, 92.0, and 89.3, which is (89.3 +
92.0)/2 = 90.65.

I If x213 exceeds 90.65, it is replaced in the table by a one; otherwise it is replaced by
a zero.

I Each yield is compared with the median of the yields in the same row (field) and
same block (seed) and replaced by one or zero according to whether it exceeds or
does not exceed its respective median.

I The results are as follows.

Figure 4.4: Results for different fertilizers, fields and seeds

I Oj: number of fields in which fertilizer j was used and where the yield exceeded
(“ones”) its respective median.

Fertilizer Total
1 2 3 4 Totals

Oj = # of 1 3 8 14 10 35
Oj = # of 0 15 10 4 8 37

18 18 18 18 72

I Using Eq. (3) T = (144+4+100+4)
18

= 14

I Rejection H0 at size .05 since T > χ2
3,.95 = 7.815.

I p-value is about .004. ¤

4.4 Measures of dependence

I The contingency table is a convenient form for examining data to see if there is some
sort of dependence inherent in the data.

I Particular type of dependence: Row-column dependence.



CHAPTER 4. CONTINGENCY TABLES 108

I Express the degree of dependence in some simple form that easily conveys to other
people the exact degree of dependence exhibited by the table.

I Statistic: T =
∑∑ (Oij−Eij)

2

Eij

I If it is good enough to test for dependence, it is good enough to measure dependence.

Example 4.4.1 In Example 4.2.1

Scores
0-275 276-350 351-425 426-500 Totals

Private 6 14 17 9 46
Public 30 32 17 3 82
Totals 36 46 34 12 128

I T = 17.3 corresponds to the 0.999 quantile of a chi-squared random variable with 3
degrees of freedom.

I p-value = 1− p = .001

I Strongly reject H0.

I Do little toward measuring the level of dependence. ¤

Cramér’s contingency coefficient

I Provide an easily interpreted measure of dependence.

I Divide T by the maximum value of T .

I max T = N(q − 1) when there are zeros in every cell except for one cell in each row
and each column where q = min(r, c).

1 2 · · · q · · · c Totals
Row 1 n1 0 · · · 0 · · · 0 n1

Row 2 0 n2 · · · 0 · · · 0 n2

· · · · · · · · · · · · · · · · · · · · · · · ·
Row r 0 0 · · · nq · · · 0 nq

Totals n1 n2 · · · nq · · · 0 N

I R1 = T
max T

= T
N(q−1)

I R1 is close to 1 if the table indicates a strong row-column dependence and close to
1 if the numbers across each row are in the same proportions to each other as the
column totals are to each other.

I Cramér’s coefficient
√

R1 =

√
T

N(q − 1)

(SAS, StatXact)

The most widely used measure of dependence for r × c contingency tables.
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Example 4.4.2 In the previous example the 2× 4 contingency table, T = 17.3.

I N = 128, q = 2 give that

R1 =
T

N(q − 1)
=

17.3

128
= .135

I Cramér’s coefficient is
√

0.135 = 0.368 ¤

I Cramér’s coefficient, like all good measures of dependence, is “scale invariant.”

Scores
0-275 276-350 351-425 426-500 Totals

Private 60 140 170 90 460
Public 300 320 170 30 820
Totals 360 460 340 120 1280

Pearson’s contingency coefficient

I Pearson’s coefficient of mean square contingency (Yule and Kendall, 1950):

R2 =

√
T

N + T

I max R2 =
√

(q − 1)/q when T = N(q − 1).

I 0 ≤ R2 ≤
√

(q − 1)/q < 1.0

I R2 is also called the contingency coefficient by McNemar and Siegel.

Example 4.4.3 In the contingency table of the two previous examples we have T = 17.3
and N = 128,

R2 =

√
T

N + T
=

√
17.3

128 + 17.3
= 0.345 ¤

Pearson’s mean-square contingency coefficient (Yule and Kendall, 1950)

I Mean-square contingency:

R3 =
T

N

I 0 ≤ R3 ≤ q − 1

Example 4.4.4 For the same contingency table used in the previous example we have

R3 =
17.3

128
= 0.135 ¤
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Tschuprow’s coefficient

R4 =

√
T

N
√

(r − 1)(c− 1)

The choice of a measure of dependence is largely a personal decision.

For 2× 2 contingency table

Column
1 2

Row 1 a b r1

Row 2 c d r2

c1 c2 N

We know from Problem 4.2.2 that

T =
N(ad− bc)2

r1r2c1c2

R1 and R3 reduce to

R1 = R3 =
T

N
=

(ad− bc)2

r1r2c1c2

Cramér’s coefficient
√

R1 =

√
(ad− bc)2

r1r2c1c2

R2 =

√
T

N + T
=

√
(ad− bc)2

r1r2c1c2 + (ad− bc)2

In a four-fold contingency table, unlike the general r×c contingency table, it is meaningful
to distinguish between a positive association and a negative association.

Example 4.4.5 Forty children are classified according to whether their mothers have dark
hair or light hair and as to whether their fathers have dark or light hair.

The results may show a positive association

Father
Dark Light

Mother Dark 28 0 28
Light 5 7 12

33 7 40

or a negative association

Father
Dark Light

Mother Dark 21 7 28
Light 12 0 12

33 7 40

according to whether ad− bc is positive or negative.

A lack of association (zero correlation)
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Father
Dark Light

Mother Dark 23 5 28
Light 10 2 12

33 7 40

¤

One measure of association that preserves direction:
The phi coefficient

R5 =
ad− bc√
r1r2c1c2

I Set up the table so that a and d represent the number of similar classifications while
b and c represent the number of unlike classifications.

I One measure of association that preserve direction is the phi coefficient R5.

I −1 ≤ R5 ≤ 1.

I One special case of Pearson product moment correlation coefficient.

I R5 = T1/
√

N

Example 4.4.6 For the first table in Example 5 we have

a = 28 r1 = 28
b = 0 r2 = 12
c = 5 c1 = 33
d = 7 c2 = 7

R5 =
ad− bc√
r1r2c1c2

=
(28)(7)− 0√

(28)(12)(33)(7)

= 0.703

I For the second table in Example 5.

R5 =
(21)(0)− (7)(12)√

(28)(12)(33)(7)

= −0.302

which reflects the negative association of hairtypes. ¤

Other measures of association for 2× 2 contingency table:

I R6 = ad−bc
ad+bc

(Yule and Kendall, 1950)

I R7 = (a+d)−(b+c)
a+b+c+d

(Gibbons, 1967)

Test the null hypothesis of independence
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I R1, R2, R3, R4 and Cramér’s coefficient are not appropriate for testing null hypothesis
of independence since their values will all be too large whenever T is too large.

I A one-tailed test, appropriate only for the 2× 2 contingency table may be based on
R5.

I
√

NR5 ≈ N(µ, σ2)

I Reject H0: There is no positive (negative) correlation if
√

NR5 too large (small).

Example 4.4.7 In order to see if seat belts help prevent fatalities, records of the last
100 automobile accidents to occur along a high way were examined. These 100 accidents
involved 242 persons. Each person was classified as using or not using seat belts when the
accident occurred and as injured fatally or a survivor.

Injured Fatally?
Yes No Totals

Wearing Yes 7 89 96
Seat Belts? No 24 122 146

Totals 31 211 242

The statement we wish to prove is, “Seat belts help prevent fatalities.” However, a test
for correlation does not automatically imply a cause and effect relationship. While a cause
and effect relationship between two variables usually results in correlation, a significant
correlation may be the result of both variables being influenced by a third variable, which
might be the reckless nature of the driver in this case. Therefore the null hypothesis is

H0 : There is no negative correlation between wearing seat belts and being killed in
an automobile accident

H1 : There is a negative correlation between wearing seat belts and being killed in
an automobile accident

I Reject H0 since
√

NR5 = −2.0829 < −1.645.

I p-value is about 0.019. ¤

4.5 The chi-squared goodness-of-fit test

I Often the hypotheses being tested are statements concerning the unknown probability
distribution of the random variable being observed.

I Examples:

. The median is 4.0.

. The probability of being in class 1 is the same for both populations.

. The unknown distribution function is the normal distribution function with
mean 3 and variance 1.

. The distribution function of this random variable is the binomial, with parame-
ters n = 10 and p = 0.2.
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I Goodness-of-fit test: A test designed to compare the sample obtained with the hy-
pothesized distribution to see if the hypothesized distribution function fits the data
in the sample.

I The oldest and best-known goodness-of-fit test is the chi-squared test for goodness
of fit, first presented by Pearson (1900).

The Chi-squared test for goodness of fit

Data The data consist of N independent observations of a random variable X.
These N observations are grouped into c classes,

Class
1 2 · · · c Total

Frequencies O1 O2 · · · Oc N

Assumptions

1. The sample is a random sample.

2. The measurement scale is at least nominal.

Test statistic

T =
∑ (Oj − Ej)

2

Ej

=
∑ O2

j

Ej

−N

. p∗j : Probability of a random observation on X being in class j.

. Ej = p∗jN

Null distribution T ≈ χ2
c−1

Hypotheses

H0: P (X is in class j) = p∗j
H1: P (X is in class j) 6= p∗j for at least one class

Reject H0 if T > χ2
c−1,1−α.

Comment

I If some of the Ejs are small, the asymptotic chi-squared distribution may not be
appropriate.

I Cochran (1952) suggests that none of the Ejs should be less than 1 and no more 20%
should be smaller than 5.

I Yarnold (1970) says, “If the number of classes s is 3 or more, and if r denotes the
number of expectations less than 5, then the minimum expectation may be as small
as 5r/s.”

I Slakter (1973) feels that the number of classes can exceed the number of observations,
which means the average expected value can be less than 1.

I Koehler and Larntz (1980) finds the chi-squared approximation to be adequate as
long as N ≥ 10, c ≥ 3, N2/c ≥ 10, and all Ej ≥ 0.25.
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I The user may wish to combine some cells with this discussion in mind if many of the
Ejs are small.

Example 4.5.1 A certain computer program is supposed to furnish random digits. If
the program is accomplishing its purpose, the computer prints out digits (2, 3, 7, 4, etc.)
that seem to be observations on independent and identically distributed random variables,
where each digit 0, 1, 2, . . . , 8, 9 is equally likely to be obtained. One way of testing

H0 : The number appear to be random digits

H1 : Some digits are more likely than others

Three hundred digits are generated with the following results.

Digit: 0 1 2 3 4 5 6 7 8 9 Total
Oj 22 28 41 35 19 25 25 40 30 35 300
Ej 30 30 30 30 30 30 30 30 30 30 300

I Test statistic: T =
∑10

i=1
O2

i

Ei
−N = 17

I Reject H0 at size 0.05 since T > χ2
9,0.95 = 16.92. ¤

Comment

I If the probability distribution of X is completely specified except for a number k of
parameters, it is first necessary to estimate the parameters and then to proceed with
the test as just outlined, T ≈ χ2

c−1−k.

I The minimum chi-squared method (Cramér, 1946) involves using the value of the
parameter that results in the smallest value of the test statistic.

I This procedure is impractical.

I The modified minimum chi-squared method (Cramér, 1946) consists of estimating
the k unknown parameters by computing the first k sample moments of the grouped
data.

Example 4.5.2 Efron and Morris (1975) presented data on the first 18 major baseball
players to have 45 times at bat in 1970. The players’ names and the number of hits they
got in their 45 times at bat are given as follows.

Clemente 18 Kessinger 13 Scott 10
F. Robinson 17 L.Alvarado 12 Petrocelli 10
F. Howard 16 Santo 11 E. Rodriguez 10
Johnstone 15 Swoboda 11 Campaneris 9
Berry 14 Unser 10 Munson 8
Spencer 14 Williams 10 Alvis 7

I We will test the null hypothesis that these data follow a binomial distribution with
n = 45. But we need to estimate p = P (hit) for each time at bat.

p̂ =
total number of hits

total number of at-bats
=

215

810
= 0.2654
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I n = 45 and p = 0.2654,

P (X = i) =

(
45

i

)
(0.2654)i(0.7346)45−i, i = 0, . . . , 45

I Expected cell counts: Ei = 18P (X = i)

I Cells with expected values less than 0.5 are combined to avoid problems of having a
poor approximation by the chi-squared distribution.

No. of hits
≤ 7 8 9 10 11 12 13 14 15 16 17 ≥ 18 Total

Observed 1 1 1 5 2 1 1 2 1 1 1 1 18
Expected 1.10 1.06 1.57 2.04 2.35 2.40 2.20 1.82 1.36 0.92 0.57 0.61 18

I T =
∑12

i=1
O2

i

Ei
−N = 24.73− 18 = 6.73

I Accept H0 since T < χ2
10,0.95 = 18.31

I p-value is much larger than 0.25. ¤

Comment

I p̂ in Example 2 is a good estimator, but it may not be one that minimizes the value
of T .

I The p-value is already much greater than 0.25. There is no need to find the minimum
value of T , which will further increase the p-value.

I Asymptotic theory holds as sample size goes to infinity and the expected values in
each cell also go to infinity.

I This is no guarantee that the minimum chi-squared method results in a more accurate
approximation for small sample sizes.

I The chi-squared goodness-of-fit test can also be used to test whether the data come
from a specified continuous distribution.

The chi-squared goodness-of-fit test to a continuous distribution where two parameters are
estimated from the data.

Example 4.5.3 Fifty two-digit numbers were drawn from a telephone book, and the chi-
squared test for goodness of fit is used to see if they could have been observations on a
normally distributed random variable. The numbers, after being arranged in order from
the smallest to the largest, are as follows.

23 23 24 27 29 31 32 33 33 35
36 37 40 42 43 43 44 45 48 48
54 54 56 57 57 58 58 58 58 59
61 61 62 63 64 65 66 68 68 70
73 73 74 75 77 81 87 89 93 97
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I H0 : These numbers are observations on a normally distributed random variable.

Step 1.
Divide the observations into intervals of finite length.

20-40 40-60 60-80 80-100 Total
Oj 12 18 15 5 50

Step 2.
Estimate µ and σ with the sample mean X̄ and the sample deviation S of the grouped
data.

X̄ = 55.2 S = 18.7

Step 3.
Using the estimated parameters from Step 2, compute the Ejs for the groups in Step
1 and for the ”tails”.

< 20 20-40 40-60 60-80 80-100 ≥ 100
p∗j .03 .18 .39 .31 .08 .01
Ej 1.5 9.0 19.5 15.5 4 0.5
Oj 0 12 18 15 5 0

I After combined small Ejs:

< 40 40-60 60-80 ≥ 80
Ej 10.5 19.5 15.5 4.5
Oj 12 18 15 5

Step 4.
Compute T = 0.401: Accept H0 since T < χ2

4−1−2,0.95 = 3.841.

I Usually a modification called Sheppard’s correction is used when the variance is being
estimated from grouped data and when the interior intervals are of equal width, say
h.

I Sheppard’s correction consists of subtracting h2/12 from S2 in order to obtain a
better estimate of variance.

I In this example h = 20 (the width of each interval), so (20)2/12 = 33.33 could have
been subtracted in Step 2 before extracting the square root.

I The result is S = 17.8, a smaller estimate for σ.

I This smaller estimate of σ results in a larger value of T in this example and, since
our objective is to obtain estimates that give the smallest possible value for T , the
correction was not used.

I In most situations we can expect a smaller T when the correction is used.

I Another peculiarity of this example is the fact that a smaller value of T (0.279) may
be obtained by using X = 55.04 and s = 19.0 as estimates of µ and σ.

I These estimates are the sample moments obtained from the original observations,
before grouping.
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I No matter how they are obtained, the estimates to use are the estimates that result
in the smallest value of T .

I The procedure described in this example can be relied on to provide a value of T not
far from its minimum value in most cases. ¤

Theory

I The probability of any particular arrangement:

P (O1, . . . , Oc|N) =
N !

O1! · · ·Oc!
pO1

1 · · · pOc
c

I There seems to be no theory developed to find the exact distribution of T when
several parameters are first estimated from the sample.

I The large sample approximation is both practical and necessary in order to apply
this goodness-of-fit test. ¤

4.6 Cochran’s test for related observations

I Sometimes the use of a treatment, or condition, results in one of two possible out-
comes, e.g. “sale” or “no sale”, “success” or “failure”.

I 2× c contingency table: several treatments where one row represents the number of
successes and the other row represents the number of failures, and the null hypothesis
of no treatment differences may be tested using a chi-squared contingency table test,
as described in Section 4.2.

I However, it is possible to detect more subtle differences between treatments, that
is, increase the power of the test by applying all c treatments independently to the
same blocks, such as by trying all c sales techniques on each of several persons in
an experimental situation and then recording for each person the results of each
technique.

I Thus each block, or person, acts as its own control, and the treatments are more
effectively compared with each other.

I Such an experimental technique is called ”blocking,” and the experimental design is
called a randomized complete block design.

The Cochran test

Data Each of c treatments is applied independently to each of r blocks, or subjects,
and the result of each treatment application is recorded as either 1 or 0, to represent
“success” or “failure”, or any other dichotomization of the possible treatment results.

Treatments
Blocks 1 2 · · · c Row totals

1 X11 X12 · · · X1c R1

2 X21 X22 · · · X2c R2

· · · · · · · · · · · · · · · · · ·
r Xr1 Xr2 · · · Xrc Rr

Column totals C1 C2 · · · Cc N
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Assumptions

1. The blocks were randomly selected from the population of all possible blocks.

2. The outcomes of the treatments may be dichotomized in a manner common to
all treatments within each block, so the outcomes are listed as either “0” or “1.”

Test statistic

T = c(c− 1)

∑ (
Cj − N

c

)2

∑
Ri(c−Ri)

=
c(c− 1)

∑
C2

j − (c− 1)N2

cN −∑
R2

i

Null distribution T ≈ χ2
c−1

Hypotheses

H0: The treatments are equally effective
H1: There is a difference in effectiveness among treatments

Multiple comparison If H0 is rejected, pairwise comparisons may be made between
treatments using the McNemar test, which is the two-tailed sign test, as described
in Sec. 3.5.

Example 4.6.1 Each of three basketball had devised his own system for predicting the
outcomes of collegiate basketball games. Twelve games were selected at random, and each
sportsman presented a prediction of the outcome of each game. After the games were
played, the results were tabulated, using 1 for successful prediction and 0 for unsuccessful
prediction.

Sportsman
Game 1 2 3 Totals

1 1 1 1 3
2 1 1 1 3
3 0 1 0 1
4 1 1 0 2
5 0 0 0 0
6 1 1 1 3
7 1 1 1 3
8 1 1 0 2
9 0 0 1 1
10 0 1 0 1
11 1 1 1 3
12 1 1 1 3

Totals 8 10 7 25

The Cochran test was used to test:

H0 : Each sportsman is equally effective in his ability to predict the outcomes of the
basketball games.
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I Test statistic:

T = c(c− 1)

∑c
j=1(Cj − N

c
)2

∑r
i=1 Ri(c−Ri)

=
(3)(2)[(−1

3
)2 + (5

3
)2 + (−4

3
)2]

2 + 2 + 2 + 2 + 2

= 2.8

I Accept H0 at size 0.05 since T < χ2
2,0.95 = 5.99.

I p-value is about 0.25. ¤

Theory

I Xij ∼ B(1, p) where p is the same within each row under H0, but can be different
from block to block.

I From CLT:
Cj−E(Cj)√

Var(Cj)
≈ N(0, 1) where Cj =

∑r
i=1 Xij.

I
∑[

Cj−E(Cj)√
Var(Cj)

]2

≈ χ2
c

I Ê(Cj) = 1
c

∑
Cj = N

c

I Var(Cj) =
∑

Var(Xij) =
∑

p(1− p)

I p̂ in row i = Ri/c

I Estimate of Var(Xij) = Ri

c

(
1− Ri

c

)

I Improved estimate of Var(Xij) = Ri(c−Ri)
c(c−1)

I Improved estimate of

Var(Cj) =
1

c(c− 1)

r∑
i=1

Ri(c−Ri)

I Substitution of the estimates for E(Cj) and Var(Cj) into Eq. (5) gives

T = c(c− 1)

∑c
j=1(Cj − N

c
)2

∑r
i=1 Ri(c−Ri)

¤

Comment
If c = 2: Cochran test ≡ McNemar test

I If only two treatments are being considered, such as ”before” and ”after” observations
on the same block, with r blocks, the experimental situation is the same as that
analyzed by the McNemar test for significance of changes.

I In each situation the null hypothesis is that the proportion of the population in class
1 is the same using treatment 1 (before) as it is using treatment 2 (after).
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I For c = 2 the Cochran test statistic reduces to

T = 2

(
C1 − C1+C2

2

)2
+

(
C2 − C1+C2

2

)2

∑r
i=1 Ri(2−Ri)

= 2

(
C1−C2

2

)2
+

(
C2−C1

2

)2

∑r
i=1 Ri(2−Ri)

=
(C1 − C2)

2

∑
Ri(2−Ri)

(14)

I If a block has ones in both columns, then Ri = 2 and Ri(2−Ri) = 0.

I If both columns have zeros, then Ri = 0.

I If there is a change from zero to one or one to zero in a given row, then Ri =
Ri(2− Ri) = 1, and

∑
Ri(2− Ri) = b + c is the total number of rows that go from

0 to 1 and 1 to 0.

I C1 = c + d, the total number of ones in column one, or “before”.

I C2 = b + d, the total number of ones in column two, or “after”.

I C1 − C2 = c− b

I T = (c− b)2/(b + c) is the McNemar’s test given in Equation 3.5.1.

I Both the McNemar test statistic and the Cochran test statistic with c = 2 are
approximated by a chi-squared random variable with 1 degree of freedom.

4.7 Some comments on alternative methods of analy-

sis

The likelihood ratio statistic

I Methods in this chapter:

T1 =
∑ (Oi − Ei)

2

Ei

(Pearson chi-squared statistic, 1900, 1922)

I A different method of analysis, called the likelihood ratio test and mentioned in
Problem 4.2.3, employs the statistic

T2 = 2
∑

Oi ln

(
Oi

Ei

)

(likelihood ratio chi-squared statistic, Wilks, 1935, 1938)

I T1, T2 ≈ χ2
c−1

I The choice of whether to use T1 or T2 depends largely on the user’s preference.

I A serious disadvantage in using T2 is that the chi-squared approximation is usually
poor if N/rc < 5, while the chi-squared approximation for T1 holds up for much
smaller values of N .
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Loglinear models

I This method works well in analyzing contingency tables with three or more dimen-
sions.

I The same statistic T1 and T2 just given are used with loglinear models; the difference
is in the method used for obtaining the Eis. Usually iterative methods are used.

I The name of loglinear model arises from a two-way contingency table:

H0 : pij = pi+ · p+j, all i and j

H0 : log pij = log pi+ + log p+j

where pij is the probability of an observation being classified in cell (i, j) and where
pi+ and p+j are the row and column marginal probabilities.

I The test then amounts to a test of whether or not the model for the logarithms of the
cell probabilities is a linear function of the logarithms of the marginal probabilities.

4.8 Summary

1. Contingency table: An array of natural numbers in matrix form where those natural
numbers represent counts, or frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2. Chi-squared test for differences in probabilities T1: Two independent populations
(rows fixed, columns random)

T1 =

√
N(O11O22 −O12O21)√

n1n2C1C2

≈ N(0, 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3. Three data types of 2× 2 contingency table:

(a) Row totals are fixed and column totals are random variables.

(b) Row totals and column totals are random variables.

(c) Row totals and column totals are known prior to an examination of the data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4. Fisher’s exact test T2: The number of observations in the cell in row 1, column 1
(rows and columns fixed).

P (T2 = x) =

(
r
x

)(
N−r
c−x

)
(

N
c

) , x = 0, 1, . . . , min(r, c)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5. T3: Large sample approximation for T2

T3 =
T2 − rc

N√
rc(N−r)(N−c)

N2(N−1)

≈ N(0, 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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6. Fisher’s exact test: Exact only if the row and column totals are nonrandom. . . . . . 91

7. T2: has the hypergeometric distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

8. Mantel-Haenszel test: Method for combining several 2× 2 contingency tables . . . . 92

9. T4: Test for combining several 2× 2 contingency tables (rows and columns fixed)

T4 =

∑
xi −

∑
rici

Ni√∑ rici(Ni−ri)(Ni−ci)

N2
i (Ni−1)

≈ N(0, 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10. T5: Test for 2× 2 contingency tables with row totals or column totals are random.

T5 =

∑
xi −

∑
rici

Ni√∑ rici(Ni−ri)(Ni−ci)

N3
i

≈ N(0, 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

11. T5 test is valid even though the row totals or column totals are random. . . . . . . . . . 93

12. The continuity correction should not be used to find p-values when T5 is used. . . . 93

13. r × c contingency table: The one-sided hypotheses of the previous section are no
longer appropriate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

14. T : Test for differences in probabilities, r × c.

T =
∑

i

∑
j

(Oij − Eij)
2

Eij

=
∑

i

∑
j

O2
ij

Eij

−N ≈ χ2
(r−1)(c−1)

Eij = niCj/N represents the expected number of observations in cell (i, j), if H0 is
true. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

15. I The exact distribution of T in the r × c case may be found in exactly the same
way as it was found in the previous section for the 2× 2 case.

I The row totals are held constant, and then all possible contingency tables having
those same row totals are listed, and their probabilities are calculated using the
multinomial distribution for each row.

I In all three applications of contingency tables in this section, the asymptotic
distribution of T is the same, χ2

(r−1)(c−1). ¤

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

16. Exact distribution of T with N = 4

I N !
a!b!c!d!

(p11)
a(p12)

b(p21)
c(p22)

d

I The maximum size of the upper tail of T when H0 is true, is found by setting

all of the pijs equal to each other: N !
a!b!c!d!

(
1
4

)N

I There are
(
7
3

)
= 35 different contingency tables (Fig. 1).
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I P (T = 0) = 84/256 = 0.33

I P (T = 4/9) = 48/256 = 0.19

I P (T = 4/3) = 96/256 = 0.37

I P (T = 4) = 28/256 = 0.11

I The distribution of T is more complicated to obtain than the row totals are
fixed. ¤

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

17. I The exact distribution of O11 is the hypergeometric distribution for 2× 2 case.

I Row totals and column totals are all equal 2.

Table Probability T(
2 0
0 2

)
(2
2)(

2
0)

(4
2)

= 1/6 4
(

1 1
1 1

)
(2
1)(

2
1)

(4
2)

= 2/3 0
(

0 2
2 0

)
(2
0)(

2
2)

(4
2)

= 1/6 4
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18. I Fixed row totals and fixed column totals greatly reduce the contingency tables
possible. When r = c = 2, the test is known as “Fisher’s exact test”.

I For r and c in general, the exact probability of the table with fixed marginal
totals is given by

probability =

(
n1

O1i

) · · · ( nr

Ori

)
(

N
ci

)

where the multinomial coefficients
(

nm

Omi

)
= nm!

Om1!Om2!·Omc!
.
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19.

P

((
O11 O12 · · · O1c

O21 O22 · · · O2c

))
=

(
n1

O11

)(
n2

O12

)
· · ·

(
nc

O1c

)
pa(1− p)b (A)

P ((a, b)|N) =

(
N

a

)
pa(1− p)b (B)

(A)÷ (B)

P
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(
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)(
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O12

) · · · ( nc

O1c

)
(

N
a

)
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20. Contingency table: The contingency table is a convenient form for examining data
to see if there is some sort of dependence inherent in the data. . . . . . . . . . . . . . . . . . 107

21. R1 = T
max T

= T
N(q−1)
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22. Cramér’s coefficient:
√

R1 =
√

T
N(q−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

23. Pearson’s coefficient (contingency coefficient): Pearson’s coefficient of mean square
contingency (Yule and Kendall, 1950):

R2 =

√
T

N + T
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24. Mean-square contingency:

R3 =
T

N
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25. Tschuprow’s coefficient:

R4 =

√
T

N
√

(r − 1)(c− 1)
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26. 2× 2 contingency table:

R1 = R3 =
T

N
=

(ad− bc)2

r1r2c1c2

R2 =

√
T

N + T
=

√
(ad− bc)2

r1r2c1c2 + (ad− bc)2

R5 =
ad− bc√
r1r2c1c2

R6 =
ad− bc

ad + bc

R7 =
(a + d)− (b + c)

a + b + c + d
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27. Goodness-of-fit test: A test designed to compare the sample obtained with the hy-
pothesized distribution to see if the hypothesized distribution function fits the data
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Ej
=

∑ O2
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30. Cochran’s test:
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I Xij ∼ B(1, p) where p is the same within each row under H0, but can be different
from block to block.

I From CLT:
Cj−E(Cj)√

Var(Cj)
≈ N(0, 1) where Cj =

∑r
i=1 Xij.

I
∑c

j=1

[
Cj−E(Cj)√

Var(Cj)

]2

≈ χ2
c

I Ê(Cj) = 1
c

∑
Cj = N

c

I Var(Cj) =
∑

Var(Xij) =
∑

p(1− p)

I p̂ in row i = Ri/c

I Estimate of Var(Xij) = Ri

c

(
1− Ri

c

)

I Improved estimate of Var(Xij) = Ri(c−Ri)
c(c−1)

I Improved estimate of

Var(Cj) =
1

c(c− 1)

r∑
i=1

Ri(c−Ri)

I Substitution of the estimates for E(Cj) and Var(Cj) into Eq. (5) gives

T = c(c− 1)

∑c
j=1(Cj − N

c
)2

∑r
i=1 Ri(c−Ri)

¤
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31. If c = 2, the Cochran test is identical with the McNemar test (Section 3.5). . . . . .119

32. Likelihood ratio chi-squared statistic: T2 = 2
∑

Oi ln
(

Oi

Ei

)
. . . . . . . . . . . . . . . . . . . . . 120
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Chapter 5
SOME METHODS BASED ON RANKS

Preliminary remarks

I Most of the statistical procedures introduced in the previous chapters can be used
on the data that have a nominal scale of measurement.

I Statistical procedures for dichotomous data in Chap. 3.

I Statistical procedures for data classified according to two or more different criteria
and into two or more separate classes by each criterion in Chap. 4.

I Nominal scale of measurement in Chap. 3-4.

I All of those procedures may also be used where more than nominal information
concerning the data is available.

I Some of the information contained in the data is disregarded and the data are reduced
to nominal-type data for analysis.

I Such a loss of information usually results in a corresponding loss of power.

I In this chapter several statistical methods are presented that utilize more of the
information contained in the data, if the data have at least an ordinal scale of mea-
surement.

I If data are nonnumeric but are ranked as in ordinal-type data, the methods of this
chapter are often the most powerful ones available.

I If data are numeric and, furthermore, are observations on random variables that
have the normal distribution so that all of the assumptions of the usual parametric
tests are met, the loss of efficiency caused by using the methods of this chapter is
surprisingly small.

I The rank tests of this chapter are valid for all types of populations, whether contin-
uous, discrete, or mixtures of the two.

I Data with many ties may be analyzed using rank tests if the data are ordinal.

I If there are extensive ties in the data, the large sample approximation and not the
small sample tables in this book should be used.

Stem-and-leaf method (Tukey, 1977)
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I A convenient method of arranging observations in increasing order.

I Suppose a class of 28 students obtained the following scores on an exam.

74 63 88 69 81 91 75
82 91 87 77 86 86 87
96 84 93 73 74 93 78
70 84 90 97 79 89 93

Stem-and-leaf:

9 0 1 1 3 3 3 6 7
8 1 2 4 4 6 6 7 7 8 9
7 0 3 4 4 5 7 8 9
6 3 9

I The scores may be arranged from smallest to largest quite easily now.

I In this way the ranks may be assigned to the observations.

5.1 Two independent samples

I The test presented in this section is known as the Mann-Whitney test and also as
the Wilcoxon test.

I The usual two-sample situation is one in which the experimenter has obtained two
samples from possibly different populations and wishes to use a statistical test to see
if the null hypothesis that the two populations are identical can be rejected.

I An equivalent situation is where one random sample is obtained, but it is randomly
subdivided into two samples.

I If the samples consist of ordinal-type data, the most interesting difference is a differ-
ence in the locations of the two populations.

. Does one population tend to yield larger values than the other population?

. Are the two medians equal?

. Are the two means equal?

I An intuitive approach to the two-sample problem is to combine both samples into a
single ordered sample and assign ranks to the sample values from the smallest value
to the largest, without regard to which population each value came from.

I Then the test statistic might be the sum of the ranks assigned to those values from
one of the populations.

I If the sum is too small (or too large), there is some indication that the values from
that population tend to be smaller (or larger, as the case may be) than the values
from the other population.

I The null hypothesis of no differences between populations may be rejected if the
ranks associated with one sample tend to be larger than those of the other sample.
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I Ranks are considered preferable to the actual data:

1. If the numbers assigned to the observations have no meaning by themselves but
attaining only in an ordinal comparison with the other observations.

2. If the numbers have meaning but the distribution function is not a normal
distribution function, the probability theory is usually beyond our reach. The
probability theory of statistics based on ranks is relative simple.

3. The A.R.E. of the Mann-Whitney test is never too bad when compared with
the two-sample t test, the usual parametric counterpart.

The Mann-Whitney (Wilcoxon sign ranks) Test

Data The data consist of two random samples. Let X1, X2, . . . , Xn denote the random
sample of size n from population 1 and let Y1, Y2, . . . , Ym denote the random sample
of size m from population 2. Assign the rank 1 to n + m to the observations from
smallest to largest. Let R(Xi) and R(Yj) denote the rank assigned to Xi and Yj for
all i and j. Let N = n + m.

If several sample values are exactly equal to each other, assign to each the average
of the ranks that would have been assigned to them had there been no ties.

Assumptions

1. Both samples are random samples from their respective populations,

2. In addition to independence within each sample, there is mutual independence
between the two samples.

3. The measurement scale is at least ordinal.

Test statistic

. No ties or a few ties:
T =

∑
R(Xi)

. Many ties:

T1 =
T − nN+1

2√
nm

N(N−1)

∑
R2

i − nm(N+1)2

4(N−1)

where
∑

R2
i refers to the sum of the squares of all N of the ranks or average

ranks actually used in both samples.

Null distribution

. Lower quantiles of the null distribution of T given in Table A7 for n, m ≤ 20.

. Upper quantile wp:
wp = n(n + m + 1)− w1−p

. The quantiles in Table A7 are exact only if there are no ties in the data and
therefore no average ranks are used.

. Approximate quantiles in the case of no ties, and n or m greater than 20:

wp ≈ n(N + 1)

2
+ zp

√
nm(N + 1)

12
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. If there are many ties in the data, then T1 is used instead of T , and T1 is
approximately a standard normal random variable whose quantiles are given in
Table A1.

Hypotheses Let F (x) and G(x) be the distribution functions corresponding to X and
Y , respectively.

A. Two-tailed test:

H0 : F (x) = G(x) for all x
H1 : F (x) 6= G(x) for some x

p-value = 2P


Z ≤ T + 1

2
− nN+1

2√
nm(N+1)

12




B. Lower-tailed test:

H0 : F (x) = G(x) for all x
H1 : F (x) > G(x) for some x

p-value = P


Z ≤ T + 1

2
− nN+1

2√
nm(N+1)

12




C. Upper-tailed test:

H0 : F (x) = G(x) for all x
H1 : F (x) < G(x) for some x

p-value = P


Z ≥ T − 1

2
− nN+1

2√
nm(N+1)

12




I The Mann-Whitney test is unbiased and consistent when testing the preceding hy-
potheses involving P (X > Y ).

I The same is not always true for the hypotheses involving E(X) and E(Y ).

I To insure that the test remains consistent and unbiased for hypotheses involving
E(X):

Assumption 4: If there is a difference between population distribution functions, that
differences in the location of the distributions (F (x) ≡ G(x + c)).

Example 5.1.1 The senior class in a particular high school had 48 boys. Twelve boys
lived on farms and the other lived in town. A test was devised to see if farm boys in general
were more physically fit than town boys. Each boy in the class was given a physical fitness
test in which a low score indicates poor physical condition. The scores of the farm boys
(Xi) and the town boys Yj.

I Neither group of boys is a random sample from any population.

I However, it is reasonable to assume that these scores resemble hypothetical random
samples from the populations of farm and town boys in that age group, at least for
similar localities.
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Figure 5.1: Scores for physically fit

I The other assumptions of the model seem to be reasonable, such as independence
between groups.

I The Mann-Whitney test is selected to test:

H0 : Farm boys do not tend to be more fit, physically, than town boys
H1 : Farms boys tend to be more fit than town boys

I The test is one tailed.

I The scores are ranked as follows.

Figure 5.2: Ranks of scores for physically fit

I This is not a large number of ties, so it is probably acceptable to use T instead of T1.

I Both methods will be compared in the example.
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I n = 12,m = 36 and N = m + n = 48.

T =
n∑

i=1

R(Xi)

= 6 + 10 + 13 + 18 + 22 + 26 + 30.5 + 34 + 36 + 39 + 41.5 + 45 = 321

N∑
i=1

R2
i = 38, 016

T1 =
T − nN+1

2√
nm

N(N−1)

∑N
i=1 R2

i − nm(N+1)2

4(N−1)

=
321− 1249

2√
(12)(36)
(48)(47)

(38016)− (12)(36)(49)2

4(47)

= 0.6431

w0.95 = n
N + 1

2
+ (1.6449)

√
nm(N + 1)/12

= 294 + (1.6449)(42)

= 363.1

I Accept H0. ¤

I The next example illustrates a situation in which no random variables are defined
explicitly.

Example 5.1.2 A simple experiment was designed to see if flint (打火石) in area A tended
to have the same degree of hardness as flint in area B. Four sample pieces of flint were
collected in area A and five sample pieces of flint were collected in area B. To determine
which of two pieces of flint was harder, the two pieces were rubbed against. The piece
sustaining less damage was judged the harder of the two. In this manner all nine pieces
of flint were ordered according to hardness. The rank 1 was assigned to the softest piece,
rank 2 to the next softest, and so on.

Rank 1 2 3 4 5 6 7 8 9
Origin of piece A A A B A B B B B

I H0 : The flints from areas A and B are of equal hardness
H1 : The flints are not of equal hardness

I Mann-Whitney two-tailed test is used:

T = sum of the ranks of pieces from area A

= 1 + 2 + 3 + 5

= 11
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I Reject H0 at size .05 since the two-tailed critical region is either T < 12 or T >
40− 12 = 28.

p-value ∼= 2 · P

Z ≤ 11 + 1

2
− 410

2√
4·5·10

12




= 2 · P (z ≤ −2.0821)

= 0.038

Theory

I T =
∑

R(Xi)

I Assume that Xi and Yj are identically and independently distributed.

I Every arrangement of the Xs and Y s in the ordered combined sample is equally
likely.

I The number of ways of selecting n integers from a total number of n + m integers is(
n+m

n

)
, and each way has equal probability according to the basic premise just stated.

I The probability T = k may be found by counting the number of different sets of n
integers from 1 to n + m that add up to the value k and then dividing that number
by

(
n+m

n

)
.

I Example: n = 4 and m = 5

I Number of ways of selecting four out of nine ranks:

(
n + m

n

)
=

9!

4!5!
= 126

I min T = 10, P (T = 10) = P (T = 11) = 1/126 and P (T = 12) = 2/126.

I P (T ≤ 11) = 2/126 = 1/63 = 0.0159

I For large n and m, use CLT to approximate the distribution of T .

I E(T ) = n(n+m+1)
2

(Theorem 1.4.5)

I Var(T ) = n (N+1)(N−1)
12

+ n(n− 1)
(−N+1

12

)
= n(n+m+1)m

12
(Theorem 1.4.5, N = n + m)

I Quantile: wp = E(T ) + zp

√
Var(T )

Mann-Whitney test may be used for testing:

H0 : E(X) = E(Y ) + d

By collecting all the values of d that would result in acceptance of the preceding H0,
we have a confidence interval for E(X)− E(Y ).

Confidence interval for the difference between two means
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Data The data consist of two random samples X1, X2, . . . , Xn and Y1, . . . , Ym of
size n and m, respectively. Let X and Y denote random variables with the same
distributions as the Xi and Yj, respectively.

Assumptions

1. Both samples are random samples from their respective populations.

2. In addition to independence within each sample, there is mutual independence
between the two samples.

3. The two population distribution functions are identical except for a possible
difference in location parameters. That is, there is a constant d such that X has
the same distribution function as Y + d.

Method

. Determine wα/2 from Table A7 or Eq. 5 if n and m are large, where (1− α) is
the desired confidence coefficient.

. k = wα/2 − n(n + 1)/2 (lower quartile)

. From all of possible pairs (Xi, Yj), find the k largest differences Xi−Yj (U) and
find the k smallest differences (L).

P [L ≤ E(X)− E(Y ) ≤ U ] ≥ 1− α

Example 5.1.3 A cake batter is to be mixed until it reaches a specified level of consis-
tency. Five batches of the batter are mixed using mixer A, and another five batches are
mixed using mixer B. The required times for mixing are given as follows

Mixer A Mixer B
7.3 7.4
6.9 6.8
7.2 6.9
7.8 6.7
7.2 7.1

I A 95% confidence interval is sought for the mean difference in mixing times, E(X)−
E(Y ), where X refers to mixer A and Y refers to mixer B.

I n = m = 5, α = .05, Table A7 yields w.025 = 18 and k = 18− 5 · 6/2 = 3.

I Two samples are ordered from smallest to largest and Xs are used as rows and Y s
are used as columns:

Xi\Yj 6.7 6.8 6.9 7.1 7.4
6.9 0.2 0.1 0.0 -0.2 -0.5
7.2 0.5 0.4 0.3 0.1 -0.2
7.2 0.5 0.4 0.3 0.1 -0.2
7.3 0.6 0.5 0.4 0.2 -0.1
7.8 1.1 1.0 0.9 0.7 0.4
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Smallest Differences Largest Differences
6.9− 7.4 = −0.5 7.8− 6.7 = 1.1
6.9− 7.1 = −0.2 7.8− 6.8 = 1.0
7.2− 7.4 = −0.2 = L 7.8− 6.9 = 0.9 = U

I 95% CI (L,U) = (−0.2, 0.9) ¤

Theory

I # of (Xi, Yj) = mn

I If k = # of Xi − Yj > 0, then T = k + n(n + 1)/2.

I T = n(n + 1)/2 if no Y s are smaller than any of Xs.

I The borderline value of T , where H0 is barely accepted, is given in Table A7 as wα/2.

I By subtracting n(n + 1)/2 from wα/2, we find the borderline value of k.

I Want to find the value of d that we can add to the Y s to achieve barely this borderline
value of k.

I If we add the maximum of all the differences Xi− Yj to each of the Y s, then none of
the Xs will be greater than the adjusted Y s.

I Add the kth largest difference Xi − Yj to each of Y s, we achieve the borderline case:
fewer than k pairs satisfy Xi > Yj + d, and at least k pairs satisfy Xi > Yj + d. In
this way we obtain the largest value of d that results in acceptance of H0 : E(X) =
E(Y ) + d.

I By reversing the procedure and working from the lower end, we obtain the smallest
value of d that results in acceptance of the same hypothesis.

Comparison with other procedures
Mann-Whitney test v.s. two-sample t test

I t =
(X−Y )

√
mn(N−2)/N√P

(Xi−X)2+
P

(Yj−Y )2

I If the population has normal distribution, then the t test is the most powerful test.

I If the population is not normal distribution, then the t test when compare with the
Mann-Whitney test results very little power. This is especially true when one or both
samples contain unusually large or small observations, called “outliers.”

I The A.R.E. of the Mann-Whitney test as compared with the t test is 0.955 for normal
population, 1.0 for uniform population, 1.5 for double exponential distribution.

I If the two populations differ only in their location parameters the A.R.E. is never
lower than 0.864 but may be as high as infinity.

I The median test also may be used for data of this type. The A.R.E. of the Mann-
Whitney test relative to the median test is 1.5 for normal populations, 3.0 for uniform
distributions, but only 0.75 in the double exponential case.
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I The Mann-Whitney test was first introduced for the case n = m by Wilcoxon (1945).
Wilcoxon’s test was extended to the case of unequal samples sizes by White (1952).

I Mann and Whitney (1947) seem to be the first to consider unequal sample sizes and
to furnish tables suitable for use with small sample.

I It is largely the work of Mann and Whitney that led to widespread use of the test.

5.2 Several independent samples

I The Mann-Whitney test for two independent samples was extended to the problem
of analyzing k independent samples by Kruskal and Wallis (1952).

I The experimental situation is one where k random samples have been obtained, one
from each of k possibly different populations, and we want to test the null hypothesis
that all of the populations are identical against the alternative that some of the
populations tend to furnish greater observed values than other populations.

The Kruskal-Wallis test

Data The data consist of k random samples of possibly different sizes. Denote the
ith random sample of size ni by Xi1, Xi2, . . . , Xini

. Then the data may be arranged
into columns.

Sample 1 Sample 2 · · · Sample k
X1,1 X2,1 · · · Xk,1

X1,2 X2,2 · · · Xk,2

· · · · · · · · ·
X1,n1 X2,n2 · · · Xk,nk

Let N denote the total number of observations N =
∑

ni. Assign rank 1 to the
smallest of the totality of N observations, rank 2 to the second smallest, and so on
to the largest of all N observations, which receives rank N . Let R(Xij) represent the
rank assigned to Xij. Let Ri be the sum of the ranks assigned to the ith sample.
Ri =

∑
R(Xij). Compute Ri for each sample.

If the ranks may be assigned in several different ways because several observations
equal to each other, assign the average rank to each of the tied observations, as in
the previous test of this chapter.

Assumptions

1. All samples are random samples from their respective populations.

2. In addition to independence within each sample, there is mutual independence
among the various samples.

3. The measurement scale is at least ordinal.

4. Either the k population distribution functions are identical, or else some of the
populations tend to yield larger values than other populations do.

Test statistic

T =
1

S2

(
k∑

i=1

R2
i

ni

− N(N + 1)2

4

)

where S2 = 1
N−1

(∑
R(Xij)

2 −N (N+1)2

4

)
.



CHAPTER 5. SOME METHODS BASED ON RANKS 136

. If there are no ties S2 = N(N + 1)/12 and T = 12
N(N+1)

∑ R2
i

ni
− 3(N + 1).

Null distribution

. Exact distribution of T is given by Table A8 for k = 3 and all ni ≤ 5.

. Chi-squared approximation used: χ2
k−1

Hypothesis

H0: All of the k population distribution functions are identical
H1: At least one of the populations tends to yield larger observations than at least

one of the other populations.

. Reject H0 at the level α if T is greater than its 1 − α quantile from the null
distribution.

. The p-value is approximately the probability of a chi-squared random variable
with k − 1 degrees of freedom exceeding the observed value of T .

Multiple comparisons

After rejecting H0, we can test that populations i and j seem to be different if the
following inequality is satisfied:

∣∣∣∣
Ri

ni

− Rj

nj

∣∣∣∣ > tN−k,1−(α/2)

(
S2N − 1− T

N − k

)1/2 (
1

ni

+
1

nj

)1/2

Example 5.2.1 Data from a completely randomized design were given in Example 4.3.1,
where four different methods of growing corn resulted in various yields per acre on various
plots of ground where the four methods were tried. Ordinarily, only one statistical analysis
is used, but here we will use the Kruskal-Wallis test so that a rough comparison may be
made with median test, which previously furnished a p-value of slightly less than 0.001.

H0 : The four methods are equivalent
H1 : Some methods of growing corn tend to furnish higher yields than others

I The smallest, 77: rank: 1

I The largest, 101: rank: N = 34

I Tied values receive the average ranks. The ranks of the observations, with the sums
Ri, are given next.

I ni = 9, 10, 7, 8

I Ri = 196.5, 153.5, 207.0, 38.5

I T = 25.46

I Reject H0 at size .05 since T > χ2
3,.95 = 7.815

I A rough idea of the power of the Kruskal-Wallis test as compared with the median
test may be obtained by comparing the value of the test statistics inboth tests.
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Figure 5.3: Scores for growing corn data

. Both test statistics have identical asymptotic distributions, the chi-squared dis-
tribution with 3 degrees of freedom.

. However, the value 25.46 attained in the Kruskal-Wallis test is somewhat larger
than the value 17.6 computed in the median test, indicating more sensitivity to
the sample differences.

I Multiple comparison: ignore the few ties and use

S2 = N(N + 1)/12 = 99.167

S2(N − 1− T )

N − k
=

(99.167)(33− 25.464)

34− 4
= 24.911

Populations
∣∣∣Ri

ni
− Rj

nj

∣∣∣ 2.041(24.911)1/2
(

1
ni

+ 1
nj

)1/2

1 and 2 6.533 4.681
1 and 3 7.738 5.134
1 and 4 17.021 4.950
2 and 3 14.271 5.020
2 and 4 10.488 4.832
3 and 4 24.759 5.272

I In every case the second column exceeds the third column, the multiple comparisons
procedure shows every pair of populations to be different. ¤

I The Kruskal-Wallis test is an excellent test to use in a contingency table, where the
rows represent ordered categories and the columns represent the different populations:
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Population Row
1 2 3 · · · k Totals Ri =Average Rank

Category 1 O11 O12 O13 · · · O1k t1 (t1 + 1)/2
2 O21 O22 O23 · · · O2k t2 t1 + (t2 + 1)/2
3 O31 O32 O33 · · · O3k t3 t1 + t2 + (t3 + 1)/2
· · · · · · · · · · · · · · · · · ·
c Oc1 Oc2 Oc3 · · · Ock tc

∑c−1
1 ti + (tc + 1)/2

n1 n2 n3 · · · nk N

I Oij: Number of the observations in population j fall into the ith category.

I Ri: Average rank of row i.

I All of the observations in row i are considered equal to each other but less than the
observations in row i + 1.

I Rj =
∑c

i=1 OijRi

I S2 = 1
N−1

[∑c
i=1 tiR

2

i −N(N + 1)2/4
]

T =
1

S2

(
k∑

i=1

R2
i

ni

− N(N + 1)2

4

)

I If the null hypothesis is rejected the multiple comparisons procedure may be used,
to pinpoint differences where they exist.

Example 5.2.2 Three instructors compared the grades they assigned over the past
semester to see if some of them tended to give lower grades than others.

H0 : The three instructors grade evenly with each other.
H1 : Some instructions tend to grade lower than others.

I Grades examined:

Instructors Row Average
Grades 1 2 3 Totals Ranks

A 4 10 6 20 10.5
B 14 6 7 27 34
C 17 9 8 34 64.5
D 6 7 6 19 91
F 2 6 1 9 105

Total 43 38 28 109

I Column rank sums by Eq. 9:

R1 = 2370.5, R2 = 2156.5, R3 = 1468

I
∑

Rj = N(N + 1)/2 = 5995.

I S2 = 941.71 from Eq. 10.

I T = 0.3209 from Eq. 3.
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I Accept H0 at size .05 since T < χ2
2,.95 = 5.991. ¤

Theory

I Each arrangement of the ranks 1 to N into groups of sizes n1, n2, . . . , nk, which is
equally likely, and occurs with probability n1!n2! · · ·nk!/N !.

I The value of T is computed for each arrangement.

I Example: n1 = 2, n2 = 1, and n3 = 1

Sample
Arrangement 1 2 3 T

1 1, 2 3 4 2.7
2 1, 2 4 3 2.7
3 1, 3 2 4 1.8
4 1, 3 4 2 1.8
5 1, 4 2 3 0.3
6 1, 4 3 2 0.3
7 2, 3 1 4 2.7
8 2, 3 4 1 2.7
9 2, 4 1 3 1.8
10 2, 4 3 1 1.8
11 3, 4 1 2 2.7
12 3, 4 2 1 2.7

I Distribution function:

x f(x) = P (T = x) F (x) = P (T ≤ x)
0.3 2/12 = 1/6 1/6
1.8 4/12 = 1/3 1/2
2.7 6/12 = 1/2 1.0

I Large sample approximation for T

I Ri−E(Ri)√
Var(Ri)

≈ N(0, 1) where E(Ri) = ni(N+1)
2

and Var(Ri) = ni(N+1)(N−ni)
12

(Theorem

1.4.5).

I
[

Ri−E(Ri)√
Var(Ri)

]2

= (Ri−[ni(N+1)/2])2

ni(N+1)(N−ni)/12
≈ χ2

1

I T ′ =
∑k

i=1
(Ri−[ni(N+1)/2])2

ni(N+1)(N−ni)/12
≈ χ2

k

I Ri are dependent since
∑

Ri = N(N + 1)/2.

I Kruskal (1952) showed that if the ith term in T ′ is multiplied by (N − ni)/N , then

T =
k∑

i=1

(Ri − [ni(N + 1)/2])2

ni(N + 1)N/12
≈ χ2

k−1

which is a rearrangement of the terms in Eq. 5.

I For two samples the Kruskal-Wallis test is equivalent to the Mann-Whitney test.
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5.3 A test for equal variances

I Usual standard of comparison for several populations is based on the means or other
measures of location of the populations.

I In some situations the variances of the populations may be quantity of interest.

I It has been claimed that the effect of seeding clouds with silver iodide is to increase
the variance of the resulting rainfall.

I The test for variances is analogous to the test just presented for means.

I That is to test H0 : E(X) = E(Y ), the two independent samples were combined,
ranked, and the sum of the ranks of the Xs was used as a test statistic.

I The variance is defined as the expected value of (X − µ)2 where µ is the mean of X.

I Thus to test H0 : E[(Xi − µx)
2] = E[(Yj − µy)

2] it seems reasonable to record the
values of (Xi − µx)

2 and (Yj − µy)
2, assign ranks to them, and use the sum of the

ranks of the (Xi − µx)
2s as the test statistic.

I Although this technique could be used, more power is obtained when the ranks are
squared first and then summed.

The squared ranks test for variances

Data

. Population 1: X1, X2, . . . , Xn

. Population 2: Y1, Y2, . . . , Ym

. Ui = |Xi − µ1| and Vj = |Yj − µ2|

. Assign the ranks 1 to n + m to the combined sample of Us and V s.

. If µ1 and µ2 are unknown, use X for µ1 and Y for µ2.

. R(Ui) and R(Vj) are the assigned ranks.

Assumptions

1. Both samples are random samples from their respective populations.

2. In addition to independence within each sample there is mutual independence
between the two samples.

3. The measurement scale is at least interval.

Test statistic

. If there are no values of U tied with values of V ,

T =
n∑

i=1

R(Ui)
2

. If there are ties,

T1 =
T − nR2

[
nm

N(N−1)

∑N
1 R4

i − nm
N−1

R2
2
]1/2

where R2 = 1
N
{∑ R(Ui)

2 +
∑

R(Vj)
2} and

∑N
i=1 R4

i =
∑n

j=1[R(Uj)]
4 +

∑m
j=1[R(Vj)]

4.
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Null distribution

. Quantiles of the exact null distribution of T are given in Table A9 for the case
of no ties and n,m ≤ 10.

. For n or m > 10, use the standard normal approximation:

wp =
n(N + 1)(2N + 1)

6
+ zp

√
mn(N + 1)(2N + 1)(8N + 11)

180

Hypotheses

A. Two-tailed test

H0: X and Y are identically distributed, except for possibly different
means

H1: Var(X) 6= Var(Y )

∗ Reject H0 at the level α if T (T1) is greater that its 1− α/2 or less than its
α/2 quantile, found from Table A9 or Table A1.

∗ p-value = 2· (smaller of the one-tailed p-values)

∗ Lower-tailed p-value = P

(
Z ≤ T−n(N+1)(2N+1)/6√

mn(N+1)(2N+1)(8N+11)/180

)

∗ Upper-tailed p-value = P

(
Z ≥ T−n(N+1)(2N+1)/6√

mn(N+1)(2N+1)(8N+11)/180

)

B. Lower-tailed test

H0: X and Y are identically distributed, except for possibly different
means

H1: Var(X) < Var(Y )

∗ Reject H0 at the level α if T (T1) is less than its α/2 quantile, found from
Table A9 or Table A1.

C. Upper-tailed test

H0: X and Y are identically distributed, except for possibly different
means

H1: Var(X) > Var(Y )

∗ Reject H0 at the level α if T (T1) is greater that its 1− α/2 quantile, found
from Table A9 or Table A1.

A test for more than two samples

I If there are three or more samples, this test is modified easily to test the equality of
several variances.

I From each observation subtract its population mean (sample mean) and convert the
sign of the resulting difference to +.

I Rank the combined absolute differences from the smallest to largest.

I Compute the sum of the squares of the ranks of each sample, letting S1, S2, . . . , Sk

denote the sums for each of the k samples.
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H0: All k populations are identical, except for possibly different means
H1: Some of the population variances are not equal to each other.

I Test statistic:

T2 =
1

D2

[∑ S2
j

nj

−N(S)2

]

where D2 = 1
N−1

[∑
R4

i −N(S)2
]
.

I If there are no ties D2 = N(N +1)(2N +1)(8N +11)/180 and S = (N +1)(2N +1)/6.

.
∑N

k=1 k4 =
N (1+N) (1+2 N) (−1+3 N+3 N2)

30

I T2 ≈ χ2
k−1

I p-value ≈ 1− χ2
k−1(T2)

I If H0 is rejected, multiple comparisons may be made.

I The variances of populations i and j are said to differ if

∣∣∣∣
Si

ni

− Sj

nj

∣∣∣∣ > tN−k,1−α/2

(
D2N − 1− T2

N − k

)1/2 (
1

ni

+
1

nj

)1/2

Example 5.3.1 A food packaging company would like to be reasonably sure that the boxes
of cereal it produces do in fact contain at least the number of ounces of cereal stamped on
the outside of the box. In order to do this it must set the average amount per box a little
above the advertised amount, because the unavoidable variation caused by the packing
machine will sometimes put a little less or a little more cereal in the box. A machine
with smaller variation would save the company money because the average amount per box
could be adjusted to be closer to the advertised amount.

I A new machine is being tested to see if it is less variable than the present machine,
in which case it will be purchased to replace the old machine.

I Several boxes are filled with cereal using the present machine and the amount in each
box is measured.

I The same is done for the new machine to test:

H0 : Both machines have equal variability
H1 : The new machine has a smaller variance.

I The measurements and calculations are as follows.



5.3. A TEST FOR EQUAL VARIANCES 143

T = sum of the squared ranks (present) = 462

R2 =
1

12
(16 + 100 + · · ·+ 25 + 4) = 54

N∑
i=1

R4
i = (162 + 1002 + · · ·+ 252 + 42) = 60, 660

T1 =
462− 5(54)[

(5)(7)
(12)(11)

(60660)− (5)(7)
11

(54)2
]1/2

= 2.3273

I Reject H0 since T1 > z0.95 = 1.645

I p-value: P (Z ≥ 2.3273) = 0.01

I Considerable simplification of the computations results whenever none of the values
of U are tied with values of V , as in this example.

I Then ranks rather than average ranks can be used and the exact table consulted.

Theory

I Whenever two random variables X and Y are identically distributed except for having
different means µ1 and µ2, X − µ1 and Y − µ2 not only have zero means, but they
are identically distributed also.

I This means U = |X − µ1| has the same distribution as V = |Y − µ2|. Both have the
mean zero.

I Every assignment of ranks of the Us is equally likely.

I The ranks of Us and V s are the same the ranks of U2s and V 2s.

I Use the squared (score) ranks and not the ranks themselves.

a(R) = R2

I T =
∑

a(Ri) where Ri denote the ranks of Ui in the combined sample.

I To use the large sample normal approximation for T it is necessary to find the mean
and variance of T when H0 is true.
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I E(T ) =
∑n

i=1 E(a(Ri)) = n
∑N

j=1
1
N

a(j) = nā

I Var(T ) =
∑n

i=1 Var[a(Ri)] +
∑

i6=j Cov[a(Ri), a(Rj)]

I Var[a(Ri)] = 1
N

∑N
k=1[a(k)− ā]2 = A

I Cov[a(Ri), a(Rj)] =
∑

k 6=l
[a(k)−ā][a(l)−ā]

N(N−1)

I Cov[a(Ri), a(Rj)] =
∑N

k=1[a(k)− ā]
∑N

l=1[a(l)− ā] 1
N(N−1)

−∑N
k=1 [a(k)− ā]2 1

N(N−1)
.

The first summation equals zero.

I Cov[a(Ri), a(Rj)] = − A
N−1

I

Var(T ) =
n∑

i=1

A−
n∑

i 6=j

A

N − 1

= nA− n(n− 1)
A

N − 1
=

n(N − n)

N − 1
A

=
nm

(N − 1)N

N∑
i=1

[a(i)− ā]2

I Interest in the case a(R) = R2

I The denominator of Eq. 4 is what the square root of Eq. 24 by using

N∑
i=1

[a(i)− ā]2 =
N∑

i=1

[a(i)]2 −N(ā)2

I The extension of the two-sample case to the k-sample case is completely analogous to
the extension of the two-sample Mann-Whitney test to the k-sample Kruskal-Wallis
test.

I S1, . . . , Sk: Sums of scores for each k samples.

I E(Si) = niā and Var(Si) = ni(N−ni)
(N−1)N

∑N
i=1[a(i)− ā]2

I T2 =
∑k

i=1
[Si−E(Si)]

2

Var(Si)
=

∑k
i=1

(Si−niā)2

niD2 where D2 = 1
N−1

{∑N
i=1[a(i)]2 −N(ā)2

}

I T2 = 1
D2

[∑k
j=1

S2
j

nj
−N(ā)2

]

I If the populations of X and Y have the normal distributions the appropriate statistic
to use is the ratio of the two sample variances:

F =
1

n−1

∑n
i=1(Xi − X̄)2

1
m−1

∑m
j=1(Yj − Ȳ )2

I The F test is very sensitive to the assumption of normality.

I P{Fm,n ≤ x} = P{Fn,m ≥ 1/x}
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I The F test is not very safe test to use unless one is sure that the populations are
normal.

I If the squared rank test is used instead of the F test when the populations are normal
the A.R.E. is only 15/(2π2) = 0.76, 1.08 for the double exponential distribution, 1.00
for the uniform distribution.

5.4 Measures of rank correlation

I A measure of correlation is a random variable that is used in situations where the
data consist of pairs of numbers, such as in bivariate data.

I (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∼ (X,Y )

I Examples of bivariate random variables include one where Xi, represents the height
of the ith man and Yi, represent his father’s height, or where Xi, represents a test
score of the ith individual and Yi represents her amount of training.

I By tradition, a measure of correlation between X and Y should satisfy the following
requirements in order to be acceptable.

1. Values between −1 and 1.

2. If the larger values of X tend to be paired with the larger values of Y , and hence
the smaller values of X and Y tend to be paired together, then the measure of
correlation should be positive, and close to +1.0 if the tendency is strong. Then
we would speak of a positive correlation between X and Y .

3. If the larger values of X tend to be paired with smaller values of Y , and vice
versa, then the measure of correlation should be negative and close to −1.0 if
the tendency is strong. Then we say that X and Y are negatively correlated.

4. If the values of X seem to be randomly paired with values of Y , the measure of
correlation should be fairly close to zero. This should be the case when X and Y
are independent, and possibly some cases where X and Y are not independent.
We then say that X and Y are uncorrelated, or have no correlation, or have
correlation zero.

Pearson’s product moment correlation coefficient (most commonly used measure):

r =

∑
(Xi − X̄)(Yi − Ȳ )[∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
]1/2

=

∑
XiYi − nX̄Ȳ(∑

X2
i − nX̄2

)1/2 (∑
Y 2

i − nȲ 2
)1/2

=
1
n

∑
(Xi − X̄)(Yi − Ȳ )

[
1
n

∑
(Xi − X̄)2

]1/2 [
1
n

∑
(Yi − Ȳ )2

]1/2

I Pearson’s r is a measure of the strength of the linear association between X and Y .

I If a plot of Y versus X shows the points (X, Y ) all lie on, or close to, a straight line,
then r will equal, or be close to 1.0 if the line is sloping upward, and −1.0 if the line
is sloping downward.
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I This measure of correlation may be used with any data of a numeric nature.

I The distribution function of r depends on the bivariate distribution function of
(X,Y ). Therefore r has no value as a test statistic in nonparametric tests or forming
confidence intervals unless the distribution of (X,Y ) is known.

I Some measures of correlation possess distribution functions that do not depend on
the bivariate distribution function of (X, Y ).

Spearman’s Rho

Data

. (Xi, Yi), i = 1, 2, . . . , n

. R(Xi): The rank of Xi as compared with the other X values.

. R(Yi): The rank of Yi as compared with the other Y values.

. In case of ties, assign to each tied value the average of the ranks that would
have been assigned if there had been no ties.

Measure of correlation (Spearman, 1904)

ρ =

∑
R(Xi)R(Yi)− n((n + 1)/2)2

(
∑

R(Xi)2 − n((n + 1)/2)2)1/2 (
∑

R(Yi)2 − n((n + 1)/2)2)1/2
(4)

If there are no ties:

ρ = 1− 6
∑

[R(Xi)−R(Yi)]
2

n(n2 − 1)
(5)

I Spearman’s ρ is what one obtains by replacing the observations by their ranks and
then computing Pearson’s r on the ranks.

I R(X) = R(Y ) = 1
n

∑n
i=1 i = n+1

2

I Then Eq. 2 becomes Eq. 4.

Example 5.4.1 Twelve MBA graduates are studied to measure the strength of the rela-
tionship between their score on the GMAT, which they took prior to entering graduate
school, and their grade average while they were in the MBA program.

I Their GMAT scores and their GPAs are given below:

Student GMAT(X) GPA(Y ) R(X) R(Y ) [R(X)−R(Y )]2

1 710 4.0 12 11.5 0.25
2 610 4.0 9.5 11.5 4
3 640 3.9 11 10 1
4 580 3.8 8 9 1
5 545 3.7 3 8 25
6 560 3.6 5 7 4
7 610 3.5 9.5 5 20.25
8 530 3.5 1 5 16
9 560 3.5 5 5 0
10 540 3.3 2 3 1
11 570 3.2 7 1.5 30.25
12 560 3.2 5 1.5 12.25



5.4. MEASURES OF RANK CORRELATION 147

I There are ties involving about half of the observations.

12∑
i=1

[R(Xi)]
2 = 647.5,

12∑
i=1

[R(Yi)]
2 = 647

I
∑12

i=1 R(Xi)R(Yi) = 589.75

I From Eq. 4: ρ =
589.75−12( 13

2
)2

(647.5−12( 13
2

)2)1/2(647−12( 13
2

)2)1/2 = 0.59

I For comparison, Eq. 5: ρ = 1 − 6(115)
12(122−1)

= 0.5979 which is slightly larger than the
more accurate ρ = 0.5900.

I Pearson’s r = 0.6630 computed on the original data. The linear relationship between
X and Y appears stronger than the linear relationship between the rank of X and
the rank of Y . ¤

Hypothesis test The Spearman rank correlation coefficient is often used as a test
statistic to test for independence between two random variables. The test statistic
is given by Eq. 4.

Null distribution

. Exact quantiles of ρ when X and Y are independent are given in Table A10 for
n ≤ 30 and no ties.

. For larger n, or many ties: (percentile)

wp ≈ zp√
n− 1

Hypotheses Spearman’s ρ is insensitive to some types of dependence, so it is better
to be specific as to what type of dependency.

A. Two-tailed test

H0: The Xi and Yi are mutually independent
H1: Either (a) there is a tendency for the larger values of X to be paired with

the larger values of Y , or (b) there is a tendency for the smaller values
of X to be paired with the larger values of Y

Reject H0 at the level α if |ρ| is greater than its 1−α/2 quantile obtained from
Table A10 or Eq. 11.

B. Lower-tailed test for negative correlation

H0: The Xi and Yi are mutually independent
H1: There is a tendency for the smaller values of X to be paired with the

larger values of Y , and vice versa

Reject H0 at the level α if ρ < −w1−α where w1−α is found either in Table A10
or from Eq. 11.
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C. Upper-tailed test for positive correlation

H0: The Xi and Yi are mutually independent
H1: There is a tendency for the larger values of X and Y to be paired together

Reject H0 at the level α if ρ > w1−α where w1−α is found either in Table A10
or from Eq. 11.

Example 5.4.2 Let us continue with Example 1. Suppose the twelve MBA graduates
are a random sample from all recent MBA graduates, and we want to know if there is a
tendency for high GPAs to be associated with high GMAT scores.

H0 : GPAs are independent of GMAT scores
H1 : High GPAs tend to be associated with high GMAT scores

I For n = 12, w0.95 = 0.4965 from Table A10.

I Normal approximation: w0.95 = 1.6449√
11

= 0.4960

I The observed value of ρ = 0.59.

I Reject H0 at α = 5%.

p-value = P (Z ≥ 0.5900
√

11)

= P (Z ≥ 1.9568) = 0.025 ¤

I The next measure of correlation resembles Spearman’s ρ in that it is based on the
ranks of the observations rather than the numbers themselves, and the distribution
of the measure does not depend on the distribution of X and Y if X and Y are
independent and continuous. Advantages:

. The distribution of Kendall’s tau approaches the normal distribution quite
rapidly so that the normal approximation is better for the Kendall’s τ than
it is for Spearman’s ρ.

. Another advantage of Kendall’s τ is its direct and simple interpretation in terms
of probabilities of observing concordant and discordant pairs.

Kendall’s tau

Data

. (Xi, Yi), i = 1, 2, . . . , n

. Two observations, for example (1.3, 2.2) and (1.6, 2.7), are called concordant if
both members of one observation are larger than their respective members of
the other observation.

. Nc: Number of concordant pairs of observations.

. A pair of observations, for example (1.3, 2.2) and (1.6, 1.1), are called discordant
if the two numbers in one observation differ in opposite directions from the
respective members in the other observation.

. Nd: Number of discordant pairs of observations.
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. Nc + Nd = n(n− 1)/2

Measure of correlation (Kendall, 1938)

. In case of no ties: τ = Nc−Nd

n(n−1)/2

. τ = 1 if all pairs are concordant.

. τ = −1 if all pairs are discordant.

Ties

τ =
Nc −Nd

Nc + Nd

. If
Yj−Yi

Xj−Xi
> 0, add 1 to Nc (concordant).

. If
Yj−Yi

Xj−Xi
< 0, add 1 to Nd (discordant).

. If
Yj−Yi

Xj−Xi
= 0, add 1/2 to Nc and Nd.

. Xi = Xj, no comparison is made.

I The computation of τ is simplified if the observations (Xi, Yi) are arranged in a
column according to increasing values of X.

Example 5.4.3 Again we will use the data in Example 1 for purpose of illustration.

I Arrangement of the data (Xi, Yi) according to increasing values of X gives the fol-
lowing:

Concordant pairs Discordant pairs
Xi, Yi below (Xi, Yi) below (Xi, Yi)

(530, 3.5) 7 4
(540, 3.3) 8 2
(545, 3.7) 4 5
(560, 3.2) 5.5 0.5
(560, 3.5) 4.5 1.5
(560, 3.6) 4 2
(570, 3.2) 5 0
(580, 3.8) 3 1
(610, 3.5) 2 0
(610, 4.0) 0.5 1.5
(640, 3.9) 1 0
(740, 4.0)

Nc = 44.5 Nd = 17.5

I Kendall’s τ :

τ =
Nc −Nd

Nc + Nd

=
44.5− 17.5

44.5 + 17.5
= 0.4355

I There is a positive rank correlation between the GMAT scores and the GPAs as
measured by Kendall’s τ . ¤
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Hypothesis test

I Kendall’s τ may also be used as a test statistic to test the null hypothesis of inde-
pendence between X and Y .

T = Nc −Nd, in case of no ties or few ties,

τ =
Nc −Nd

Nc + Nd

, in case of many ties.

I Exact upper quantiles for τ and T when X and Y are independent are given in Table
11 for n ≤ 60 in case of no ties.

I Lower quantiles are the negative of the upper quantiles given in the table.

I For larger n or many ties the pth quantile of τ is given approximately by

wp = zp

√
2(2n + 5)

3
√

n(n− 1)

The pth quantile of T is given approximately by

wp = zp

√
n(n− 1)(2n + 5)/18

Hypotheses

A. (Two-tailed test)

H0: X and Y are independent
H1: Pairs of observations either tend to be concordant, or tend to be discor-

dant.

. Reject H0 at the level α if T (or τ) is less than its α/2 quantile or greater than
its 1− α/2 quantile in the null distribution.

. p-value: Twice the smaller of the one-tailed p-value, given approximately by

p(lower-tailed) = P

(
Z ≤ (T + 1)

√
18√

n(n− 1)(2n + 5)

)

p(upper-tailed) = P

(
Z ≥ (T − 1)

√
18√

n(n− 1)(2n + 5)

)

B. (Lower-tailed test)

H0: X and Y are independent
H1: Pairs of observations trend to be discordant.

Reject H0 at the level α if T (or τ) is less than its α quantile in the null distribution.

C. (Upper-tailed test)

H0: X and Y are independent
H1: Pairs of observations trend to be concordant.
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Reject H0 at the level α if T (or τ) is less than its 1−α quantile in the null distribution.

Example 5.4.4 In Example 3 Kendall’s τ was computed by first finding the value of

T = Nc −Nd = 44.5− 17.5 = 27.

I If we are interested in using T to test the null hypothesis of independence between
the student’s GMAT score and his or her GPA, to see if higher GPAs tend to be
associated with higher GMAT scores, then the null hypothesis is rejected at α = 0.05
if T > w.95 = 24 by Table A11.

p-value = P (T ≥ 27)

= P

(
Z ≥ (27− 1)

√
18√

12 · 11 · 29

)

= P (Z ≥ 1.7829)

= 0.037

I If we use τ as the test statistic, the results are similar. ¤

Compare Spearman’s ρ and Kendall’s τ :

I ρ = 0.59 is a larger number than Kendall’s τ = 0.4355.

I Two tests using the two statistic produced nearly identical results.

I Both of the preceding statements hold true in most, but not all, situations.

I Spearman’s ρ tends to be larger than Kendall’s τ , in absolute value.

The Daniel’s test for trend

I Daniels (1950) proposed the use of the Spearman’s ρ to test for trend by pairing
measurements called Xi, with the time (or order) at which the measurements are
taken.

I Xis are mutually independent, and the null hypothesis is that they are identically
distributed.

I The alternative hypothesis is that the distribution of Xi is related to time so that as
times goes on, the X measurements tend to become larger (smaller).

I Tests of trend based on Spearman’s ρ or Kendall’s τ are generally considered to be
more powerful than the Cox and Stuart test (Sec. 3.5).

I The A.R.E. of the Cox and Stuart test for trend, when applied to random variables
known to be normally distributed, is about 0.78 with respect to the test based on the
regression coefficient, while the A.R.E. of these tests using Spearman’s ρ or Kendall’s
τ is about 0.98 under the same conditions.

I These tests are not as widely applicable as the Cox and Stuart test. For instance,
these tests would be inappropriate in Eg. 3.5.3. These tests are appropriate in Eg.
3.5.2.
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Example 5.4.5 In Example 3.5.2, nineteen years of annual precipitation records are
given. The two-tailed test for trend involves rejection of the null hypothesis of no trend if
Spearman’s ρ is too large or too small.

I The test statistic is given by Eq. 5 because the number of ties is small.

T =
19∑
i=1

[R(Xi)−R(Yi)]
2 = 1241.5

ρ = 1− 6T

19(192 − 1)
= −0.2469

w0.975 = 0.4579

w0.025 = −0.4579

I H0 is accepted.

p-value ∼= 2 · P (Z ≥ 0.2469
√

19− 1)

= 2(0.147)

= 0.294

The Jonckheere-Terpstra test

I Either Spearman’s ρ or Kendall’s τ can be used in the case of several independent
samples to test the null hypothesis that all of the samples came from the same
distribution.

H0 : F1(x) = F2(x) = · · · = Fk(x)

against the ordered alternative that the distributions differ in a specified direction

H1 : F1(x) ≥ F2(x) ≥ · · · ≥ Fk(x)

with at least one inequality.

I The alternative is sometimes written as

H1(x) : E(Y1) ≤ E(Y2) ≤ · · · ≤ E(Yk).

I The same data setup and the same null hypothesis as in the Kruskal-Wallis test of
Section 5.2.

I The Kruskal-Wallis test is sensitive against any differences in means, while this usage
of Spearman’s ρ or Kendall’s τ is sensitive against only the ordering specified in the
H1 given above.

I When Kendall’s τ is used, this test is equivalent to the Jonckheere-Terpstra test,
which is found in the computer programs SAS and StatXact.
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Example 5.4.6 As the human eye ages, it loses its ability to focus on objects close to
the eye. This is well-recognized characteristic of people over 40 years old. In order to see
if people in the 15- to 30-year-old range also exhibit this loss of ability to focus on nearby
objects as they get older, eight people were selected from each of four age groups; about 15
years old, about 20, about 25, and about 30 years old. It was assumed that these people
would behave as a random sample from their age group populations would, with regard to
the characteristic being measured. Each person held a printed paper in front of his or her
right eye, with left eye covered. The paper was moved closer to the eye until the person
declared that the print began to look fuzzy.

I The closest distance at which the print was still sharp was measured once for each
person.

H0 : F1(x) = F2(x) = F3(x) = F4(x), for all x
H1 : Fi(x) > Fj(x), for some x and some i < j

I Assume the ability to focus on close objects does not improve with age. The distances
are measured in inches.

15 years old 20 years old 25 years old 30 yrs
X Y X Y X Y X Y
1 4.6 2 4.7 3 5.6 4 6.0
1 4.9 2 5.0 3 5.9 4 6.8
1 5.0 2 5.1 3 6.6 4 8.1
1 5.7 2 5.8 3 6.7 4 8.4
1 6.3 2 6.4 3 6.8 4 8.6
1 6.8 2 6.6 3 7.4 4 8.9
1 7.4 2 7.1 3 8.3 4 9.8
1 7.9 2 8.3 3 9.6 4 11.5

I If the minimum focusing distance Y tends to get larger with age, then Y and X
should show a positive correlation, using either Spearman’s ρ or Kendall’s τ .

I We have an upper-tailed test with lots of ties among the Xs.

I Instead of X = 1, 2, 3, 4 we could have used any increasing sequence of numbers for
different samples, such as X = 15, 20, 25, 30, and both ρ and τ will not be affected
by the change in X values.

I Reject H0 since ρ = 0.5680 > the approximate 5% upper-tailed test is 1.6449/
√

31 =
0.2954.

I Kendall’s τ for these data, based on Nc = 290.5 and Nd = 93.5, is τ = 0.5130. Reject
H0 since 0.5130 > w0.95 = 0.2056.

I The upper-tailed p-value is less than 0.001.

I If (Xi, Yi) are independent and identically distributed bivariate normal random vari-
ables, both ρ and τ have an asymptotic relative efficiency of 9/π2 = 0.912, relative
to the parametric test for independence that uses Pearson’s r as a test statistic.

Kendall’s partial correlation coefficient
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I Multivariate random variable (X1, X2, . . . , Xk).

I Correlation between X1 and X2, between X2 and X5.

I Those measures estimate the total influence of one variable on the other.

I Sometimes it is desirable to measure the correlation between two random variables,
under the condition that the indirect influence due to the other random variables is
somehow eliminated.

I An estimate of this “partial” correlation between X1 and X2, say, while the indirect
correlation due to X3, X4, . . . , Xn is denoted by r12.34...n when using the extension of
Pearson’s r, or by τ12.34...n when using Kendall’s τ .

I n = 3, Pearson’s partial correlation coefficient

r12.3 =
r12 − r13r23√

(1− r2
13)(1− r2

23)

I n = 3, Kendall’s τ partial correlation coefficient

τ12.3 =
τ12 − τ13τ23√

(1− τ 2
13)(1− τ 2

23)

5.5 Nonparametric linear regression methods

I This section is related closely to the previous section on rank correlation.

I Examine a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) on the bivariate random
variable (X, Y ).

I Correlation methods emphasize estimating the degree of dependence between X and
Y .

I Regression methods are used to inspect the relationship between X and Y more
closely.

I One important objective of regression methods is to predict a value of Y in the pair
(X,Y ) where only the value for X is known, on the basis of information that we can
obtain from previous observations (X1, Y1) through (Xn, Yn).

I If X represents the scores on a college entrance examination and Y represents the
grade point average of that student four years later, observations on past students
may help us to predict how well an incoming student will perform in the four years
of college.

I Of course, Y is still a random variable, so we cannot expect to determine Y solely
from knowing the associated value of X, but knowing X should help us make a better
estimate concerning Y .

I Regression methods also apply to controlled experiments where X may not be random
at all, but may be set by the experimenter at various values to determine its effect
on Y .
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I X may represent a measured amount of medication, such as medication intended to
lower blood pressure in a patient.

I Several different levels of X may be selected in an experiment to determine the effect
of the medication on Y , which is the patient’s response such as the patient’s reduction
in blood pressure.

Definition 5.5.1 The regression of Y on X is E(Y |X = x). The regression equation is
y = E(Y |X = x).

I If the regression equation is known, we can represent the regression on a graph by
plotting y as the ordinate and x as the abscissa.

I The regression equation is seldom known.

I It is estimated on the basis of past data.

I If we would like to predict Y when X = 6, we could use E(Y |X = 6) if we knew it;
otherwise, we could use the sample mean or the sample median of several observed
values of Y for which X is equal to 6 or close to 6.

I In this way point estimates and confidence intervals may be formed for E(Y |X = 6)
using the methods described in Sections 3.2 and 5.7.

I In order to have enough observations so that the regression of Y on X can be esti-
mated for each value of X, many observations are needed.

I A more difficult situation arises when we have only a few observations and wish to
estimate the regression of Y on X.

I This is what we will examine in this section.

I It is helpful to know something about the relationship between E(Y |X = x) and x
and to be able to use this information when there are only a few observations.

I First we will examine the case where E(Y |X = x) is a linear function of X; in
the next section we will consider a more general situation where E(Y |X = x) is a
monotonic function of X.

Definition 5.5.2 The regression of Y on X is linear regression if the regression equation
is of the form

E(Y |X = x) = α + βx

for some constant α, called the y-intercept, and β, called the slope.

I Usually the constants α and β are unknown and must be estimated from the data.

I A commonly accepted method for estimating α and β is called the least squares
method.
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Definition 5.5.3 The least squares method for choosing estimates a and b of α and β
in the regression equation y = α + βx is the method that minimizes the sum of squared
deviations

SS =
n∑

i=1

[Yi − (a + bXi)]
2

for the observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn).

I The idea behind the least squares method is that an estimate of the regression line
should be close to the observed values of X and Y because the true regression line is
probably close the observation.

I SS =
∑n

i=1 D2
i where Di = Yi − (a + bXi).

Nonparametric methods for linear regression
Data The data consist of a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from some
bivariate distribution.
Assumptions

1. The sample is a random sample. The methods of this section are valid if the values
of X are nonrandom quantities as long as the Y s are independent with identical
conditional distributions.

2. The regression of Y on X is linear. This implies an interval scale of measurement on
both X and Y .

Least squares estimates

y = a + bx

b =
Cov(X, Y )

S2
x

= ρ
Sy

Sx

=
n

∑n
i=1 XiYi − (

∑n
i=1 Xi) (

∑n
i=1 Yi)

n
∑n

i=1 X2
i − (

∑n
i=1 Xi)

2

a = Ȳ − bX̄

Testing the slope To test the hypothesis concerning the slope, add the following assump-
tion to Assumptions 1 and 2.

3. The residual Y − E(Y |X) is independent of X.

Spearman’s ρ may be adapted to test the following hypotheses concerning the slope. Let
β0 represent some specified number. For each pair (Xi, Yi) compute Yi − β0Xi = Ui. Then
find the Spearman rank correlation coefficient ρ on the pairs (Xi, Ui). Table A10 gives the
quantiles of ρ when H0 is true and there are no ties.

A. Two-tailed test
H0 : β = β0 v.s. H1 : β 6= β0

Reject H0 if ρ exceeds the 1−α/2 quantile, or less than the α/2 quantile as described
in the two-tailed test for Spearman’s ρ in Section 5.4.

B. Lower-tailed test
H0 : β = β0 v.s. H1 : β < β0

Reject H0 if ρ is less than the α quantile as described in the lower-tailed test for
Spearman’s ρ in Section 5.4.
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C. Upper-tailed test
H0 : β = β0 v.s. H1 : β > β0

Reject H0 if ρ exceeds the 1 − α quantile as described in the two-tailed test for
Spearman’s ρ in Section 5.4.

A confidence interval for the slope For each pair of points (Xi, Yi) and (Xj, Yj), such
that i < j and Xi 6= Xj, compute the two-point slope

Sij =
Yj − Yi

Xj −Xi

I N : The number of slopes computed.

I Order the slopes obtained and let

S(1) ≤ S(2) ≤ · · · ≤ S(N)

I Find w1−α/2 from Table A11.

I r = (N − w1−α/2)/2 and s = (N + w1−α/2)/2 + 1 = N + 1− r.

I 1− α CI for β:
(S(r), S(s))

Example 5.5.1 Let us again use the data from the previous section. The GMAT
score of each MBA graduates is denoted by Xi and that graduate’s GPA is de-
noted by Yi. The twelve observations (X, Y ) are The twelve observations (X, Y ) are
(710, 4.0), (610, 4.0), (640, 3.9), (580, 3.8), (545, 3.7), (560, 3.6), (610, 3.5), (530, 3.5), (560, 3.5), (540, 3.3), (570, 3.2),
and (560, 3.2). These are plotted in Figure 1.

Figure 5.4: A scatterplot of GMAT scores versus GPAs for 12 MBA graduates, and the
least squares regression line.
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I Least squares regression line:

y = 1.4287 + .003714x

12∑
i=1

Xi = 7015, X̄ = 584.58,
12∑
i=1

X2
i = 4129525

12∑
i=1

Yi = 43.2, Ȳ = 3.6,
12∑
i=1

XiYi = 25360.5

I Suppose that a national study reports that ”a 40 point increase in GMAT scores
results in at least 0.4 increase in GPAs.”

I Because slope is a change in Y divided by a change in X, this claim is equivalent to
saying the slope in the regression of GPA onto GMAT score is at least 0.4/40 = 0.01.

I To see if our sample of 12 graduates is consistent with the national study we test

H0 : β ≥ 0.01 v.s. H1 : β < 0.01

I Spearman’s ρ calculated between the GMAT scores X and the sample residuals U =
Y − (0.01)X

I Equation 5.4.4 is used to compute ρ = −0.7273 which is less than the 0.05 quantile
of the null distribution from Table A10.

I H0 is rejected at α = 0.05.

I p-value:
P (Z ≤ −0.7273

√
11) = P (Z ≤ −2.4121) = 0.008

I 95% CI for β:

. all of the two-point slopes

Sij =
Yj − Yi

Xj −Xi

are computed for pairs of points where Xi 6= Xj.

. See Figure 2 for a convenient spreadsheet-like layout for computing the Sijs.

. There are N = 62 pairs (Xi, Yi) and (Xi, Yi) with Xi 6= Xj, as seen in Figure 2.
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. Compute Sij =
Yj−Yi

Xj−Xi

. From Table A11 for n = 12, the 0.975 quantile of T is 28.

r =
1

2
(N − w1−α/2) = 17

s =
1

2
(N + w1−α/2) = N + 1− r = 46

. 95% CI for β is
(
S(17), S(46)

)
= (0.00000, 0.00800)

Figure 5.5: A spreadsheet arrangement of points (X,Y ), arranged by increasing Xs, to
find the value of Sij.

Theory

I To derive a and b such that SS in Equation 2 is minimized, add and subtract the
quantity (Ȳ − bX̄) inside the brackets to get

SS =
n∑

i=1

[(Yi − Ȳ )− b(Xi − X̄) + (Ȳ − bX̄ − a)]2

I Because of the algebraic identity

(c− d + e)2 = c2 + d2 + e2 − 2cd + 2ce− 2de

we can expand Equation 14 using c = Yi − Ȳ and so on, to get

SS =
n∑

i=1

(Yi − Ȳ )2 + b2

n∑
i=1

(Xi − X̄)2 +
n∑

i=1

(Ȳ − bX̄ − a)2

− 2b
n∑

i=1

(Yi − Ȳ )(Xi − X̄) + 2(Ȳ − bX̄ − a)
n∑

i=1

(Yi − Ȳ )

− 2b(Ȳ − bX̄ − a)
n∑

i=1

(Xi − X̄)
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I Because
∑

(Yi − Ȳ ) = 0 and
∑

(Xi − X̄) = 0 by the definition of X̄ and Ȳ the last
two summations equal zero in Equation 16. The third summation is smallest (zero)
when

a = Ȳ − bX̄

which gives the least squares solution for a.

I We are left with the problem of finding the value of b that minimizes the sum of the
second and fourth summations, that is, that minimizes

b2Sx − 2bSxy

where

Sx =
n∑

i=1

(Xi − X̄)2

and

Sxy =
n∑

i=1

(Xi − X̄)(Yi − Ȳ )

I By adding and subtracting S2
xy/Sx to Equation 18, the sum of the second and fourth

summations becomes

Sx

[
b2 − 2b

Sxy

Sx

+

(
Sxy

Sx

)2
]
− S2

xy

Sx

= Sx

(
b− Sxy

Sx

)2

− S2
xy

Sx

which is obviously a minimum when

b =
Sxy

Sx

in agreement with Equation 6.

I Note that this reduces the second and fourth summation to −S2
xy/Sx, so that the

minimum sum of squares is

SSmin =
n∑

i=1

(Yi − Ȳ )2 − S2
xy

Sx

= (1− r2)
n∑

i=1

(Yi − Ȳ )2

where r is the Pearson product moment correlation coefficient given by Equation
5.4.1.

I Also note that no assumptions regarding the distribution of (X,Y ) were made, so
the least squares method is distribution-free.

I In fact, the only purpose of assumptions 1 and 2 is to assure us that there is a
regression line somewhere to be estimated.

I Under assumption 3, the residuals

Yi − E[Yi|Xi] = Yi − (α + βXi)
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are independent of Xi, so the assumptions of Section 5.4 regarding Spearman’s ρ are
met.

I Note that the ranks of (Yi − α − βXi), i = 1 to n, are the same as the ranks of
Ui = (Yi − βXi), i = 1 to n, so we can test H0 : β = β0 without knowing α.

I Just as Spearman’s ρ is merely Pearson’s r computed on ranks, this test is the rank
analogue of computing r on the pairs (Xi, Ui) which is the usual parametric procedure
for testing the same null hypothesis, valid with the additional assumption that (X, Y )
has the bivariate normal distribution.

I Under that condition and the condition that the observations on X are equally spaced,
the A.R.E. of this procedure is (3/π)1/3 = 0.98 according to Stuart (1954, 1956); for
other distributions the A.R.E. is always greater than or equal to 0.95 (Lehmann,
1975).

I To see the relationship between the slopes Sij and Kendall’s τ , note that for any
hypothesized slope β0 we have

Sij =
Yi − Yj

Xi −Xj

=
Ui + β0Xi − Uj − β0Xj

Xi −Xj

= β0 +
Ui − Uj

Xi −Xj

where Ui = Yi − β0Xi − α is the residual of Yi from the hypothesized regression line
y = α + β0x.

I The slope Sij is greater than β0 or less than β0 according to whether the pair (Xi, Ui)
and (Xj, Uj) is concordant or discordant in the sense described in Section 5.4 in the
discussion of Kendall’s τ .

I If we use the number of Sij less than β0 as our test statistic for determining whether
to accept H0 : β = β0, we accept β0 as long as the number of discordant pairs Nd is
not too small or too large.

I Because Nd is related to the number of concordant pairs Nc by

Nc + Nd = N

where N is the total number of pairs, and because the quantiles of Nc−Nd are given
in Table A11 if we have the true slope and Assumption 3 of independence, we can say
Nd is too small if Nc −Nd is greater than ω1−α/2 from Table A11. This is equivalent
to saying Nd is less than r = (N − ω1−α/2)/2.

I In other words, β0 is acceptable if β0 is greater than at least r of the Sij, or β0 > S(r).

I The same argument gives an upper bound for β0, and the confidence interval is
obtained.

I This method, due to Theil (1950), was modified to handle ties by Sen (1968a). ¤
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5.6 Methods for monotonic regression

I In Section 5.5 nonparametric methods for linear regression were presented. These
may be used in situations such as in Example 5.5.1, where the assumption of linear
regression seems reasonable.

I In other situations it may be unreasonable to assume that the regression function is
a straight line, but it may be reasonable to assume that E(Y |X) increases (at least,
it does not decrease) as X increases.

I In such a case we say the regression is monotonically increasing.

I If E(Y |X) becomes smaller as X increases the regression is monotonically decreasing.

Nonparametric methods for monotonic regression

Data The data consist of a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from some
bivariate distribution.

Assumptions

1. The sample is a random sample.

2. The regression of Y on X is monotonic.

An estimate of E(Y |X) at a Point To estimate the regression of Y on X at a
particular value of X = x0:

1. Obtain the ranks R(Xi) of the Xs and R(Yi) of the Y s. Use average ranks in
case of ties.

2. Find the least squares regression line on the ranks.

y = a2 + b2x (1)

where

b2 =

∑n
i=1 R(Xi)R(Yi)− n(n + 1)2/4∑n

i=1[R(Xi)]2 − n(n + 1)2/4
(2)

and
a2 = (1− b2)(n + 1)/2. (3)

3. Obtain a rank R(x0) for x0 as follows:

(a) If x0 equals one of the observed Xis, let R(x0) equal the rank of that Xi.

(b) If x0 lies between two adjacent values Xi and Xj where Xi < x0 < Xj,
interpolate between their respective ranks to get R(x0):

R(x0) = R(Xi) +
x0 −Xi

Xj −Xi

[R(Xj)−R(Xi)]. (4)

This “rank” will not necessarily be an integer.

(c) If x0 is less than the smallest observed X or greater than the largest observed
X, do not attempt to extrapolate. Information on the regression of Y on
X is available only within the observed range of X.
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4. Substitute R(x0) for x in Equation 1 to get an estimated rank R(y0) for the
corresponding value of E(Y |X = x0).

R(y0) = a2 + b2R(x0) (5)

5. Convert R(y0) into Ê(Y |X = x0), an estimate of E(Y |X = x0), by referring to
the observed Yis as follows.

(a) If R(y0) equals the rank of one of the observations Yi, let the estimate
Ê(Y |X = x0) equal that observation Yi.

(b) If R(y0) lies between the ranks of two adjacent values of Y , say Yi and Yj

where Yi < Yj, so that R(Yi) < R(y0) < R(Yj), interpolate between Yi and
Yj.

Ê(Y |X = x0) = Yi +
R(y0)−R(Yi)

R(Yj)−R(Yi)
(Yj − Yi) (6)

(c) If R(y0) is greater than the largest observed rank of Y , let Ê(Y |X = x0)
equal the largest observed Y . If R(y0) is less than the smallest observed
rank of Y , let Ê(Y |X = x0) equal the smallest observed Y .

An Estimate of the Regression of Y on X To obtain the entire regression curve con-
sisting of all points that can be obtained in the manner just described, the following
procedure may be used.

1. For each Xi from X(1) to X(n) use the previously described procedure to estimate
E(Y |X).

2. For each rank of Y , R(Yi), find the estimated rank of Xi, R̂(Xi) from Equation
1.

R̂(Xi) = [R(Yi)− a2]/b2, i = 1, 2, . . . , n (7)

3. Convert each R̂(Xi) to an estimate X̂i in the manner of the preceding step 5.
More specifically:

(a) If R̂(Xi) equals the rank of some observation Xj, let X̂i equal that observed
value.

(b) If R̂(Xi) falls between the ranks of two adjacent observations Xj and Xk,
where Xj < Xk, then use interpolation,

X̂i = Xj +
R̂(Xi)−R(Xj)

R(Xk)−R(Xj)
(Xk −Xj) (8)

to get X̂i.

(c) If R̂(Xi) is less than the smallest observed rank of X or greater than the
largest observed rank, no estimate X̂i is found.

4. Plot each of the points found in steps 1 and 3 on graph paper. That is, plot each
(Xi, Ŷi) and each (X̂i, Yi). All of these points should be monotonic, increasing
if b2 > 0 and decreasing if b2 < 0.

5. Connect the adjacent points in step 4 with straight lines. This series of connected
line segments is the estimate of the regression of Y on X.
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Example 5.6.1 Seventeen jars of fresh grape juice were obtained to study how long it
took for the grape juice to turn into wine as a function of how much sugar was added to
the juice. Various amounts of sugar, ranging from none to about 10 pounds, were added to
the jars, and each day the jars were checked to see if the transition to wine was complete.
At the end of 30 days the experiment was terminated, with three jars still unfermented. An
estimate of the regression curve of Y (number of days till fermentation) v.s. X (pounds
of sugar) is desired.

I (Xi, Yi), R(Xi), R(Yi), and the values R̂(Yi), Ŷi = Ê(Y |Xi), R̂(Xi), and X̂i computed
from the preceding steps 1, 2, and 3 are given in Fig. 5.6.

Figure 5.6: Calculations for finding the monotonic regression curve estimate.

I Least squares line on ranks are computed from Equations 2 and 3:

y = 17.4037− 0.9337x

I The observations are plotted in Fig. 5.7. The regression curve, consisting of line
segments joining successive values of (X, Ŷi) and (X̂i, Yi), is also plotted in Fig. 5.7.

I An estimate Ê(Y |X = x0) is obtained easily from Fig. 5.7 by finding the ordinate
that corresponds to the abscissa x0.

I It is interesting to note how a set of observations, with a regression curve that is
obviously nonlinear, is converted to ranks that have a regression curve that seems to
be linear. The ranks are plotted in Fig. 5.8 along with Equation 9.

Theory

I The procedures for monotonic regression are based on the fact that if two variables
have a monotonic relationship, their ranks will have a linear relationship.

I A scattering of the observations around the monotonic regression line should corre-
spond to a scattering of the ranks around their linear regression line.
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Figure 5.7: Number of days till fermentation (y) versus pounds of sugar (x), and the
estimated monotonic regression curve.

Figure 5.8: R(Yi) versus R(Xi) and the least squares regression line.
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I The ranks serve as transformed variables, where the transformation seeks to convert
the monotonic regression function to a linear regression function.

I Interval estimates of E(Y |X) can be found using the bootstrap method described in
Section 2.2. ¤

5.7 The one-sample or matched-pairs case

I The rank test of this section deals with the single random sample and the random
sample of matched pairs that is reduced to a single sample by considering differences.

I A matched pair (Xi, Yi) is actually a single observation on a bivariate random vari-
able.

I The sign test of Section 3.4 analyzed matched airs of data by reducing each pair to a
plus, a minus, or a tie and applying the binomial test to the resultant single sample.

I The test of this section also reduces the matched pair (Xi, Yi) to a single observation
by considering the difference

Di = Yi −Xi, for i = 1, 2, . . . , n (1)

I The analysis is then performed on the Dis as a sample of single observations.

I Whereas the sign test merely noted whether Di was positive, negative, or zero, the
test of this section notes the sizes of the positive Dis relative to the negative Dis.

I The model of this section resembles the model used in the sign test. Also, the
hypotheses resemble the hypotheses of the sign test.

I The important difference between the sign test and this test is an additional assump-
tion of symmetry of the distribution of differences.

I Before we introduce the test, we should clarify the meaning of the adjective symmetric
as it applies to a distribution and discuss the influence of symmetry on the scale of
measurement

I Symmetry is easy to define if the distribution is discrete. A discrete distribution is
symmetric if the left half of the graph of the probability function is the mirror image
of the right half.

I For example, the binomial distribution is symmetric if p = 1/2 (see Fig. 5.9) and the
discrete uniform distribution is always symmetric (see Fig. 5.10).

I The dotted lines in the figures represent the lines about which the distributions are
symmetric.

I For other than discrete distributions we are not able to draw a graph of the probability
function. Therefore a more abstract definition of symmetry is required, such as the
following.
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Definition 5.7.1 The distribution of a random variable X is symmetric about a line
x = c, for some constant c, if the probability of X ≤ c − x equals the probability of
X ≥ c + x for each possible value of x.

I In Fig. 5.9, c = 2 and the definition is easily verified for all real numbers x. In Fig.
5.10, c = 3.5.

I Even though we may not know the exact distribution of a random variable, we are
often able to say, “It is reasonable to assume that the distribution is symmetric.”

I Such an assumption is not as strong as the assumption of a normal distribution; while
all normal distributions are symmetric, not all symmetric distributions are normal.

Figure 5.9: Symmetry in a binomial distribution.

Figure 5.10: Symmetry in a discrete uniform distribution.

I If a distribution is symmetric, the mean (if it exists) coincides with the median
because both are located exactly in the middle of the distribution, at the line of
symmetry.

I One consequence of adding the assumption of symmetry to the model is that any
inferences concerning the median are also valid statements for the mean.

I A second consequence of adding the assumption of symmetry to the model is that
the required scale of measurement is changed from ordinal to interval.

I With an ordinal scale of measurement, two observations of the random variable need
only to be distinguished on the basis of which is larger and which is smaller.
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I It is not necessary to know which one is farthest from the median, such as when the
two observations are on opposite sides of the median.

I If the assumption of symmetry is a meaningful one, the distance from the median is
a meaningful measurement and, therefore, the distance between two observations is
a meaningful measurement.

I As a result, the scale of measurement is more than just ordinal, it is interval.

I A test presented by Wilcoxon (1945) is designed to test whether a particular sample
came from a population with a specified mean or median.

I It may also be used in situations where observations are paired, such as “before” and
“after” observations on each of several subjects, to see if the second random variable
in the pair has the same mean as the first.

I Note that in a symmetric distribution the mean equals the median, so the two terms
can be used interchangeably.

The Wilcoxon signed ranks test

Data The data consist of n′ observations (x1, y1), (x2, y2), . . . , (xn′ , yn′) on the respec-
tive bivariate random variables (X1, Y1), (X2, Y2), . . . , (Xn′ , Yn′). Find the n′ differ-
ences Di = Yi −Xi. (In the one-sample problem, the Ds are the observations in the
sample, as illustrated in Example 2.) The absolute differences (without regard to
sign)

|Di| = |Yi −Xi|, i = 1, 2, n′ (2)

are then computed for each of the n′ pairs (Xi − Yi).

Omit from further consideration all pairs with a difference of zero (i.e., where Xi = Yi,
or Di = 0). Let the number of pairs remaining be denoted by n, n ≤ n′. Ranks from
1 to n are assigned to these n pairs according to the relative size of the absolute
difference, as follows. The rank 1 is given to the pair (Xi, Yi) with the smallest
absolute difference |Di|; the rank 2 is given to the pair with the second smallest
absolute difference; and so on, with the rank n being assigned to the pair with the
largest absolute difference.

If several pairs have absolute differences that are equal to each other, assign to each of
these several pairs the average of the ranks that would have otherwise been assigned
[i.e., if the ranks 3, 4, 5, and 6 belong to four pairs, but we do not know which rank
to assign to which pair because all four absolute differences are exactly equal to each
other, assign the average rank 1

4
(3 + 4 + 5 + 6) = 4.5 to each of the four pairs.]

Assumptions

1. The distribution of each Di is symmetric.

2. The Dis are mutually independent.

3. The Dis all have the same mean.

4. The measurement scale of the Dis is at least interval.

Test statistic
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. Let Ri, called the signed rank, be defined for each pair (Xi, Yi) as follows.

Ri = the rank assigned to (Xi, Yi) if Di = Yi −Xi is positive

(i.e., Yi > Xi)

Ri = the negative of the rank assigned to (Xi, Yi) if Di is negative

(i.e., Yi < Xi)

. The test statistic is the sum of the positive signed ranks

T+ =
∑

(Ri where Di is positive) (3)

Null distribution

. Lower quantiles of the exact distribution of T+ when there are no ties and n ≤ 50
are given in Table A12, under the null hypothesis that the Dis have mean 0.

. Upper quantiles are found from the relation

wp =
n(n + 1)

2
− w1−p (4)

. If there are many ties, or if n > 50, the normal approximation should be used.

. The normal approximation uses the sum of all of the signed ranks, with their +
or − signs, and the statistic

T =

∑n
i=1 Ri√∑n
i=1 R2

i

(5)

. In case there are no ties, it simplifies to

T =

∑n
i=1 Ri√

n(n + 1)(2n + 1)/6
(6)

with the aid of Lemma 1.4.2.

. The null distribution of T is approximately standard normal, as in Table Al.

Hypotheses

A. Two-tailed test:

H0 : E(D) = 0 (i.e., E(Yi) = E(Xi))

H1 : E(D) 6= 0

lower-tailed p-value = P

(
Z ≤

∑n
i=1 Ri + 1√∑n

i=1 R2
i

)
(7)

upper-tailed p-value = P

(
Z ≥

∑n
i=1 Ri − 1√∑n

i=1 R2
i

)
(8)
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B. Lower-tailed test:

H0 : E(D) ≥ 0 (i.e., E(Yi) ≥ E(Xi))

H1 : E(D) < 0

Reject H0 at the level of or if T+ (or T ) is less than its a quantile from Table
A12 (for T+) or from Table A1 (for T ).

The lower-tailed p-value is given approximately by

p-value = P

(
Z ≤

∑n
i=1 Ri + 1√∑n

i=1 R2
i

)
.

C. Upper-tailed test:

H0 : E(D) ≤ 0 (i.e., E(Yi) ≤ E(Xi))

H1 : E(D) > 0

Reject H0 at the level of or if T+ (or T ) is greater than its a quantile from Table
A12 (for T+) or from Table A1 (for T ).

The upper-tailed p-value is given approximately by

p-value = P

(
Z ≥

∑n
i=1 Ri − 1√∑n

i=1 R2
i

)
.

Example 5.7.1 Twelve sets of identical twins were given psychological tests to measure in
some sense the amount of aggressiveness in each person’s personality. We are interested in
comparing the twins with each other to see if the firstborn twin tends to be more aggressive
than the other.

I The results are as follows, where the higher score indicates more aggressiveness.

Twin set
1 2 3 4 5 6 7 8 9 10 11 12

Firstborn Xi 86 71 77 68 91 72 77 91 70 71 88 87
Second twin Yi 88 77 76 64 96 72 65 90 65 80 81 72
Di = Yi −Xi +2 +6 −1 −4 +5 0 −12 −1 −5 +9 −7 −15
Rank of Di 3 7 1.5 4 5.5 10 1.5 5.5 9 8 11
Ri 3 7 −1.5 −4 5.5 −10 −1.5 −5.5 9 −8 −11

I Lower-tailed test:

H0: The firstborn twin does not tend to be more aggressive than the other
(E(Xi) ≤ E(Yi))

H1: The firstborn twin tends to be more aggressive than the other (E(Xi) >
E(Yi))

I
T =

∑
Ri√∑
R2

i

=
−17√
505

= −0.7565
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I The critical region of size α = 0.05 corresponds to values of T less than −1.6449
(from Table A1). Therefore H0 is readily accepted.

I The p-value, from Equation 7, is 0.238.

I If we had used T+ and Table A12 we would have obtained T+ = 24.5 and a critical
region corresponding to values of T+ less than 14.

I So the same conclusion would have been reached and a similar p-value would have
been obtained by interpolation between W0.20 and W0.30 in Table A12.

Example 5.7.2 Thirty observations on a random variable Y are obtained in order to test
the hypothesis that E(Y ) is no longer than 30 (hypotheses set C).

H0 : E(Y ) ≤ 30 v.s. H1 : E(Y ) > 30

I The observations, the difference Yi −m, and the ranks of the pairs are as follows.

I The 0.05 quantile from Table A12 is 152 so the 0.95 quantile is 465 − 152 = 313.
Therefore the critical region of size 50.05 corresponds to values of the test statistic
greater than 313.

I The test statistic is defined by Equation 3. In this case T+ equals the sum of the
ranks associated with the positive Di.

T+ = 418

The large value of T+ results in rejection of H0. We conclude that the mean of Y is
greater than 30.

I The approximate p-value is given by Equation 8.

P

(
Z ≥

∑
Ri − 1√

n(n + 1)(2n + 1)/6

)
= P

(
Z ≥ 371− 1√

9455

)

= P (Z ≥ 3.8051)
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I Table A1 shows that the p-value is smaller than 0.0001.

Theory

I The model states that all of the differences Di share a common median, say d0.50,
which equals zero when H0 is true.

I By the definition of symmetry, the probability of each Di being negative is the same
as its probability of being positive, which equals 0.5 for continuous distributions, or
for discrete distributions where values of Di equal to zero are discarded.

I The purpose of these considerations is to find the distribution of the test statistic T+

when H0 is true.

I First, we will consider the null hypothesis of the two-tailed test. The resulting dis-
tribution applies equally well in the one-tailed tests.

I Consider n chips numbered from 1 to n, corresponding to the n ranks if there are no
ties.

I Suppose each chip has its number written on one side and the negative of its number
on the other side (like 6 and −6).

I Each chip is tossed into the air so that it is equally likely to land with either side
showing, corresponding to the ranks of (Xi, Yi), which are equally likely to correspond
to a positive Di, in which case the signed rank Ri equals the rank, or a negative Di,
in which case Ri is a negative rank.

I Let T+ be the sum of the positive numbers showing after all n chips are tossed,
corresponding to the definition of T+ in Equation 3.

I The probability distribution of T+ is the same in the game with the chips as it is
when H0 is true, but the game with the chips is easier to imagine.

I The sample space in the game with the chips consists of points such as (1, 2, 3,−4,−5, 6, 7, . . . , n),
simply a reordering of the Ri associated with a set of data like in Example 1.

I The tosses are independent of each other, so each of the 2n points has probability
(1/2)n.

I The test statistic T+ equals the sum of the positive numbers in the sample point.

I Therefore the probability that T+ equals any number x is found by counting the
points whose positive numbers add to x, then multiplying that count by the proba-
bility (1/2)n.

I For example, if n = 8, then T+ can equal 0 one way (all the positive numbers landed
face down), and so P (T = 0) = (1/2)8.

I T+ = 1 only one way, T+ = 2 only one way, but T+ = 3 two ways, points
(−1,−2, 3,−4,−5,−6,−7,−8) and (1, 2,−3,−4,−5,−6,−7,−8). Also, T+ = 4 two
ways. That is,

P (T+ = 0) = (1/2)8 = 1/256 P (T+ ≤ 0) = 0.0039
P (T+ = 1) = 1/256 P (T+ ≤ 1) = 0.0078
P (T+ = 2) = 1/256 P (T+ ≤ 2) = 0.0117
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P (T+ = 3) = 2/256 P (T+ ≤ 3) = 0.0195
P (T+ = 4) = 2/256 P (T+ ≤ 4) = 0.0273
etc. etc.

I The distribution function of T+ is tabulated in Owen (1962) for n ≤ 20 and in Harter
and Owen (1970) for n ≤ 50.

I A table of selected quantiles for n ≤ 100 is given by McCornack (1965). That table
is more extensive than we need here, so the more useful quantiles were selected and
are given in Table A12.

I The use of Table A12 will generally result in a slightly conservative test, because the
probability of being less than the p quantile may be less than p.

I For example, if n = 8, as in the preceding paragraph, the 0.025 quantile of T+ is
given in Table A12 as 4, while the actual size of the critical region corresponding to
values of T+ less than 4 is 0.0195.

I Further results on the exact distribution of T+ are given by Claypool (1970) and
Chow and Hodges (1975).

I For the one-tailed tests, the probability of getting a point in the critical region is a
maximum when the median difference is 0, so this is the situation to be considered.
Thus the preceding distribution of T+ is equally valid when H0 is true in the one-
tailed tests.

I To find the conditional distribution of T+ when there are ties, only the initial step
in the discussion is changed. That is, the numbers on the chips must agree with the
ranks and average ranks assigned to the pairs (Xi, Yi) in the particular set of data
under consideration. Call these ranks and average ranks a1, a2, . . . , an.

I In Example 1 we have a1 = 1.5, a2 = 1.5, a3 = 3, and so on. For this set of numbers
we can find the distribution T+. Because there are 11 numbers in Example 1, there
are 211 = 2048 points in the sample space. The smallest 5% of these, about 102
points, constitute the critical region. This is a large number of points to tabulate by
hand, so the normal approximation is used.

I To use the normal approximation, let S equal the sum of all the Ri. Then, to apply
the central limit theorem from Section 1.5, we need the mean and variance of S when
H0 is true.

I Note that under H0,

P (Ri = ai) = 1/2 and P (Ri = −ai) = 1/2

so that

E(Ri) = ai(
1

2
) + (−ai)(

1

2
) = a2

i .

I Since the Ris are independent of each other (the tosses of the chips are independent),
we can apply Theorems 1.4.1 and 1.4.3 to get

E(S) =
n∑

i=1

E(Ri) = 0
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and

V ar(S) =
n∑

i=1

V ar(Ri) =
n∑

i=1

a2
i .

I But since a2
i always equals R2

i (the sign always becomes +), we can say

V ar(S) =
n∑

i=1

R2
i

and apply the central limit theorem to

T =

∑n
i=1 Ri√∑n
i=1 R2

i

and use the normal distribution with a continuity correction as an approximation
whenever exact tables are not available.

I Justification for the treatment of ties is given by Vorlickova (1970) and Conover
(1973a). ¤

Confidence interval for the median difference

Data The data consist of n observations (x1, y1), (x2, y2), . . . , (xn, yn) on the bivariate
random variables (X1, Y1), (X2, Y2), . . . , (Xn, Yn), respectively. Compute the differ-
ence

Di = yi −Xi

for each pair and arrange them in order from the smallest (the most negative) to the
largest (the most positive), denoted as follows.

D(1) ≤ D(2) ≤ · · · ≤ D(n−1) ≤ D(n)

Assumptions

1. The distribution of each Di is symmetric.

2. The Dis are mutually independent.

3. The Dis all have the same median.

4. The measurement scale of the Dis is at least interval.

Method

. To obtain a 1− α confidence interval, obtain the α/2 quantile wα/2 from Table
A12.

. Then consider the n(n + 1)/2 possible averages (Di + Dj)/2 for all i and j,
including i = j, which is the average of Di with itself, giving just Di.

. The wα/2th largest of these averages and the wα/2th smallest of these averages
constitute the upper and lower bounds for the 1− α confidence interval.

. It is not necessary to compute all n(n+1)/2 averages; only the averages near the
largest and the smallest need to be computed to obtain a confidence interval.
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Example 5.7.3 (Example 1 (continued)) The 12 values of Di, arranged in order, are

−15,−12,−7,−5,−4,−1,−1, 0, 2, 5, 6, 9

Find a 95% CI for the median difference

P (−6.5 ≤ d0.50 ≤ 2.5) ≥ 0.95

H0 : d0.50 = m

P (L ≤ d0.50 ≤ U) ≥ 1− α

5.8 Several related samples

I In Section 5.2 we presented the Kruskal-Wallis rank test for several independent
samples, which is an extension of the Mann-Whitney test for two independent samples
introduced in Section 5.1.

I In this section we consider the problem of analyzing several related samples, whichis
an extension of the problem of matched pairs, or two related samples, examined in
the previous section.

I First we will present the Friedman test, which is an extension of the sign test of
Sections 3.4 and 3.5. Then we will present the Quade test, whichis an extensionof
the Wilcoxon signed ranks test of the previous section.

I The Friedman test is the better-known test of the two and requires fewer assumptions,
but it suffers from a lack of power when there are only three treatments, just as the
sign test has less power than the Wilcoxon signed ranks test when there are only two
treatments.

I When there are four or five treatments the Friedman test has about the same power
as the Quade test, but when the number of treatments is six or more the Friedman
test tends to have more power.

I See Iman et al. (1984) and Hora and Iman (1988) for power and A.R.E. comparisons.

I The problem of several related samples arises in an experiment that is designed to
detect differences in k possibly different treatments, k ≥ 2.

I The observations are arranged in blocks, which are groups of k experimental units
similar to each other in some important respects, such as k puppies that are litter-
mates and therefore may tend to respond to a particular stimulus more similarly than
would randomly selected puppies from various litters.

I The k experimental units within a block are matched randomly with the k treatments
being scrutinized, so that each treatment is administered once and only once within
each block.

I In this way the treatments may be compared with each other without an excess of
unwanted effects confusing the results of the experiment.

I The total number of blocks used is denoted by b, b > 1.
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I The experimental arrangement described here is usually called a randomized complete
block design.

I This design may be compared with the incomplete block design described in the next
section, in which the blocks do not contain enough experimental units to enable all
the treatments to be applied in all the blocks, and so each treatment appears in some
blocks but not in others.

I Examples of randomized complete block designs are as follows.

1. Psychology. Five litters of mice, with four mice per litter, are used to examine
the relationship between environment and aggression. Each litter is considered
to be a block. Four different environments are desi-m ed. One mouse from each
litter is placed in each environment, so that the four mice from each litter are
in four different environments. After a suitable length of time, the mice are
regrouped with their littermates and are ranked a cordiigto degree of aggres-
siveness.

2. Home economics. Six different types of bread dough are compared to see which
bakes the fastest by forming three loaves with each type of dough. Three differ-
ent ovens are used, and each oven bakes the six different types of bread at the
same time. The ovens are the blocks and the doughs are the treatments.

3. Environmental engineering. One experimental unit may form a block if the
different treatments may be applied to the same unit without leaving residual
effects. Seven different men are used in a study of the effect of color schemes
on work efficiency. Each man is considered to be a block and spends some time
in each of three rooms, each with its own type of color scheme. While in the
room, each man performs a work task and is measured for work efficiency. The
three rooms are the treatments.

I By now the reader should have some idea of the nature of a randomized complete
block design.

I The usual parametric method of testing the null hypothesis of no treatment differ-
ences is called the two-way analysis of variance.

I The following nonparametric method depends only on the ranks of the observations
within each block.

I Therefore it may be considered a two-way analysis of variance on ranks.

I This test is named after its inventor, the noted economist Milton Friedman.

The Friedman Test

Data The data consist of b mutually independent k-variate random variables (Xi1, Xi2, . . . , Xik),
called b blocks, i = 1, 2, . . . , b. The random variable Xij is in block i and is associated
with treatment j. The b blocks are arranged as follows.

Treatment
Block 1 2 . . . k

1 X11 X12 . . . X1k

2 X21 X22 . . . X2k

3 X31 X32 . . . X3k

. . . . . . . . . . . . . . .
b Xb1 Xb2 . . . Xbk
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Let R(Xij) be the rank, from 1 to k, assigned to Xij within block (row) i. That
is, for block i the random variables Xi1, Xi2, . . . , Xik are compared with each other
and the rank 1 is assigned to the smallest observed value, the rank 2 to the second
smallest, and so on to the rank k, which is assigned to the largest observation in
block i. Ranks are assigned in all of the b blocks. Use average ranks in case of ties.

Then sum the ranks for each treatment to obtain Rj where:

Rj =
b∑

i=1

R(Xij) (5.8.1)

for j = 1, 2, . . . , k.

Assumptions

1. The b k-variate random variables are mutually independent. (The results within
one block do not influence the results within the other blocks.)

2. Within each block the observations may be ranked according to some criterion
of interest.

Test statistic

. Friedman suggested using the statistic

T1 =
12

bk(k + 1)
∑k

j=1

(
Rj − b(k+1)

2

)2 (5.8.2)

. If there are ties present an adjustment needs to be made. Let A1 be the sum of
the squares of the ranks and average ranks.

A1 =
b∑

i=1

k∑
j=1

[R(Xij)]
2 (5.8.3)

. Also compute the “correction factor” C1 given by

C1 = bk(k + 1)2/4 (5.8.4)

. Then the statistic T1, adjusted for the presence of ties, becomes

T1 =
(k − 1)

[∑k
j=1 R2

j − bC1

]

A1 − C1

=
(k − 1)

∑k
j=1

(
Rj − b(k+1)

2

)2

A1 − C1

(5.8.5)

. Current research indicates the preferred statistic, because of its more accurate
approximate distribution, is the two-way analysis of variance statistic computed
on the ranks R(Xij), which simplifies to the following function of T1 given above.

T2 =
(b− 1)T1

b(k − 1)− T1

(5.8.6)

. See Iman and Davenport (1980) for more details on the closeness of these ap-
proximations.
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Null distribution

. The exact distribution of T1 (or T2) is difficult to find and so an approximation
is usually used.

. The approximate distribution of T1 is the chi-squared distribution with k − 1
degrees of freedom.

. However, this approximation is sometimes rather poor, so it is recommended
to use T2 instead of T1, which has the approximate quantiles given by the F
distribution (Table A22) with k1 = k− 1 and k2 = (b− 1)(k− 1), when the null
hypothesis is true.

Hypotheses

H0 : Each ranking of the random variables within a block is equally likely (i.e.,
the treatments have identical effects)

H1 : At least one of the treatments tends to yield larger observed values than at
least one other treatment

. Reject H0 at the approximate level a if T2 exceeds the 1 − α quantile of the F
distribution given by Table A22 for k1 = k − 1 and k2 = (b− l)(k − 1).

. This approximation is fairly good and improves as b gets larger. The approxi-
mate p-value may be estimated from Table A22.

Multiple Comparisons

. The following method for comparing individual treatments may be used only if
the Friedman test results in rejection of the null hypothesis.

. Treatments i and j are considered different if the following inequality is satisfied.

|Rj −Ri| > t1−α/2

[
2(bA1 −

∑k
j=1 R2

j )

(b− 1)(k − 1)

] 1
2

(5.8.7)

where Ri, Rj and A1 are given previously and where t1−α/2 is the 1−α/2 quantile
of the f distribution given by Table A21 with (b− 1)(k− 1) degrees of freedom.

. The value for a is the same one used in the Friedman test.

. Alternatively, Equation 7 can be expressed as a function of T1

|Rj −Ri| > t1−α/2

[
(A1 − C1)2b

(b− 1)(k − 1)

(
1− T1

b(k − 1)

)] 1
2

(5.8.8)

. If there are no ties A, in Equation 7 simplifies to

A1 = bk(k + 1)(2k + 1)/6

and (A1 − C1) in Equation 8 simplifies to

A1 − C1 = bk(k + 1)(k − 1)/12

Computer Assistance The Friedman test appears in Minitab, S-Plus, SAS, and
StatXact.
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Example 5.8.1 Twelve homeowners are randomly selected to participate in an experi-
ment with a plant nursery. Each homeowner was asked to select four fairly identical areas
in his yard and to plant four different types of grasses, one in each area. At the end of
a specified length of time each homeowner was asked to rank the grass types in order of
preference, weighing important criteria such expense, maintenance and upkeep required,
beauty, hardiness, wife’s preference, and so on.

I The rank 1 was assigned to the last preferred grass and the rank 4 to the favorite.

I The null hypothesis was that there is no difference in preferences of the grass types,
and the alternative was that some grass types tend to be preferred over others.

I Each of the 12 blocks consists of four fairly identical plots of land, each receiving
care of approximately the same degree of skill because the four plots are presumably
cared for by the same homeowner.

I The results of the experiment are as follows.

Grass
Homeowner 1 2 3 4

1 4 3 2 1
2 4 2 3 1
3 3 1.5 1.5 4
4 3 1 2 4
5 4 2 1 3
6 2 2 2 4
7 1 3 2 4
8 2 4 1 3
9 3.5 1 2 3.5
10 4 1 3 2
11 4 2 3 1
12 3.5 1 2 3.5
Rj 38 23.5 24.5 34

I A1 = 356.5

I C1 = 12(4)(25)
4

= 300 by Eq. 4.

I By Eq. 5:

T1 =
3[(38)2 + (23.5)2 + (24.5)2 + (34)2 − 12(300)]

356.5− 300
= 8.097

I T2 = 11(8.097)
12(3)−8.097

= 3.19 by Eq. 6.

The Quade Test

Data
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. Find the ranks within blocks R(Xij) as described in the previous test. The next
step again uses the original observations Xij.

. Ranks are assigned to the blocks themselves according to the size of the sample
range in each block.

. The sample range within block i is the difference between the largest and the
smallest observations within that block.

Range in blocki = maximum{Xij} −minimum{Xij} (5.8.9)

. There are b sample ranges, one for each block. Assign rank 1 to the block with
the smallest range, rank 2 to the second smallest, and so on to the block with
the largest range, which gets rank b.

. Use average ranks in case of ties. Let Q1, Q2, . . . , Qb be the ranks assigned to
blocks 1, 2, . . . , b, respectively.

. Finally, the block rank Qi is multiplied by the difference between the rank within
block i, R(Xij), and the average rank within blocks, (k+1)/2 to get the product
Sij, where

Sij = Qi

[
R(Xij − k + 1

2
)

]
(5.8.10)

is a statistic that represents the relative size of each observation within the block,
adjusted to reflect the relative significance of the block in which it appears.

. Let Sj denote the sum for each treatment:

Sj =
b∑

i=1

Sij (5.8.11)

for j = 1, 2, . . . , k.

Assumptions The first two assumptions are the same as the two assumptions of the
previous test. A third assumption is needed because comparisons are made between
blocks.

3. The sample range may be determined within each block so that the blocks may
be ranked.

Test statistic

. First calculate the term

A2 =
b∑

i=1

k∑
j=1

S2
ij

where Sij is given by (5.8.10). This is called the “total sum of squares.”

. If there are no ties, A2 simplifies to

A2 = b(b + 1)(2b + 1)k(k + 1)(k − 1)/72

where Sij is given by (5.8.11). This is called the “treatment sum of squares.”

. The test statistic is

T3 =
(b− 1)B

A2 −B
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If A2 = B, consider the point to be in the critical region and calculate the
p-value as (l/k!)b−l.

. Note that T3 is the two-way analysis of variance test statistic computed on the
scores Sij given by (5.8.10).

Null distribution

. The exact distribution of T3 is difficult to find, so the F distribution, whose
quantiles are given in Table A22, is used as an approximation, with k1 = k − 1
and k2 = (b− 1)(k − 1) as before in the Friedman test.

Hypotheses The hypotheses are the same as in the Friedman test.

. Reject the null hypothesis at the level α if T3 exceeds the 1− α quantile of the
F distribution as given in Table A22 with k1 = k − 1 and k2 = (b− 1)(k − 1).

. Actually, the F distribution only approximates the exact distribution of T3, but
exact tables are not available at this time.

. As b becomes large, the F approximation comes closer to being exact.

Multiple comparisons

. Only if the preceding procedure results in rejection of the null hypothesis are
multiple comparisons made.

. Treatments i and j are considered different if the inequality

|Si − Sj| > t1−α/2

[
2b(A2 −B)

(b− 1)(k − 1)

]1/2

is satisfied, where Si, Sj, A2, and B are given previously, and where t1−α/2 is
obtained from Table A21 with (b− 1)(k − 1) degrees of freedom.

. This comparison is made for all pairs of treatments, using the same a used in
the Quade test.

Example 5.8.2 Seven stores are selected for a marketing survey. In each store five dif-
ferent brands of a new type of hand lotion are placed side by side. At the end of the week,
the number of bottles of lotion sold for each brand is tabulated, with the following results.

Numbers of customers
Store A B C D E

1 5(2) 4(1) 7(3) 10(4) 12(5)
2 1(2.5) 3(5) 1(2.5) 0(1) 2(4)
3 16(2) 12(1) 22(3.5) 22(3.5) 35(5)
4 5(4.5) 4(2.5) 3(1) 5(4.5) 4(2.5)
5 10(3.5) 9(2) 7(1) 13(5) 10(3.5)
6 19(2) 18(1) 28(3) 37(4) 58(5)
7 10(5) 7(2.5) 6(1) 8(4) 7(2.5)

I The observations are ranked from 1 to 5 within each store, with average ranks assigned
when there are ties. These ranks R(Xij) appear in parentheses.
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I Next, the sample range within each store is computed by subtracting the smallest
observation from the largest. In store 1 the sample range is 12-4 = 8.

I These sample ranges are listed next, along with the ranks Qi of the sample ranges,
and the products

Sij = Qi[R(Xij)− (k + 1)/2]

Sij = Qi[R(Xij)− 3]
Store Sample Rank Brand

Number Range Qi A B C D E
1 8 5 −5 −10 0 +5 +10
2 3 2 −1 +4 −1 −4 +2
3 23 6 −6 −12 +3 +3 +12
4 2 1 +1.5 −0.5 −2 +1.5 −0.5
5 6 4 +2 −4 −8 +8 +2
6 40 7 −7 −14 0 +7 +14
7 4 3 +6 −1.5 −6 +3 −1.5

Sj = −9.5 −38 −14 +23.5 +38

I From Equation 12,

A2 =
7∑

i=1

5∑
j=1

S2
ij = (−5)2 + (−10)2 + · · · = 1366.5

which is slightly less than the more easily obtained value 1400.

I Equation 14 yields

B =
1

7

5∑
j=1

S2
j =

1

7
[(−9.5)2 + (−38)2 + · · · ] = 532.4

which gives, when substituted into Equation 15, the test statistic

T3 =
6(532.4)

1366.5− 532.4
= 3.83

I This value of T3 is greater than 2.78, the 0.95 quantile of the F distribution with
k1 = 4 and k2 = 24, obtained from Table A22; therefore the null hypothesis is rejected
at α = 0.05.

I In fact, perusal of Table A22 shows the p-value to be slightly less than 0.025.

I Some brands seem to be preferred over others by the store customers.

I Because the null hypothesis is rejected, multiple comparisons are made.

I From Equation 16 two treatments are considered different if the difference between
their sums |Si − Sj| exceeds

t1−α/2

[
2b(A2 −B)

(b− 1)(k − 1)

]1/2

= 2.064

[
14(834.1)

24

]1/2

= 45.53
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where t1−α/2 = t0.975 is obtained from Table A21 for (b − l)(k − 1) = 24 degrees of
freedom.

I Thus the brands that may be considered different from each other are brands A and
E, brands B and D, brands B and E, and brands C and E.

I Note that a summary of the multiple comparisons procedure may be presented by
listing the treatments in order of increasing average scores, and underlining the groups
of treatments that are not significantly different with a single underline, as follows.

B C A D E

Theory

I The exact distribution of T1, T2 and T3 is found under the assumption that each
ranking within a block is equally likely, which is the null hypothesis.

I There are k! possible arrangements of ranks R(Xij) within a block and, therefore,
(k!)b possible arrangements of ranks in the entire array of b blocks.

I The preceding statements imply that each of these (k!)b arrangements is equally likely
under the null hypothesis.

I Therefore the probability distributions of T1, T2 and T3 may be found for a given
number of samples k and blocks b, merely by listing all possible arrangements of
ranks and by computing T1, T2, or T3 for each arrangement.

I For example, if k = 2 and b = 3, there are (2!)3 = 8 equally likely arrangements of
the ranks, which are listed next along with their associated values of T1, and T2. We
will consider T3 later.

Arrangements
Blocks 1 2 3 4 5 6 7 8

1 1, 2 1, 2 1, 2 2, 1 2, 1 2, 1 1, 2 2, 1
2 1, 2 1, 2 2, 1 1, 2 2, 1 1, 2 2, 1 2, 1
3 1, 2 2, 1 1, 2 1, 2 1, 2 2, 1 2, 1 2, 1

Probability 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Value of T2 ∞ 1

4
1
4

1
4

1
4

1
4

1
4

1
4

Value of T1 3 1
3

1
3

1
3

1
3

1
3

1
3

3

I Therefore the probability distribution of T1 is given by P (T1 = 1
3
) = 3/4 and P (T1 =

3) = 1/4 under H0. The probability distribution of T2 is given by P (T2 = 1
4
) = 3/4

and P (T2 = ∞) = 1/4.

I To examine the behavior of T3 under the null hypothesis we again start out with the
eight equally likely arrangements of ranks R(Xij), as just given.

I The average rank 1.5 is subtracted from each rank and, for the moment, we consider
the case where the block ranks are given by Ql = 1, Q2 = 2, Q3 = 3. The resulting
arrays of Sij are given here.

Arrangements
Blocks 1 2 3 4
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1 −0.5, +0.5 −0.5, +0.5 −0.5, +0.5 +0.5, −0.5
2 −1, +1 −1, +1 +1, −1 −1, +1
3 −1.5, +1.5 +1.5, −1.5 −1.5, +1.5 −1.5, +1.5

Conditional
Probability 1/8 1/8 1/8 1/8
Value of T3 12 0 4

19
1 3

13

Arrangements
Blocks 5 6 7 8

1 +0.5, −0.5 +0.5, −0.5 −0.5, +0.5 +0.5, −0.5
2 +1, −1 −1, +1 +1, −1 +1, −1
3 −1.5, +1.5 +1.5, −1.5 +1.5, −1.5 +1.5, −1.5

Conditional
Probability 1/8 1/8 1/8 1/8
Value of T3 0 4

19
1 3

13
12

I The probability for each value of T3 is:

1

8
· P (Q1 = 1, Q2 = 2, Q3 = 3)

because 1/8 represents the conditional probability for that value of T3, given the
assignment of ranks Q1, Q2, and Q3.

I Suppose a different assignment of ranks Q1, Q2, Q3 is considered, say Q1 = 2, Q2 = 1,
Q3 = 3. Then the reader may easily verify, by listing the eight arrangements of values
of Sij as we just did, that again we observe the same eight values of T3, and each of
these eight values has probability

1

8
· P (Q1 = 2, Q2 = 1, Q3 = 3)

I By considering all six (3!) permutations of ranks for Q1, Q2, and Q3, we arrive at
the total probability for each value of T3: 1/8. Thus, for purposes of calculating the
null distribution of T3, only the one case given here, Qi = i, for i = 1, 2, 3, must be
considered.

I The probability distribution of T3 is obtained by collecting identical values of T3 to
get

P (T3 = 0) = 1/4 P (T3 =
4

19
) = 1/4

P (T3 = 1
3

13
) = 1/4 P (T3 = 12) = 1/4

I The approximation of the distributions of T1, T2 and T3 that use the F or chi-squared
distributions are justified using the central limit theorem.

I Some of the details are beyond the scope of this book, so the entire development of
the asymptotic distributions is omitted.

I The reader is referred to Quade (1972,1979) or Lawler (1978) for T3, Iman and Dav-
enport (1979) for T2, and Friedman (1937) for T1. ¤
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The Page Test for Ordered Alternatives

I In Section 5.4 we presented the Jonckheere-Terpstra test of k independent samples
when the alternative of interest specifies an ordering of the treatment effects.

I It is equivalent to computing Kendall’s τ between the observations and the ordering
of the treatments specified in the alternative hypothesis.

I We mentioned that Spearman’s ρ could have been used just as well.

I In the randomized complete block design, Spearman’s ρ is used to test for k related
samples against the alternative hypothesis of a specified ordering of the treatment
effects.

I The correlation between the Friedman within-block rankings and the ordering of the
treatments as specified by H1 is used in a test introduced by Page (1963).

I Because of the many ties inherent in the data, Page uses a simpler statistic, which is
a monotonic function of Spearman’s ρ if there are no ties within blocks, namely

T4 =
k∑

j=1

jRj = R1 + 2R2 + · · ·+ kRK

where Rj is the treatment rank sum in the Friedman test, arranged in increasing
order of the treatment effects as specified by H1.

I Although exact tables are given by Page (1963), we will consider only the large sample
approximation, and reject H0 when

T5 =
T4 − bk(k + 1)2/4

[b(k3 − k)2/144(k − 1)]1/2

exceeds the 1−α quantile from a standard normal distribution, as given in Table Al,
for an upper-tailed test of size α.

I StatXact finds exact p-values for Page’s test.

Example 5.8.3 Health researchers suspect that regular exercise has a tendency to lower
the pulse rate of a resting individual. To test this theory eight healthy volunteers, who
did not exercise on a regular basis, were enrolled in a supervised exercise program. their
resting pulse rate was measured at the beginning of the program, and again after each
month for four months.

H0 : µ1 = µ2 = µ3 = µ4 = µ5

H1 : µ1 ≤ µ2 ≤ µ3 ≤ µ4 ≤ µ5

where µ1 is the mean at the end of the fourth month, µ5 is the initial mean, and there is
at least one strict inequality in H1.

I The observed pulse rates are as follows, along with their Friedman within- blocks
ranks.
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Person Initial Month 1 Month 2 Month 3 Month 4
1 82(4) 84(5) 77(2) 76(1) 79(3)
2 80(4.5) 80(4.5) 76(1.5) 76(1.5) 78(3)
3 75(3) 78(5) 77(4) 74(2) 72(1)
4 65(1.5) 72(5) 68(4) 65(1.5) 66(3)
5 77(5) 74(2) 72(1) 75(3.5) 75(3.5)
6 68(4) 69(5) 65(2) 66(3) 64(1)
7 70(3.5) 74(5) 68(1.5) 70(3.5) 68(1.5)
8 77(4) 76(3) 78(5) 72(2) 70(1)

R5 = 29.5 R4 = 34.5 R3 = 21 R2 = 18 R1 = 17

I Notice that R1 is the rank sum predicted by H1 to be the smallest, R2 is predicted
to be the second smallest, and so on.

T4 = 17 + 2(18) + 3(21) + 4(34.5) + 5(29.5) = 401.5

T5 =
401.5− 8(5)(36)/4

[8(53 − 5)2/144(4)
]1/2 =

41.5√
200

= 2.9345

I A comparison of T5 with Table A1 shows p = 0.002 and H0 is easily rejected at
α = 0.05. Page’s tables, exact only if there are no ties, show the same p-value.

5.9 The balanced incomplete block design

The Durbin Test

Data We will use the following notation.

t =the number of treatments to be examined.

k =the number of experimental units per block (k < t).

b =the total number of blocks.

r =the number of times each treatment appears (r < b).

λ =the number of blocks in which the ith treatment and the jth

treatment appear together.

(λ is the same for all pairs of treatments.)

. The data are arrayed in a balanced incomplete block design, just defined. Let
Xij represent the result of treatment j in the ith block, if treatment j appears
in the ith block.

. Rank the Xij within each block by assigning the rank 1 to the smallest observa-
tion in block i, the rank 2 to the second smallest, and so on to the rank k, which
is assigned to the largest observation in block i, there being only k observations
within each block.

. Let R(Xij) denote the rank of Xij where Xij exists.

. Compute the sum of the ranks assigned to the r observed values under the jth
treatment and denote this sum by Rj.

. Then Rj may be written as

Rj =
b∑

i−1

R(Xij)
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where only r values of R(Xij) exist under treatment j; therefore only r ranks
are added to obtain Rj.

. If the observations are nonnumeric but such that they are amenable to ordering
and ranking within blocks according to some criterion of interest, the ranking
of each observation is noted and the values Rj for j = 1, 2, . . . , t are computed
as described.

. If the ranks may be assigned in several different ways because of several obser-
vations being equal to each other, we recommend assigning the average of the
disputed ranks to each of the tied observations.

. This procedure changes the null distribution of the test statistic, but the effect
is negligible if the number of ties is not excessive.

Assumptions

1. The blocks are mutually independent of each other.

2. Within each block the observations have an ordinal scale of measurement. Ties
cause no problem.

Test statistic Durbin (1951) suggested using the test statistic

T1 =
12(t− 1)

rt(k − 1)(k + 1)

t∑
j=1

(
Rj − r(k + 1)

2

)2

. If there are ties within blocks, average ranks are used, and an adjustment needs
to be made.

. Let A be the sum of the squares of the ranks and average ranks used.

A =
b∑

i=1

t∑
j=1

[R(Xij)]
2

. Also compute the “correction factor” C given by

C =
bk(k + 1)2

4

. Then the statistic T1, corrected for ties, becomes

T1 =
(t− 1)

∑t
j=1

(
Rj − r(k+1)

2

)2

A− C
=

(t− 1)
[∑t

j=1 R2
j − rC

]

A− C

. An alternative procedure, equivalent to this one, is to use the ordinary analysis
of variance procedure on the ranks and average ranks.

. This results in the following statistic T2, which is merely a function of T1. Cur-
rent research indicates the approximate quantiles for T2 are slightly more accu-
rate than the approximate quantiles for T1, making T2 the preferred statistic.

T2 =
T1/(t− 1)

(b(k − 1)− T1)/(bk − b− t + 1)

Null Distribution
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. The exact distribution of T1 (or T2) is difficult to find and so an approximation
is usually used.

. The approximate distribution of T1 is the chi-squared distribution with t − 1
degrees of freedom. This approximation tends to be very conservative.

. The approximate distribution of T2 is the F distribution (Table A22) with k1 =
t− 1 and k2 = bk − b− t + 1. This approximation tends to give inflated values
of α, but closer than the values obtained from using T1.

Hypotheses

H0 : Each ranking of the random variables within each block is

equally likely (i.e., the treatments have identical effects)

H1 : At least one treatment tends to yield larger observed

values than at least one other treatment

. Reject H0 at the approximate level α if T2 exceeds the (1 − α) quantile of the
F distribution given by Table A22 with k1 = t− 1 and k2 = bk − b− f + 1.

Multiple Comparisons

. If the null hypothesis is rejected, then multiple comparisons between pairs of
treatments may be made as follows.

. Consider treatments i and j to have different means if their rank sums Ri and
Rj satisfy the inequality

|Ri −Rj| > t1−α/2

[
(A− C)2r

bk − b− t + 1

(
1− T1

b(k − 1)

)]1/2

. If there are no ties, then

|Ri −Rj| > t1−α/2

[
rk(k + 1)

6(bk − b− t + 1)
(b(k − 1)− T1)

]1/2

Example 5.9.1 Suppose an ice cream manufacturer wants to test the taste preferences
of several people for her seven varieties of ice cream. She asks each person to taste three
varieties and to rank them 1, 2, and 3, with rank 1 being assigned to the favorite variety.
in order to design the experiment so that each variety is compared with every other variety
an equal number of times, a Youden square layout given by Federer (1963) is used. Seven
people are each given three varieties to taste, and the resulting ranks as follows.

Variety
Person 1 2 3 4 5 6 7

1 2 3 1
2 3 1 2
3 2 1 3
4 1 2 3
5 3 1 2
6 3 1 2
7 3 1 2

Rj = 8 9 4 3 5 6 7
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I t = 7 = total number of varieties.

I k = 3 = number of varieties compared at one time.

I b = 7 = number of people (blocks)

I r = 3 = number of times each variety is tested.

I λ = 1 =number of times each variety is compared with each other variety.

I The critical region of approximate size α = 0.05 corresponds to all values of T2 greater
than 3.58, which is the 0.95 quantile of the F distribution with k1 = t − 1 = 6 and
k2 = bk − b− t + 1 = 8, found in Table A22.

I First T1 is found using Equation 2 because there are no ties.

T1 =
12(t− 1)

rt(k − 1)(k + 1)

t∑
j=1

[Rj − r(k + 1)

2
]2

=
(12)(6)

(3)(7)(2)(4)
[(8− 6)2 + (9− 6)2 + · · ·+ (7− 6)2]

= 12

I Then T2 is found using Equation 6.

T2 =
T1/(t− 1)

(b(k − 1)− T1)/(bk − b− t + 1)

=
12/6

(14− 12)/8
= 8

The test statistic T2 is in the critical region, so the null hypothesis is rejected.

I The probability of getting perfect agreement, such as we have in this example, is the
p-value, which is exactly

P (T2 ≥ 8) = P (T2 = 8) =
7!

67
= 0.018

Theory

I The theoretical development of the Durbin test is very similar to that of the Friedman
test. That is, the exact distribution of the Durbin test statistic is found under the
assumption that each arrangement of the k ranks within a block is equally likely
because of no differences between treatments.

I There are k! equally likely ways of arranging the ranks within each block, and there
are b blocks. Therefore each arrangement of ranks over the entire array of b blocks is
equally likely and has probability l/(k!)b associated with it, because there are (k!)b

different arrays possible.

I The Durbin test statistic is calculated for each array and then the distribution func-
tion is determined, just as it was for the Friedman test statistic in the previous
section.
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I The exact distribution is not practical to find in most cases, so the distribution of the
Durbin test statistic T1 is approximated by the chi-squared distribution with t − 1
degrees of freedom, if the number of repetitions r of each treatment is large. The
justification for this approximation is as follows.

I If the number r of repetitions of each treatment is large, the sum of the ranks,
Rj, under the jth treatment is approximately normal, according to the central limit
theorem. Therefore the random variable

Rj − E(Rj)√
Var(Rj)

has approximately a standard normal distribution.

I As in the previous section, if the Rj were independent, the statistic

T ′ =
t∑

j=1

[Rj − E(Rj)]
2

Var(Rj)

could be considered as the sum of t independent, approximately chi-squared, random
variables and the distribution of T ′ then could be approximated with a chi-squared
distribution with t degrees of freedom. But the Rj are not independent.

I Their sum is fixed as
l∑

j=1

Rj =
bk(k + 1)

2

so that the knowledge of t−1 of the Rj enables us to state the value of the remaining
Ri.

I Durbin (1951) shows that multiplication of T ′ by (t− 1)/t results in a statistic that
is approximately chi-squared with t− 1 degrees of freedom, with the form

T1 =
t− 1

t
T ′ =

t− 1

t

t∑
j=1

[Rj − E(Rj)]
2

Var(Rj)

I The sum of ranks Rj is the sum of independent random variables R(Xij).

Rj =
b∑

i=1

R(Xij)

Each R(Xij), where it exists, is a randomly selected integer from 1 to k.

I Therefore the mean and variance of R(Xij) are given by Theorem 1.4.5 as

E[R(Xij)] =
k + 1

2

and

Var[R(Xij)] =
(k + 1)(k − 1)

12
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I Then the mean and variance of the Ri are easily found to be

E(Rj) =
b∑

i=1

e[R(Xij)] =
r(k + 1)

2

and

Var(Rj) =
b∑

i=1

Var[R(Xij)] =
r(k + 1)(k − 1)

12

5.10 Tests with A.R.E. of 1 or more

Example 5.10.1 The same example that was used to illustrate the Kruskal-Wallis test
in Sec. 5.2 and the median test in Sec. 4.3 will also be used here for ease in comparing
these methods. Four methods of growing corn resulted in the following observations and
their ranks.

Example 5.10.2 Use the same data given in Example 5.7.1 to test

H0 : The firstborn twin does not tend to be more aggressive than the other
H1 : The firstborn twin tends to be more aggressive than the second twin

The data are as follows.

Set Xi Yi Di |Di| Ri Ai

1 86 88 +2 3 3 0.3186
2 71 77 +6 7 7 0.8134
3 77 76 −1 1.5 −1.5 −0.1560
4 68 64 −4 4 −4 −0.4316
5 91 96 +5 5.5 5.5 0.6098
6 72 72 0
7 77 65 −12 10 −10 −1.3852
8 91 90 −1 1.5 −1.5 −0.1560
9 70 65 −5 5.5 −5.5 −0.6098
10 71 80 +9 9 9 1.1503
11 88 81 −7 8 −8 −0.9661
12 87 72 −15 11 −11 −1.7279

T2 =

∑n
i=1 Ai√∑n

i=1 A2
i

=
−2.5405√

8.9027
= −0.8514

Example 5.10.3 Refer to Example 5.3.1 for details of this example and a comparison
with the squared ranks test.

H0 : Both machines have the same variability
H1 : The new machine has a smaller variance

T3 =
6.2280− 3.2669

1.2629
= 2.3447
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5.11 Fisher’s method of randomization

Example 5.11.1 Suppose that a random sample yielded Xis of 0, 1, 1, 0, and −2 and an
independent random sample of Yis gave 6, 7, 7, 4,−3, 9, and 14. The null hypothesis

H0 : E(X) = E(Y )
H1 : E(X) 6= E(Y )

with the randomization test for two independent samples.

I n = 5 and m = 7, so there are
(
12
5

)
= 792 ways of forming a subset containing 5 of

the 12 numbers.

I 792 · 0.025 = 19.8 ≈ 20 groups.

I

T1 =
5∑

i=1

Xi = 0 + 1 + 1 + 0− 2 = 0

p-value =
2(11)

792
= 0.028

Example 5.11.2 Suppose that eight matched pairs resulted in the following differences:
−7,−3, 0, +5, +1,−10. The zero is discarded, and we have D1 = −16, D2 = −4, D3 =
−7, D4 = −3, D5 = +5, D6 = +1, D7 = −10.

H0 : d0.50 = 0 v.s. H1 : d0.50 6= 0

w0.025 = 4

w0.975 =
7∑

i=1

|Di| − w0.025 = 42

T2 =
∑

positiveDi = 5 + 1 = 6

p-value =
2(8)

27
=

16

128
= 0.125

5.12 Summary

1. Stem-and-leaf method (Tukey, 1977): A convenient method of arranging observations
in increasing order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

2. I # of (Xi, Yj) = mn

I If k = # of Xi − Yj > 0, then T = k + n(n + 1)/2.

I T = n(n + 1)/2 if no Y s are smaller than any of Xs.

I The borderline value of T , where H0 is barely accepted, is given in Table A7 as
wα/2.

I By subtracting n(n + 1)/2 from wα/2, we find the borderline value of k.

I Want to find the value of d that we can add to the Y s to achieve barely this
borderline value of k.



5.12. SUMMARY 193

I If we add the maximum of all the differences Xi − Yj to each of the Y s, then
none of the Xs will be greater than the adjusted Y s.

I Add the kth largest difference Xi − Yj to each of Y s, we achieve the borderline
case: fewer than k pairs satisfy Xi > Yj + d, and at least k pairs satisfy Xi >
Yj + d. In this way we obtain the largest value of d that results in acceptance
of H0 : E(X) = E(Y ) + d.

I By reversing the procedure and working from the lower end, we obtain the
smallest value of d that results in acceptance of the same hypothesis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

3. I Each arrangement of the ranks 1 to N into groups of sizes n1, n2, . . . , nk, which
is equally likely, and occurs with probability n1!n2! · · ·nk!/N !.

I The value of T is computed for each arrangement.

I Example: n1 = 2, n2 = 1, and n3 = 1

Sample
Arrangement 1 2 3 T

1 1, 2 3 4 2.7
2 1, 2 4 3 2.7
3 1, 3 2 4 1.8
4 1, 3 4 2 1.8
5 1, 4 2 3 0.3
6 1, 4 3 2 0.3
7 2, 3 1 4 2.7
8 2, 3 4 1 2.7
9 2, 4 1 3 1.8
10 2, 4 3 1 1.8
11 3, 4 1 2 2.7
12 3, 4 2 1 2.7

I Distribution function:

x f(x) = P (T = x) F (x) = P (T ≤ x)
0.3 2/12 = 1/6 1/6
1.8 4/12 = 1/3 1/2
2.7 6/12 = 1/2 1.0

I Large sample approximation for T

I Ri−E(Ri)√
Var(Ri)

≈ N(0, 1) where

E(Ri) = ni(N+1)
2

and

Var(Ri) = ni(N+1)(N−ni)
12

I T ′ =
∑k

i=1
(Ri−[ni(N+1)/2])2

ni(N+1)(N−ni)/12
≈ χ2

k

I Ri are dependent since
∑

Ri = N(N + 1)/2.

I Kruskal (1952) showed that if the ith term in T ′ is multiplied by (N − ni)/N ,
then

T =
k∑

i=1

(Ri − [ni(N + 1)/2])2

ni(N + 1)N/12
≈ χ2

k−1

which is a rearrangement of the terms in Eq. 5.
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I For two samples the Kruskal-Wallis test is equivalent to the Mann-Whitney test.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

4. I Whenever two random variables X and Y are identically distributed except for
having different means µ1 and µ2, X−µ1 and Y −µ2 not only have zero means,
but they are identically distributed also.

I This means U = |X−µ1| has the same distribution as V = |Y −µ2|. Both have
the mean zero.

I Every assignment of ranks of the Us is equally likely.

I The ranks of Us and V s are the same the ranks of U2s and V 2s.

I Use the squared (score) ranks and not the ranks themselves.

a(R) = R2

I T =
∑

a(Ri) where Ri denote the ranks of Ui in the combined sample.

I To use the large sample normal approximation for T it is necessary to find the
mean and variance of T when H0 is true.

I E(T ) =
∑n

i=1 E(a(Ri)) = n
∑N

j=1
1
N

a(j) = nā

I Var(T ) =
∑n

i=1 Var[a(Ri)] +
∑

i 6=j Cov[a(Ri), a(Rj)]

I Var[a(Ri)] = 1
N

∑N
k=1[a(k)− ā]2 = A

I Cov[a(Ri), a(Rj)] =
∑

k 6=l
[a(k)−ā][a(l)−ā]

N(N−1)

I Cov[a(Ri), a(Rj)] =
∑N

k=1[a(k)− ā]
∑N

l=1[a(l)− ā] 1
N(N−1)

−∑N
k=1[a(k)− ā]2 1

N(N−1)

I Cov[a(Ri), a(Rj)] = − A
N−1

I Var(T ) = nA− n(n− 1) A
N−1

= n(N−n)
N−1

A

I Var(T ) = nm
(N−1)N

∑N
i=1[a(i)− ā]2

I Interest in the case a(R) = R2

I The denominator of Eq. 4 is what the square root of Eq. 24 by using

N∑
i=1

[a(i)− ā]2 =
N∑

i=1

[a(i)]2 −N(ā)2

I The extension of the two-sample case to the k-sample case is completely anal-
ogous to the extension of the two-sample Mann-Whitney test to the k-sample
Kruskal-Wallis test.

I S1, . . . , Sk: Sums of scores for each k samples.

I E(Si) = niā and Var(Si) = ni(N−ni)
(N−1)N

∑N
i=1[a(i)− ā]2

I T2 =
∑k

i=1
[Si−E(Si)]

2

Var(Si)
=

∑k
i=1

(Si−niā)2

niD2 where D2 = 1
N−1

{∑N
i=1[a(i)]2 −N(ā)2

}

I T2 = 1
D2

[∑k
j=1

S2
j

nj
−N(ā)2

]

I If the populations of X and Y have the normal distributions the appropriate
statistic to use is the ratio of the two sample variances:

F =
1

n−1

∑n
i=1(Xi − X̄)2

1
m−1

∑m
j=1(Yj − Ȳ )2
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I The F test is very sensitive to the assumption of normality.

I P{Fm,n ≤ x} = P{Fn,m ≥ 1/x}
I The F test is not very safe test to use unless one is sure that the populations

are normal.

I If the squared rank test is used instead of the F test when the populations are
normal the A.R.E. is only 15/(2π2) = 0.76, 1.08 for the double exponential
distribution, 1.00 for the uniform distribution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

5. Pearson’s product moment correlation coefficient:

r =

∑
(Xi − X̄)(Yi − Ȳ )[∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
]1/2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

6. Pearson’s r: Pearson’s r is a measure of the strength of the linear association between
X and Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7. Spearman’s Rho:

ρ =

∑
R(Xi)R(Yi)− n((n + 1)/2)2

(
∑

R(Xi)2 − n((n + 1)/2)2)1/2 (
∑

R(Yi)2 − n((n + 1)/2)2)1/2

If there are no ties:

ρ = 1− 6
∑

[R(Xi)−R(Yi)]
2

n(n2 − 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

8. Spearman rank correlation coefficient The Spearman rank correlation coefficient is
often used as a test statistic to test for independence between two random variables.
The test statistic is

ρ =

∑
R(Xi)R(Yi)− n((n + 1)/2)2

(
∑

R(Xi)2 − n((n + 1)/2)2)1/2 (
∑

R(Yi)2 − n((n + 1)/2)2)1/2

If there are no ties:

ρ = 1− 6
∑

[R(Xi)−R(Yi)]
2

n(n2 − 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

9. Null distribution:

I Exact quantiles of ρ when X and Y are independent are given in Table A10 for
n ≤ 30 and no ties.

I For larger n, or many ties: (percentile)

wp ≈ zp√
n− 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
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10. Spearman’s ρ Spearman’s ρ is insensitive to some types of dependence, so it is better
to be specific as to what type of dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

11. Two-tailed test

H0: The Xi and Yi are mutually independent
H1: Either (a) there is a tendency for the larger values of X to be paired with

the larger values of Y , or (b) there is a tendency for the smaller values
of X to be paired with the larger values of Y

Reject H0 at the level α if |ρ| is greater than its 1−α/2 quantile obtained from Table
A10 or Eq. 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

12. Lower-tailed test for negative correlation

H0: The Xi and Yi are mutually independent
H1: There is a tendency for the smaller values of X to be paired with the

larger values of Y , and vice versa

Reject H0 at the level α if ρ < −w1−α where w1−α is found either in Table A10 or
from Eq. 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

13. Upper-tailed test for positive correlation

H0: The Xi and Yi are mutually independent
H1: There is a tendency for the larger values of X and Y to be paired together

Reject H0 at the level α if ρ > w1−α where w1−α is found either in Table A10 or from
Eq. 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

14. Kendall’s τ : No ties

τ =
Nc −Nd

n(n− 1)/2

where Nc and Nd are the number of concordant and discordant pairs of observations,
respectively.
Ties

τ =
Nc −Nd

Nc + Nd

I If
Yj−Yi

Xj−Xi
> 0, add 1 to Nc (concordant).

I If
Yj−Yi

Xj−Xi
< 0, add 1 to Nd (discordant).

I If
Yj−Yi

Xj−Xi
= 0, add 1/2 to Nc and Nd.

I Xi = Xj, no comparison is made.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

15. Measure of correlation (Kendall, 1938) In case of no ties: τ = Nc−Nd

n(n−1)/2
. τ = 1 if all

pairs are concordant. τ = −1 if all pairs are discordant.
Ties

τ =
Nc −Nd

Nc + Nd

If
Yj−Yi

Xj−Xi
> 0, add 1 to Nc (concordant). If

Yj−Yi

Xj−Xi
< 0, add 1 to Nd (discordant). If

Yj−Yi

Xj−Xi
= 0, add 1/2 to Nc and Nd. Xi = Xj, no comparison is made. . . . . . . . . . . . 149
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16. Kendall’s τ test: Kendall’s τ may also be used as a test statistic to test the null
hypothesis of independence between X and Y .

T =

{
Nc −Nd in case of no ties or few ties,
Nc−Nd

Nc+Nd
in case of many ties.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

17. Two-tailed test

H0: X and Y are independent
H1: Pairs of observations either tend to be concordant, or tend to be discor-

dant.

Reject H0 at the level α if T (or τ) is less than its α/2 quantile or greater than its
1− α/2 quantile in the null distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

18. Lower-tailed test

H0: X and Y are independent
H1: Pairs of observations trend to be discordant.

Reject H0 at the level α if T (or τ) is less than its α quantile in the null distribution.
150

19. Upper-tailed test

H0: X and Y are independent
H1: Pairs of observations trend to be concordant.

Reject H0 at the level α if T (or τ) is less than its 1−α quantile in the null distribution.
151

20. Daniel’s test for trend: Tests of trend based on Spearman’s ρ or Kendall’s τ are
generally considered to be more powerful than the Cox and Stuart test (Sec. 3.5).
152

21. Jonckheere-Terpstra test: Either Spearman’s ρ or Kendall’s τ can be used in the case
of several independent samples to test the null hypothesis that all of the samples came
from the same distribution.

H0 : F1(x) = F2(x) = · · · = Fk(x)

against the ordered alternative that the distributions differ in a specified direction

H1 : F1(x) ≥ F2(x) ≥ · · · ≥ Fk(x)

with at least one inequality. The alternative is sometimes written as

H1(x) : E(Y1) ≤ E(Y2) ≤ · · · ≤ E(Yk).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
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22. Kendall’s partial correlation coefficient: n = 3, Pearson’s partial correlation coeffi-
cient

r12.3 =
r12 − r13r23√

(1− r2
13)(1− r2

23)

n = 3, Kendall’s τ partial correlation coefficient

τ12.3 =
τ12 − τ13τ23√

(1− τ 2
13)(1− τ 2

23)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

23. The regression of Y on X is E(Y |X = x). The regression equation is y = E(Y |X =
x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

24. The regression of Y on X is linear regression if the regression equation is of the form

E(Y |X = x) = α + βx

for some constant α, called the y-intercept, and β, called the slope. . . . . . . . . . . . . .155

25. The least squares method for choosing estimates a and b of α and β in the regression
equation y = α + βx is the method that minimizes the sum of squared deviations

SS =
n∑

i=1

[Yi − (a + bXi)]
2

for the observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

26. Least squares estimates:

y = a + bx

b =
Cov(X, Y )

S2
x

= ρ
Sy

Sx

=
n

∑n
i=1 XiYi − (

∑n
i=1 Xi) (

∑n
i=1 Yi)

n
∑n

i=1 X2
i − (

∑n
i=1 Xi)

2

a = Ȳ − bX̄

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

27. Testing the slope: Let β0 represent some specified number. For each pair (Xi, Yi)
compute Yi − β0Xi = Ui. Then find the Spearman rank correlation coefficient ρ on
the pairs (Xi, Ui). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

28. A confidence interval for the slope: For each pair of points (Xi, Yi) and (Xj, Yj), such
that i < j and Xi 6= Xj, compute the two-point slope

Sij =
Yj − Yi

Xj −Xi

I N : The number of slopes computed.

I Order the slopes obtained and let

S(1) ≤ S(2) ≤ · · · ≤ S(N)

I Find w1−α/2 from Table A11.
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I r = (N − w1−α/2)/2 and s = (N + w1−α/2)/2 + 1 = N + 1− r.

I 1− α CI for β:
(S(r), S(s))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

29. Minimum sum of squares:

SSmin =
n∑

i=1

(Yi − Ȳ )2 − S2
xy

Sx

= (1− r2)
n∑

i=1

(Yi − Ȳ )2

where r is the Pearson product moment correlation coefficient. . . . . . . . . . . . . . . . . . 160

30. Relationship between the slopes Sij and Kendall’s τ : Sij =
Yi−Yj

Xi−Xj
= β0 +

Ui−Uj

Xi−Xj
. The

slope Sij is greater than β0 or less than β0 according to whether the pair (Xi, Ui) and
(Xj, Uj) is concordant or discordant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

31. Monotonically increasing (decreasing): If E(Y |X) becomes smaller as X increases
the regression is monotonically increasing (decreasing). . . . . . . . . . . . . . . . . . . . . . . . . . 162

32. Symmetric distribution: The distribution of a random variable X is symmetric about
a line x = c, for some constant c, if the probability of X ≤ c−x equals the probability
of X ≥ c + x for each possible value of x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

33. If a distribution is symmetric, the mean (if it exists) coincides with the median
because both are located exactly in the middle of the distribution, at the line of
symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

34. Signed rank:

Ri = the rank assigned to (Xi, Yi) if Di = Yi −Xi is positive

(i.e., Yi > Xi)

Ri = the negative of the rank assigned to (Xi, Yi) if Di is negative

(i.e., Yi < Xi)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

35. Statistics of Wilcoxon signed rank test: T+ =
∑

(Ri where Di is positive) . . . . . . 169

36. The distribution of a random variable X is symmetric about a line x = c, for some
constant c, if the probability of X ≤ c − x equals the probability of X ≥ c + x for
each possible value of x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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Appendix A
PREFACE

I The author decided to write a book on nonparametric statistics over thirty years ago.

I He wanted a book that could be used as a textbook in one-semester course on non-
parametric statistics.

I But he also wanted a book that could be used as a quick reference to the most useful
nonparametric methods.

I The second edition was published twenty years ago.

I This third edition adds many new exercises and problems, some new worked-out
examples, and many updated references to related material.

I On the one hand, users of this book would find computer instructions very useful,
but on the other hand, computer packages change more rapidly than this book does,
and computer tips become outdated quickly.

I Computer software packages with extensive nonparametric programs:

. Minitab-http://www.minitab.com

. PASS or NCSS-http://www.ncss.com

. Resampling Stats-http://www.statistics.com

. SAS-http://www.sas.com

. SPSS-http://www.spss.com

. STATA-http://www.stata.com

. STATISTICA-http://www.statsoft.com

. StatMost-http://www.dataxiom.com

. StatXact-http://www.cytel.com

. SYSTAT-http://www.spss.com/software/science/systat

. S-Plus- http://www.insightful.com/products/product.asp?PID=3

I The STATA website contains links to these and other software providers.

I Prerequisite: College algebra and a modicum of mathematical ability.

I Chapters 1 and 2 are to bring such a student up to the level of knowledge required
to understand the theory and methods in the rest of the book.

http://www.minitab.com�
http://www.ncss.com�
http://www.statistics.com�
http://www.sas.com�
http://www.spss.com�
http://www.stata.com�
http://www.statsoft.com�
http://www.dataxiom.com�
http://www.cytel.com�
http://www.spss.com/software/science/systat�
http://www.insightful.com/products/product.asp?PID=3�
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I This book has been used successfully as a textbook both at the graduate and under-
graduate levels.

I At the undergraduate level most instructors find the Problems and Theory sections
too challenging for their students.

I I have taught this course at the graduate level countless times, and only once did I
omit Chapters 1 and 2, with disastrous results I might add!

I Other instructors have told me they omitted Chapters 1 and 2 without a problem, but
their students have sometimes told me they had to go back and read those chapters
on their own before they could grasp the later material.
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Appendix B
INTRODUCTION

I Science: Truth ascertained by observation, experiment, and induction.

I A vast amount of time, money, and energy is being spent by society today in the
pursuit of science.

I One experiment, with one set of observations, may lead two scientists to two different
conclusions.

I Example: A scientist places a rat into a pen with two doors, both closed. One door
is painted red and the other blue. The rat is subjected to 20 minutes of music of the
type popular with today’s teenagers. After this experience, both doors are opened
and the rat run out of the pen. The scientist notes which door the rat chose. This
experiment is repeated 10 times, each time using a different rat.

I Later the scientist conducts a second experiment.

. He injects a certain drug into the bloodstream of each of 10 rats.

. Five minutes later he examines the rats and finds that 7 are dead, and the other
3 are apparently healthy.

. However, since only 7 are dead, he recalls the previous experiment and concludes
that such a result could easily have occurred by chance and there is no proof
that the drug injections are dangerous.

I Statistics: Provide the means for measuring the amount of subjectivity that goes into
the scientists’ conclusions and thus to separate “science” from “opinion”.

I This is accomplished by setting up a theoretical “model” for the experiment.

I Nonparametric methods have become essential tools in the workshop of the applied
scientist who needs to do statistical analysis.

I When the price for making a wrong decision is high, applied scientists are very
concerned that the statistical methods they are using are not based on assumptions
that appear to be invalid, or are impossible to verify.

I Nonparametric statistical methods

. Use a simpler model.

. Involve less computation work and easier and quicker to apply than other sta-
tistical methods.
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. Much of the theory behind the nonparametric methods may be developed rig-
orously, using no mathematics beyond high school algebra.

. They are often more powerful than the parametric methods if the assumptions
behind the parametric model are not true.
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Appendix C
無母數統計報告

C.1 報報報告告告寫寫寫作作作的的的注注注���事事事444

請自己從各大學圖書館的考古題網站：如

1. 臺閩地區圖書館暨資料單位名錄
http://wwwsrch.ncl.edu.tw/libdir/

碩士班入學考古題

國立大學

2. 國立臺灣大學圖書館
http://www.lib.ntu.edu.tw/exam/graduate/college.htm

3. 國立臺灣師範大學圖書館
http://www.lib.ntnu.edu.tw/libweb/qlink/exam.php

4. 國立政治大學圖書館
http://www.lib.nccu.edu.tw/exam/index.htm

5. 國立交通大學浩然圖書館
http://www.lib.nctu.edu.tw/n exam/index.html

6. 國立清華大學圖書館
http://www.lib.nthu.edu.tw/library/department/ref/exam/index.htm

7. 國立中央大學圖書館
http://www.lib.ncu.edu.tw/cexamn.html

8. 國立中興大學圖書館
http://recruit.nchu.edu.tw/

9. 國立中正大學圖書館
http://www.lib.ccu.edu.tw/gradexam/kind.htm

10. 國立成功大學圖書館
http://eserv.lib.ncku.edu.tw/exam/index.php

11. 國立中山大學圖書館
http://www.lib.nsysu.edu.tw/exam
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http://www.lib.nsysu.edu.tw/exam�
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12. 國立高.師範大學圖書館
http://www.nknu.edu.tw/∼math/mathweb/frame.asp

13. 國立東華大學圖書館
http://www.lib.ndhu.edu.tw/index.phtml?path=,175,164&language=zh tw

14. 國立海洋大學圖書館
http://www.lib.ntou.edu.tw/exam/exam.htm

15. 國立台北大學圖書館
http://www.ntpu.edu.tw/library/lib/ntpulib exam.htm

16. 國立暨南大學圖書館
http://www.library.ncnu.edu.tw/download/old exam.htm

17. 國立中正理工學院
http://www.lib.ccit.edu.tw/search/search6.htm

私立大學

18. 私立文化大學圖書館
http://www.lib.pccu.edu.tw/exam.html

19. 私立淡江大學圖書館
http://www.lib.tku.edu.tw/exam/exam-tku.shtml

20. 私立中原大學圖書館
http://www.lib.cycu.edu.tw/exams new/exams new.html

21. 私立輔仁大學圖書館
http://lib.fju.edu.tw/collection/examine.htm

22. 私立逢甲大學圖書館
http://www.admission.fcu.edu.tw/test question.htm

23. 私立元智大學圖書館
http://www.yzu.edu.tw/library/index.php/content/view/152/253/

24. 私立銘F大學圖書館
http://140.131.66.3/

25. 私立靜宜大學圖書館
http://www.lib.pu.edu.tw/new/exam/

26. 私立東吳大學
http://www.scu.edu.tw/entrance/exam92/index.htm

27. 私立中山醫學大學圖書館
http://www.lib.csmu.edu.tw/overlib/2206.php

28. 私立高.醫學大學圖書館
http://www.kmu.edu.tw/%7Elib/kmul/exam.htm

29. 私立大同大學圖書館
http://www.library.ttu.edu.tw/eresource/exam.htm
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30. 私立義守大學
http://www1.isu.edu.tw/exam/exam/

31. 私立世–大學圖書館
http://lib.shu.edu.tw/search taskpaper.asp

32. 私立南華大學圖書館
http://libserver2.nhu.edu.tw/20.htm

33. 私立華梵大學圖書館
http://huafan.hfu.edu.tw/∼lib/srvc/exam2/exam2.htm

34. 私立玄奘大學
http://www.hcu.edu.tw/hcu2/old/old.asp

或研究所升學的統計或機率參考書，找出十題研究所入學考題與無母數統計所教授的觀念相關
的題目，每章題目找兩題。寫作的注�事4：

1. 第一行標明出處及關鍵詞，第二行題目所在的網址或參考書的作者、年代、版次及書名。

2. 題目不變，中文就用中文，英文就用英文，不用翻譯成中文。

3. 解題過程詳細講解每一個解題步驟，請參考範例。

4. 預計第三、五章結束需要上台報告自己每$段的作品（五題）。

5. 使用提供的範本作報告，檔名：m962040002蔡仲信.tex。

6. 學期末繳交列印報告，m962040002蔡仲信.tex和m962040002蔡仲信.pdf等檔案。

C.2 報報報告告告範範範例例例

無母數統計報告

蔡仲信

國立中山大學應用數學系

tsaijs1@gmail.com

2008-06-10

1. 【94中山應數統計組，隨機變數分解求期望值】
http://www.lib.nsysu.edu.tw/exam/master/sci/math/94.pdf

An urn contains n+m balls, of which n are red and m are black. They are withdrawn
from the urn, one at a time and without replacement. Let Y denote the number of
red balls chosen after the first but before the second black ball has been chosen.
Number the red balls from 1 to n. Find E[Y ].

Ans: 在第一個A球被選中後且第二個A球被選中前，若紅球i 被選中，則令Yi = 1, i =
1, . . . , n。所以Y =

∑n
i=1 Yi。

E[Yi] = P (Yi = 1)

= P (從m + 1 個球中選中紅球i )

= 1/(m + 1) 因為m + 1 個球被選中的機率皆相等

http://www1.isu.edu.tw/exam/exam/�
http://lib.shu.edu.tw/search_taskpaper.asp�
http://libserver2.nhu.edu.tw/20.htm�
http://huafan.hfu.edu.tw/~lib/srvc/exam2/exam2.htm�
http://www.hcu.edu.tw/hcu2/old/old.asp�
http://www.lib.nsysu.edu.tw/exam/master/sci/math/94.pdf�
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因此，
E[Y ] = n/m + 1

2. 【95東華國經，多樣本The Kruskal-Wallis 檢定】
http://econ.ndhu.edu.tw/attachment/490 3.pdf

將30個體質相類似的人隨機分成5組，試吃五種不同的減肥藥，三個月後，紀錄每個人減
肥前後的體重差，結果如下:

A 餐 2 7 9 5 3 10
B 餐 -1 6 7 0 2 4
C 餐 5 7 13 11 2 10
D 餐 3 7 6 -1 -1 4
E 餐 -3 3 5 -4 -2 7

(a) 在α = 0.05下，以無母數統計檢定法檢定五種減肥餐的效果是否相同?

(b) 若上述資料符合變異數分析的各種假設，在在α = 0.05下，檢定五種減肥餐的效果
是否相同?

Ans:

(a) 先將30筆資料混合然後排序，之後依序取等級: （註：如果遇到相同的資料，取平
均等級）

A餐 B餐 C餐 D餐 E餐
體重差 等級 體重差 等級 體重差 等級 體重差 等級 體重差 等級

2 9 -1 5 5 17 3 12 -3 2
7 23 6 19.5 7 23 7 23 3 12
9 26 7 23 13 30 6 19.5 5 17
5 17 0 7 11 29 -1 5 -4 1
3 12 2 9 2 9 -1 5 -2 3
10 27.5 4 14.5 10 27.5 4 14.5 7 23

n1 = 6 X1· = 229
12

n2 = 6 X2· = 13 n3 = 6 X3· = 271
12

n4 = 6 X4· = 79
6

n5 = 6 X5· = 29
3

上面的表，其中ni為第i組樣本數、X i·為第i組樣本等級的平均

X ·· =

∑5
i=1 X i·
5

= 15.5

SSR =
5∑

i=1

(X i· −X ··)2 = 747.186

n =
5∑

i=1

ni = 30

H0：五種減肥餐效果相同 v.s H1：五種減肥餐效果不全相同

H∗ =
12

n(n + 1)
× SSR

=
12

30(30 + 1)
× 747.186

= 9.641 > χ2
0.05(4) = 9.488

由上面可知，在α = 0.05下，有足夠的證據能夠拒絕H0。因此，這五種減肥餐效果
不全相同。

http://econ.ndhu.edu.tw/attachment/490_3.pdf�
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(b) 如果上述資料符合變異數分析的各種假設，就直接對資料取平均。X i·為第i組資料
的平均，Xij為第i組的第j筆資料：X1· = 6, X2· = 3, X3· = 8, X4· = 3, X5· = 1,

X ·· =

∑5
i=1 X i·
5

= 4.2

SSR =
5∑

i=1

(X i· −X ··)2 = 30.8

SST =
5∑

j=1

5∑
i=1

(Xij −X ··)2 = 536.8

SSE = SST − SSR = 506

則

F ∗ =
SSR/4

SSE/25

=
30.8/4

506/25

= 0.380 < F0.05(4, 25) = 2.76

由上面可知，在α = 0.05下，沒有足夠的證據能夠拒絕H0。因此，這五種減肥餐效
果相同。

3. 【95台大財金乙，Mann-Whitney-Wilcoxon雙樣本檢定法】
http://www.lib.ntu.edu.tw/exam/graduate/95/378.pdf

研究機構欲了解重要之A管理理論與B管理理論何者較有效? (即績效中位數ηA、ηb何者較

大?)，乃
行一4實驗：隨機抽出32員工施以A 理論的環境，另外抽出32員工施以B理論
的環境，年終各員工之績效分別為Yij, i = A,B, j = 1, 2, . . . , 32。若已求得YAj對應之等

級和RA = 1393，令顯著水ªα = 0.05，依Mann-Whitney-Wilcoxon檢定法檢定之。

Ans: 考慮假說檢定H0：B理論有效 v.s H1：A理論有效

T ∗ = RA − nA(nA + 1)

2

= 1393− 32× 33

2
= 865

利用標ª常態近似

Z∗ =
T ∗ − nAnB

2√
nAnB(nA+nB+1)

12

=
865− 32×32

2√
32×32×(32+32+1)

12

= 4.74 > Z0.05 = 1.645

由上面可知，在α = 0.05下，有足夠的證據能夠拒絕H0。因此，A理論有效。

http://www.lib.ntu.edu.tw/exam/graduate/95/378.pdf�
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Appendix D
WHAT IS STATISTICS?
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D.3 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . 211
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D.6 Measures of variability . . . . . . . . . . . . . . . . . . . . . . . 213

D.7 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

D.8 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . 214

D.9 Tests of reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.10 Higher statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.11 Difference between statistics and probability . . . . . . . . . . 216

Statistics: The mathematics of the collection, organization, and interpretation of numeri-
cal data, especially the analysis of population characteristics by inference from sampling.
(American Heritage Dictionaryr)

D.1 Introduction

Statistics, branch of mathematics that deals with the collection, organization, and analysis
of numerical data and with such problems as experiment design and decision making.

D.2 History

Simple forms of statistics have been used since the beginning of civilization, when pictorial
representations or other symbols were used to record numbers of people, animals, and
inanimate objects on skins, slabs, or sticks of wood and the walls of caves. Before 3000
BC the Babylonians used small clay tablets to record tabulations of agricultural yields and
of commodities bartered or sold. The Egyptians analyzed the population and material
wealth of their country before beginning to build the pyramids in the 31st century BC.
The biblical books of Numbers and 1 Chronicles are primarily statistical works, the former
containing two separate censuses of the Israelites and the latter describing the material
wealth of various Jewish tribes. Similar numerical records existed in China before 2000
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BC. The ancient Greeks held censuses to be used as bases for taxation as early as 594 BC.
See Census.
The Roman Empire was the first government to gather extensive data about the popu-
lation, area, and wealth of the territories that it controlled. During the Middle Ages in
Europe few comprehensive censuses were made. The Carolingian kings Pepin the Short
and Charlemagne ordered surveys of ecclesiastical holdings: Pepin in 758 and Charlemagne
in 762. Following the Norman Conquest of England in 1066, William I, king of England,
ordered a census to be taken; the information gathered in this census, conducted in 1086,
was recorded in the Domesday Book. Registration of deaths and births was begun in
England in the early 16th century, and in 1662 the first noteworthy statistical study of
population, Observations on the London Bills of Mortality, was written. A similar study of
mortality made in Breslau, Germany, in 1691 was used by the English astronomer Edmond
Halley as a basis for the earliest mortality table. In the 19th century, with the application
of the scientific method to all phenomena in the natural and social sciences, investigators
recognized the need to reduce information to numerical values to avoid the ambiguity of
verbal description.
At present, statistics is a reliable means of describing accurately the values of economic,
political, social, psychological, biological, and physical data and serves as a tool to correlate
and analyze such data. The work of the statistician is no longer confined to gathering and
tabulating data, but is chiefly a process of interpreting the information. The development
of the theory of probability increased the scope of statistical applications. Much data
can be approximated accurately by certain probability distributions, and the results of
probability distributions can be used in analyzing statistical data. Probability can be used
to test the reliability of statistical inferences and to indicate the kind and amount of data
required for a particular problem.

D.3 Statistical methods

The raw materials of statistics are sets of numbers obtained from enumerations or mea-
surements. In collecting statistical data, adequate precautions must be taken to secure
complete and accurate information.
The first problem of the statistician is to determine what and how much data to collect.
Actually, the problem of the census taker in obtaining an accurate and complete count
of the population, like the problem of the physicist who wishes to count the number of
molecule collisions per second in a given volume of gas under given conditions, is to decide
the precise nature of the items to be counted. The statistician faces a complex problem
when, for example, he or she wishes to take a sample poll or straw vote. It is no simple
matter to gauge the size and constitution of the sample that will yield reasonably accurate
predictions concerning the action of the total population.
In protracted studies to establish a physical, biological, or social law, the statistician may
start with one set of data and gradually modify it in light of experience. For example, in
early studies of the growth of populations, future change in size of population was predicted
by calculating the excess of births over deaths in any given period. Population statisticians
soon recognized that rate of increase ultimately depends on the number of births, regardless
of the number of deaths, so they began to calculate future population growth on the basis
of the number of births each year per 1000 population. When predictions based on this
method yielded inaccurate results, statisticians realized that other limiting factors exist
in population growth. Because the number of births possible depends on the number of
women rather than the total population, and because women bear children during only
part of their total lifetime, the basic datum used to calculate future population size is now
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the number of live births per 1000 females of childbearing age. The predictive value of
this basic datum can be further refined by combining it with other data on the percentage
of women who remain childless because of choice or circumstance, sterility, contraception,
death before the end of the childbearing period, and other limiting factors. The excess
of births over deaths, therefore, is meaningful only as an indication of gross population
growth over a definite period in the past; the number of births per 1000 population is
meaningful only as an expression of the proportion of increase during a similar period; and
the number of live births per 1000 women of childbearing age is meaningful for predicting
future size of populations.

D.4 Tabulation and presentation of data

CUMULATIVE
INTERVAL RELATIVE CUMULATIVE RELATIVE

INTERVALS MIDPOINTS FREQUENCY FREQUENCY FREUQENCY FREUQENCY
0-10 5 20 0.017 20 0.017
10-20 15 15 0.012 35 0.029
20-30 25 18 0.015 53 0.044
30-40 35 25 0.021 78 0.065
40-50 45 44 0.037 122 0.102
50-60 55 88 0.073 210 0.175
60-70 65 222 0.185 432 0.360
70-80 75 335 0.279 767 0.639
80-90 85 218 0.182 985 0.821
90-100 95 215 0.179 1200 1.000

The collected data must be arranged, tabulated, and presented to permit ready and mean-
ingful analysis and interpretation. To study and interpret the examination-grade distri-
bution in a class of 30 pupils, for instance, the grades are arranged in ascending order:
30, 35, 43, 52, 61, 65, 65, 65, 68, 70, 72, 72, 73, 75, 75, 76, 77, 78, 78, 80, 83, 85, 88, 88, 90, 91, 96,
97, 100, 100. This progression shows at a glance that the maximum is 100, the minimum
30, and the range, or difference, between the maximum and minimum is 70.
In a cumulative-frequency graph, such as Fig. 1, the grades are marked on the horizontal
axis and double marked on the vertical axis with the cumulative number of the grades
on the left and the corresponding percentage of the total number on the right. Each dot
represents the accumulated number of students who have attained a particular grade or
less. For example, the dot A corresponds to the second 72; reading on the vertical axis, it
is evident that there are 12, or 40 percent, of the grades equal to or less than 72.
In analyzing the grades received by 10 sections of 30 pupils each on four examinations, a
total of 1200 grades, the amount of data is too large to be exhibited conveniently as in
Fig. 1. The statistician separates the data into suitably chosen groups, or intervals. For
example, ten intervals might be used to tabulate the 1200 grades, as in column (a) of the
accompanying frequency-distribution table; the actual number in an interval, called the
frequency of the interval, is entered in column (c). The numbers that define the interval
range are called the interval boundaries. It is convenient to choose the interval boundaries
so that the interval ranges are equal to each other; the interval midpoints, half the sum of
the interval boundaries, are simple numbers, because they are used in many calculations.
A grade such as 87 will be tallied in the 80-90 interval; a boundary grade such as 90 may
be tallied uniformly throughout the groups in either the lower or upper intervals. The
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relative frequency, column (d), is the ratio of the frequency of an interval to the total
count; the relative frequency is multiplied by 100 to obtain the percent relative frequency.
The cumulative frequency, column (e), represents the number of students receiving grades
equal to or less than the range in each succeeding interval; thus, the number of students
with grades of 30 or less is obtained by adding the frequencies in column (c) for the first
three intervals, which total 53. The cumulative relative frequency, column (f), is the ratio
of the cumulative frequency to the total number of grades.

The data of a frequency-distribution table can be presented graphically in a frequency
histogram, as in Fig. 2, or a cumulative-frequency polygon, as in Fig. 3. The histogram is
a series of rectangles with bases equal to the interval ranges and areas proportional to the
frequencies. The polygon in Fig. 3 is drawn by connecting with straight lines the interval
midpoints of a cumulative frequency histogram.

Newspapers and other printed media frequently present statistical data pictorially by using
different lengths or sizes of various symbols to indicate different values.

D.5 Measures of central tendency

After data have been collected and tabulated, analysis begins with the calculation of a
single number, which will summarize or represent all the data. Because data often exhibit
a cluster or central point, this number is called a measure of central tendency.

Let x1, x2, . . . , xn be the n tabulated (but ungrouped) numbers of some statistic; the most
frequently used measure is the simple arithmetic average, or mean, written x, which is the
sum of the numbers divided by n:

x =

∑
x

n

If the x’s are grouped into k intervals, with midpoints m1,m2, . . . , mk and frequencies
f1, f2, . . . , fk, respectively, the simple arithmetic average is given by

∑
f1m1∑
f1

with i = 1, 2, . . . , k.

The median and the mode are two other measures of central tendency. Let the x’s be
arranged in numerical order; if n is odd, the median is the middle x; if n is even, the median
is the average of the two middle x’s. The mode is the x that occurs most frequently. If
two or more distinct x’s occur with equal frequencies, but none with greater frequency, the
set of x’s may be said not to have a mode or to be bimodal, with modes at the two most
frequent x’s, or trimodal, with modes at the three most frequent x’s.

D.6 Measures of variability

The investigator frequently is concerned with the variability of the distribution, that is,
whether the measurements are clustered tightly around the mean or spread over the range.
One measure of this variability is the difference between two percentiles, usually the 25th
and the 75th percentiles. The pth percentile is a number such that p percent of the
measurements are less than or equal to it; in particular, the 25th and the 75th percentiles
are called the lower and upper quartiles, respectively. The pth percentile is readily found
from the cumulative-frequency graph, (Fig. 1) by running a horizontal line through the
p percent mark on the vertical axis on the graph, then a vertical line from this point on
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the graph to the horizontal axis; the abscissa of the intersection is the value of the pth
percentile.
The standard deviation is a measure of variability that is more convenient than percentile
differences for further investigation and analysis of statistical data. The standard deviation
of a set of measurements x1, x2, . . . , xn, with the mean x is defined as the square root of the
mean of the squares of the deviations; it is usually designated by the Greek letter sigma
(σ). In symbols

σ =

√
1

n
[(x1 − x)2 + (x2 − x)2 + · · ·+ (xn − x)2] =

√
1

n

∑
(xi − x)2

The square, σ2, of the standard deviation is called the variance. If the standard deviation
is small, the measurements are tightly clustered around the mean; if it is large, they are
widely scattered.

D.7 Correlation

When two social, physical, or biological phenomena increase or decrease proportionately
and simultaneously because of identical external factors, the phenomena are correlated
positively; under the same conditions, if one increases in the same proportion that the
other decreases, the two phenomena are negatively correlated. Investigators calculate the
degree of correlation by applying a coefficient of correlation to data concerning the two
phenomena. The most common correlation coefficient is expressed as

∑ (
x
σx · y

σy

)

N

in which x is the deviation of one variable from its mean, y is the deviation of the other
variable from its mean, and N is the total number of cases in the series. A perfect positive
correlation between the two variables results in a coefficient of +1, a perfect negative
correlation in a coefficient of -1, and a total absence of correlation in a coefficient of 0.
Intermediate values between +1 and 0 or -1 are interpreted by degree of correlation. Thus,
.89 indicates high positive correlation, -.76 high negative correlation, and .13 low positive
correlation.

D.8 Mathematical models

A mathematical model is a mathematical idealization in the form of a system, proposition,
formula, or equation of a physical, biological, or social phenomenon. Thus, a theoretical,
perfectly balanced die that can be tossed in a purely random fashion is a mathematical
model for an actual physical die. The probability that in n throws of a mathematical die
a throw of 6 will occur k times is

p(k) =

(
n

k

)(
1

6

)n

(
5

6
)n−k

in which
(

n
k

)
is the symbol for the binomial coefficient

n(n− 1) · · · (n− k + 1)

1 · 2 · · · · · k ·
((

n

0

)
= 1

)

The statistician confronted with a real physical die will devise an experiment, such as
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tossing the die n times repeatedly, for a total of Nn tosses, and then determine from the
observed throws the likelihood that the die is balanced and that it was thrown in a random
way.
In a related but more involved example of a mathematical model, many sets of measure-
ments have been found to have the same type of frequency distribution. For example,
let x1, x2, . . . , xN be the number of 6’s cast in the N respective runs of n tosses of a die
and assume N to be moderately large. Let y1, y2, . . . , yN be the weights, correct to the
nearest 1/100 g, of N lima beans chosen haphazardly from a 100-kg bag of lima beans.
Let z1, z2, . . . , zN be the barometric pressures recorded to the nearest 1/1000 cm by N
students in succession, reading the same barometer. It will be observed that the x’s, y’s,
and z’s have amazingly similar frequency patterns. The statistician adopts a model that is
a mathematical prototype or idealization of all these patterns or distributions. One form
of the mathematical model is an equation for the frequency distribution, in which N is
assumed to be infinite:

y =
1√
2π

e−
x2

2

in which e (approximately 2.7) is the base for natural logarithms (see Logarithm). The
graph of this equation (Fig. 4) is the bell-shaped curve called the normal, or Gaussian,
probability curve. If a variate x is normally distributed, the probability that its value lies
between a and b is given by

1√
2π

∫ b

d

e(−(x2)/2)dx

The mean of the x’s is 0, and the standard deviation is 1. In practice, if N is large, the
error is exceedingly small.

D.9 Tests of reliability

The statistician is often called upon to decide whether an assumed hypothesis for some
phenomenon is valid or not. The assumed hypothesis leads to a mathematical model; the
model, in turn, yields certain predicted or expected values, for example, 10, 15, 25. The
corresponding actually observed values are 12, 16, 21. To determine whether the hypothesis
is to be kept or rejected, these deviations must be judged as normal fluctuations caused by
sampling techniques or as significant discrepancies. Statisticians have devised several tests
for the significance or reliability of data. One is the chi-square (χ2) test. The deviations
(observed values minus expected values) are squared, divided by the expected values, and
summed:

x2 =
(12− 10)2

10
+

(16− 15)2

15
+

(21− 25)2

25
= 1.11

The value of χ2 is then compared with values in a statistical table to determine the signif-
icance of the deviations.

D.10 Higher statistics

The statistical methods described above are the simpler, more commonly used methods
in the physical, biological, and social sciences. More advanced methods, often involving
advanced mathematics, are used in further statistical studies, such as sampling theory,
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inference and estimation theory, and design of experiments.

Contributed By: James Singer
Microsoft rEncartar2006. c©1993-2005 Microsoft Corporation. All rights reserved.

D.11 Difference between statistics and probability

Figure D.1: Diagram showing the difference between statistics and probability

(Image by MIT OpenCourseWare. Based on Gilbert, Norma. Statistics. W.B. Saunders
Co., 1976.)



INDEX 217

INDEX

p-value, 44
pth sample quantile, 36
2× 2 contingency table, 85

A.R.E, 50
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Approximate 1− α confidence interval, 38
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Binomial distribution, 10
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Bootstrap, 38
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Contingency coefficient, 109
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Continuous random variable, 20
Continuous random variables, 19
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Daniel’s test for trend, 151
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dent standard normal random vari-
ables, 23

distribution-free, 160

Efficient, 46
empirical distribution, 39
Empirical distribution function, 36
Empirical function, 36
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Expected value, 13
Expected value of multivariate distribution,
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Experiment, 2, 32
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Fisher’s exact test, 89
Fisher’s method of randomization, 192

Horizontal confidence interval, 67
Hypergeometric distribution, 11

Independence implies zero covariance, 17
Independent, 7
Independent events, 7
Independent experiments, 7
Intercept, 155
Interquartile range, 14
Interval estimator, 61
Interval estimator, 37
Interval scale, 34

Joint distribution function, 10
Joint probability mass function, 10
Jonckheere-Terpstra test, 152

Kaplan-Meier estimator, 40, 41
Kendall’s τ test, 150
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Kendall’s τ partial correlation coefficient, τ12.34...n,
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Kendall’s tau, 148
Kruskal-Wallis test, 135

Least squares estimates, 156
Least squares method, 155
Level of significance, 44
Likelihood ratio chi-squared statistic, 120
Linear regression, 155
Loglinear model, 102, 121
Lower-tailed test, 44

Mann-Whitney two-tailed test, 131
Mann-Whitney test, 127, 128, 176
Mantel-Haenszel test, 92
McNemar test, 77
Mean, 13
Mean and variance of binomial distribution,
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Mean of binomial distribution, 15
Mean of sum of random variables, 15
Mean-square contingency, 109
Measure of location, 14
Measure of scale, 14
Measurement scale, 34
Median, 12
Median test, 103
Methods for analyzing nominal data, 52

Minimum chi-squared method, 114
Model, 2
Monotonically decreasing, 162
Monotonically increasing, 162
Multinomial coefficient, 3, 4
Multinomial distribution, 98
Multinomial expansion, 4
Multivariate random variable, 33
Mutually exclusive events, 5
Mutually independent, 11

Nominal scale, 34
Nonparametric statistical methods, 2, 203
Nonparametric methods, 51, 203
Normal distribution, 21
Normalization, 21
Null distribution, 44
Null hypothesis, 43

One-sided tolerance limits, 69
One-tailed test, 44
One-way ANOVA, 105
Order statistic, 35
Ordered observation, 35
Ordered random sample, 35
Ordinal scale, 34

Paired t test, 77
Parameter estimation in general, 39
Parametric method, 51
Parametric methods, 51
Pearson chi-squared statistic, 120
Pearson’s partial correlation coefficient, r12.34...n,

154
Pearson’s r, 145
Pearson’s coefficient, 109
Pearson’s product moment correlation coef-

ficient, 145
Permutation, 3
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Power, 44
Power function, 46, 76
Probability function, 5, 6
Probability mass function, pmf, 9
Probability sample, 33

Quantile, 12
confidence interval for, 67
population, 71

Quantile test, 63

r × c contingency table, 94



INDEX 219

R1, 108
R2, 109
R3, 109
R4, 110
R5, 111
R6, 111
R7, 111
Random function, 36
Random sample, 33
Random variables, 8
Randomized complete block design, 117
Ratio scale, 34
Regression equation, 155
Relative efficiency, 49
Robust methods, 51
Row-column dependence, 107

S-Plus, 39
Sample, 33
Sample mean, 35, 37
Sample space, 5
Sample standard deviation, 37
Sample variance, 37
Sampled Population, 33
SAS, 47
Scale, 14
Science, 203
Sheppard’s correction, 116
Sign test, 72, 73

consistent, 74
Signed rank, 169
Simple, 43
Simple hypothesis, 43
Slope, 155
Spearman’s rho, 146
Squared ranks test for variances, 140
Standard deviation, 14
Standard error, 38
Standard normal, 21
Statistics, 35, 203
Stem-and-leaf method, 126
Step function, 19, 36
Sum of squared deviations, 156
Sum of the first N positive integers, 16
Sure event, 5
Survival function, 40
Symmetric distribution, 167
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Two-tailed test, 44
Type I error, 44
Type II error, 44
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Variance of binomial distribution, 18
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