Lecture notes on: Nonlinear optimality in one dimension

The main aim of this chapter is to:
- Calculate the roots of function and its derivative.
- Calculate the critical points of a function on where maximum or minimum value of
the function occurred.
- Applying some mathematical procedures such as direct solution, Bisection and
Newton Raphson to solve nonlinear programming problems in one variable.

it

Nonlinear function: It is a type of function that cannot be written in the following form:

f(X) = c1X1 + Xy + -+ Xy = Z CiXj,
i=1
X = (Xq1,X3, -, Xp)
Where, c;,i = 1,2, ..., n is constant.

Examples of nonlinear functions:
(i) f(x) =xsin(x),

(i) f(x) = x% +2x—1,

(iii) f(x) = % + log(x? + 1),

(iv) f(x) = xsin(x) + cos(x) + €*,

(v) f(x) =In(Vx) + 3x3 — tan(x)

Nonlinear programming: Suppose we have the following program:
Max (or Min)  f(x)

s.t. gi(x) <b;i=12,..,m
h](X) = a]-;j = 1,2, ,1
a]-,bi = 0.

This program is called nonlinear if one of the following conditions is satisfied:
- The objective function f(x) is nonlinear.
- The objective function and one of the constraints are nonlinear.
- The objective function and constraints are nonlinear.

Types of Nonlinear programming

- Constrained programming: it has at least one constraint.
- Unconstrained programming: it has no constraints.
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Nonlinear optimality in one variable
We study in this chapter the following type of unconstrained optimization problem

Max (or Min ) f(x)
s.t. a<x<b

We assume that the function f(x) is well-defined on the closed interval [a,b]. We assume
also that it is continuous on its domain. Its derivatives are existed on the open interval
(a,b).

local and global minimum/maximum points

Local minimum point: A point x* € [a, b] is said to be a local minimum point for the
function f: [a,b] - R if f(x*) <f(x) V x € (c,d) € [a,b].

Local maximum point: A point x* € [a, b] is said to be a local maximum point for the
function f: [a,b] » R if f(x*) = f(x) V x € (c,d) € [a,b]

Global minimum point: A point x* € [a, b] is said to be a global minimum point for the
function f: [a,b] » R if f(x*) < f(x) V x € [a,b].

Global maximum point: A point x* € [a, b] is said to be a local maximum point for the
function f: [a,b] » R if f(x*) > f(x) V x € [a,b]
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Unimodal function: A function f: [a,b] — R is said to be unimodal function if one of the
following conditions is satisfied:

(i) 3x* € [a,b],VX,X, € [a,b] ifx* <x; <X, = f(x") < f(x,) < f(x,) Or
(i) 3 x* € [a,b],V X3,%x4 € [a,b] ifx* > x, > x5 = f(x") < f(x,) < f(x3)

and in this case the point x* is global minimum point.

[2]



Or one of the following conditions is satisfied:
(i) 3x* € [a,b],Vxq,x, € [a,b] ifx" <x; <X, = f(x*) > f(x,) > f(x,) Or
(i) 3 x* € [a,b],V X3,%x4 € [a,b] ifx* > x, > x5 = f(x*) > f(x,) > f(x3)

and in this case the point x* is global maximum point.
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Note: Unimodal function may be discontinuous, undifferentiable.
Important definitions

(1) Root point: for a function f(x), f: R = R the value of the x that makes f(x)=0 is called
a root point.

(2) fixed point: for a function f(x), f: R — R the value of the x that makes f(x)=x is called
a fixed point.

(3) Stationary point: for a function f(x), f: R — R the value of the x that makes f'(x) = 0 is

called a- L_pw; Stationary

(4) local minimum point: for a function f(x), f: [a,b] = R the point x, € (a,b) is a local
minimum point if f'(x,) = 0 and f"'(x,) > 0.

(4) local maximum point: for a function f(x), f:[a,b] = R the point x, € (a,b) is a local
maximum point if f'(x,) = 0 and f""(x,) < 0.

(5) Saddle point: for a function f(x), f: [a,b] = R the point x, € (a,b) is a saddle point if
f'(x,) = 0 and it is neither minimum nor maximum.

(6) Inflection point: for a function f(x), f: [a,b] = R the point x, € (a,b) is an inflection point
if f'(xq) =0andf"(x,—€e)f"(x,+¢€) <0 wheree>0. RS
Let f(x) = x2 — 2x
x = 3 is fixed point
f(3)=32-6=3
[3] x = 2 is root point
2-2x=0=2x(x—-2)=0=>x=00rx=2
x = 1 is stationary point

ffx)=2x—-2=22x-2=0=>x=1
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Theory: For the functions with one variable,
(1) If x, is saddle point, then it is an inflection point.
(2) If x, is an inflection point, then it is not necessary to be a saddle point.

Optimality conditions

For a function f(x), f: [a,b] = R, x, € [a,b], f'(x,) = f""(x,) = 0 and f"(x,) # 0 where n
is the high non-zero ranked derivative then:

(1) x, is saddle point if n is odd.
(2) x, is minimum point if n is even and f™(x,) > 0.
(3) x, is maximum point if nis even and f™(x,) < 0.

Ex: Discuss the properties of the following function: f(x) = x> — 2x3.
Let f(x) =0 = x5 — 2x3 = x3(x% — 2) = 0 = So the roots are x = 0, +V2

Let fx)=x=2x°-2x3—-x=x(x*-2x2-1)=0=>x=0orx*—-2x2-1=0

2+/8

x}—2x—-1=0=x%= =1+V2=>x2=1++V2 sincel —V2<0=x

So, the fixed points are: x = 0, +v1 + /2
Let f'(x)=0=>5x*—6x>=x?(5x>—-6)=0=>x=0o0r5x)=6>x=+%+ /6/5

The stationary points become'x = 0, + 6/5
f'(x) =20x3 —12x=f"(0) = 0= f""(x) = 60x2 — 12 = f"(0) = —12 # 0,

f”( /6/5> = 13.15 > 0,
£ (— /6/5> =~ -13.15< 0

The point x = 0 is saddle point and hence it is inflection point. The point x = /6/5 is a

minimum point while x = — f6/5 is @ maximum point.
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Ex: Discuss the properties of the following function: f(x) = ax + E where x>0, a and b are
constants.

24b . . .
D — 0= ax?+b = 0. This equation has no real solutions. So,

b
Let f(x)=0= ax + - =
there are no real roots.

X

b . _ b
Let f(x)=x=>ax+;:xz(1_a)x2_b=0=> if 0<a<l=>x= -

if a>1  =xR
So, the function has no real fixed points ata > 1. It has a unique fixed valueat0 <a <1

Let f'(x)=0=>a- X% =0=x?= S = X =ifb/a which represents the unique

stationary point.
2b / {a
14} — 14} b —_
f(X)—X—3 = f < /a>—2a B>0

f i =aQﬁ:>Tﬁi=zﬁE

So,x = «I /Cl Is a minimum point.  yhjje x = — b/a Is 2 maximum point.

Methods of solving nonlinear programming problems in one variable

(1) Direct solution method.
(2) Elimination methods: we focus on the Bisection method in this type.
(3) Interpolation methos: we highlight only Newton-Raphson one.

[1] Direct solution method: Suppose the following nonlinear programming problem:

Max (or Min ) f(x)
s.t. a<x<b
Where, f: [a,B] = R. The method’s steps are given as follows.

Step1: Calculate all the stationary points for the function f(x), i.e., f'(x) = 0.

Step2: evaluate all the value of f(x) at the stationary points including f(a) and f(b).

Step3: The optimum solution is the solution giving minimum value or maximum value for
the function (where the function is to be maximized or minimized).
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Drawbacks of this method
- The method fails to attain the optimum solution if the objective function is not
continuous on its domain.
- Italso fails to get the optimum solution if the objective function is not differentiable.
- If the stationary points are impossible to obtain, we cannot apply the method.

Ex: Find the optimum solution for the following nonlinear optimization problem:

Max f(x) = x(5m—Xx)
s.t 0<x<20; m=3.14

5T
Let f'(x)=0=5m—2x=0=x= > = 7.85{0,20]
x |0] 7.85 20
f(x) | 0] 61.69 | —85.84

= f., = 61.69 atx = 7.85

Ex: Find the optimum solution for the following nonlinear optimization problem:

Max f(x) = —x3+3x?+9x+ 10
sst —-2<x<4

Let ff(x)=0=-3x4+6x+9=0= (x+1)x-3)=0 =>x=-13€[-24]

X |—-2]|-1]3 | 4
f(x)[ 12 | 5 |37 ]30

= fhax =37atx =3

Ex: Find the optimum solution for the following nonlinear optimization problem:

Max f(x) = x* —16x3 + 91x% — 216x + 180
s.t 3.2<x<5

Let f'(x)=0=>f'(x) = 4x3—48x?+182x—216 =0
To get the roots for the above polynomial we test the factors of 216 as follows.

216 =2Xx3X4Xx9 but 2,39 ¢ [3.2,5] so, we have only x=4.
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X 3.2
f(x) | 1.2096
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= fhax =4atx =4

Ex: Find the optimum solution for the following nonlinear optimization problem:

Max f(x) = (In(x))® — 2(In(x))? + In(x),
s.t 1<x<e? ex=272

Let y=In(x)>ifl<x<e® > 0<y<3,gly =y3—2y%2+y,

=g'(y) =3y* -4y +1,g"(y) = 6y — 4, 1
Let g'(y) =0=>3y?—4y+1=0CBy—-1)({y—-1)=0 =>y=§,1 € [0,3]

1
g'(y=3)=2-4<0g"y=1=6-4>0

So,aty = § g(y) has maximum value.

y |0

gly)| 0

[ b

=S gnax = 11laty =3,aty =3 = 3 =In(x) @ x = e and . (e3) = 12
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Bisection method
Finding the root of a function
Let us suppose that the function f: [a, b] = R is defined and continuous on its domain [a,b].
It is also differentiable on the open interval (a,b). If f(a)f(b)<0 then the function may have
aroot.

f(x)

f(b)

f(a)T

c=(aT+b)/2

Bisection steps
Step 1: calculate the middle of the interval [a,b], say, ¢ = %. If |f(c)| < €€ > 0 (very small
value) this means that we reach the root, x* = c. Butif |f(c)| £ € we go to step 2.

Step2:
Case 1:if f(a)f(c) < 0 this means that the approximate root will be in the interval [a,c] and
we reject the interval [b,c]. Then repeat step 1 until we reach the approximate root.

N_
O
o

Case 2: if f(b)f(c) < 0 this means that the approximate root will be in the interval [c,b]
and we reject the interval [a,c]. Then repeat step 1 until we reach the approximate root.

L 11T 11 /:]: L

Ex: Find an approximate value for the root of f(x) = x* — 3 in[1,2] with e = 1072

ab c f(a f(b) f(c) [f(c) A A 2

1 2 3/2 -2 1 -3/4 3/4 f(a)=-2 f(c)=-3/4 f(b)=1
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not
Itis clear that |f(c)| & € and hence ¢ = % is ..~ - aroot. One can see that f(b)f(c) < 0 and

then we exclude the interval [a, c].

a b c f(a f(b) f(c) [f(o) a<312 s be2

3 2 175 -3 1 0.0625 0.0625 fl=34  flc)=0.0625 f(b)=1

/2 /4

a b c f@a fb) flo I[f(c) assiz A b=1.75

15 175 1.625 0.0625 1 —0.3594 0.3594 flaj=ve  fle)=ve f(b)=+ve
a b c f(a)  f(b) (o)  If(O] ez echears b=1.75

1.625 1.75 1.6875 —0.3594 0.0625 —0.1523 0.1523 f@=ve f(c)=-ve f(b)=+ve

a b ¢ fa) f(b)  f(c) f(O)]  afeers s b1.75
1.6875 1.75 1.7188 -—0.1523 0.0625 —-0.0459 0.0459 f(a)=-ve f(c)=-ve f(b)=+ve

a b ¢ f(a) f(b) f(c) [f(0)l a=1.7188 c=}1,7344 b=1.75
1.7188 1.75 1.7344 —-0.0459 0.0625 0.00814 0.00814  fla)=-ve f(c)=+ve f(b)=+ve

Now, |[f(c)| < € and then ¢ = 1.7344 is an approximate root. The above solution can be
summarized in the following table.

n a b c f(a) f(b) f(c) If(c)|
1| gl 2 1.5 —2 1 —-0.75 <€
2 15 2. 175 —0.5 1 0.0625 <€
3 15 175 1.625 0.0625 1 —03594 <€
4 1.625 1.75 1.6875 —0.3594 0.0625 —0.1523 <€
5 1.6875 1.75 1.7188 —0.1523 0.0625 —0.0459 <€
6 1.7188 1.75| 1.7344| —0.0459 0.0625 0.00814

Important notes
- This approach is very slow in reaching the approximate root. The number of
iterations is very large.
- The root in some problems can be missed.

[9]
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Ex: Find the third approximate root for f(x) = vx — cos(x) in [0,1].

n a b C f(a) f(b) f(c)
180 180
1 0 1 0.5 -1 \/T—COS<1XT) VO.S—COS<0.5XT>
= (0.4597 =—0.17048
2 05 1 0.75 —-0.17048 0.4597 0.13434
3 0.5 0.75 0.625 —-0.17048 0.13434 —0.02039

Then p; = 0.625.

Ex: Find the fourth approximate root for f(x) = 3(x +1)(x— 0.5)(x — 1) in [—2,1.5].

n a b C f(a) f(b) f(c)
1 =2 1.5 —0.25 —22.5 3.75 2.1094
2 =2 —-0.25 —-1.125 —22.5 2.1094 -1.2949

3 —-1125 -0.25 -0.6875 -1.2949 2.1094 -0.6875
4 —-1.125 -0.6875 | —0.9063 | —1.2949 -0.6875 0.75358

Then p, = —0.9063

Now, let us use the above method to solve the following nonlinear programming problem.
Max (or Min ) f(x)
s.t. as<x<b

Bisection steps

Step 1: calculate the middle of the interval [a,b], say, ¢ = %. If|f'(c)| < €€ >0 (very small
value) this means that we reach the root, x* = c. Butif |f'(c)| & € we go to step 2.

Step2:

Case 1:if f'(a)f’(c) < 0 this means that the approximate root will be in the interval [a,c]

and we reject the interval [b,c]. Then repeat step 1 until we reach the approximate root.

Case 2: if f'(b)f'(c) < 0 this means that the approximate root will be in the interval [c,b]
and we reject the interval [a,c]. Then repeat step 1 until we reach the approximate root.

[10]



Ex: Use the bisection method to find the optimum solution for the following nonlinear
optimization problem

1
Min f(x) = §X3 — 2%,
s.t 14<x<142; e=107?

_13_ (e — w2 _
Let f(x)—gx 2x = f'(x) =x*—2

n a b C f'(a) f'(b) f'(c) [f'(c)
1 14 142 141 —-0.04 0.0164 —0.0119 <€
2 141 142 1415 -—-0.0119 0.0164 0.00223 <€

Then the optimum solution is x* = ¢ = 1.415 and f;;, = —1.88561

Ex: Use the bisection method to find the optimum solution for the following nonlinear
optimization problem

Min f(x) = x® —3x? + 5,
s.t 1<x<5 e=10"2

Let f(x) =x3—-3x2+5=f'(x) = 3x? — 6x

n ab c f'a f'(b) f'(c) |f'(c)]
1 153 =3 45 9 f €
2 13 2 -3 9 0 <e€

Then the optimum solutionisx* = c= 2 and f,;;, =1

Ex: Use the bisection method to find the optimum solution for the following nonlinear
optimization problem.

1
Min f(x) = x+;,
s.t 05<x<15 e=10"2

1 1
Let fx) =x+-=2>f'x)=1-=
X X

n a b c¢ f'(@ f'(b) f'(c) [f'(c)l
1 05151 -3 5/9 0 <€

[11]



Then the optimum solutionisx* = c=1 and f,;, = 2

Ex: Use the bisection method to find the optimum solution for the following nonlinear
optimization problem.

Max f(x) = x* — 2x3 — 4x? + 4x + 4,

s.st 0<x<1;, e=10"2

Let f(x) = x*—2x3 —4x? +4x+4=>f'(x) = 4x3 — 6x*> — 8x+ 4

a b c f'(a) f'(b) f'(c) |f'(0)

0 1 0.5 4 —6 —1 £ e

0 0.5 0.5 4 —1 16875 = <€
025 05 0375 1.6875 41 036719 <€
0375 05 04375 036719 —1  —031348 <e

0.375 0.4375 0.4063 0.36719 —0.31348 0.02795 <€
0.4063 0.4375 0.4219 0.02795 —0.31348 —0.14281 <€
0.4063 0.4219 0.4141 0.02795 —0.14281 —0.05764 <€
0.4063 0.4141 0.4102 0.02795 —0.05764 —0.0151 <€
0.4063 0.4102 | 0.4083 | 0.02795 —0.0151 0.0056156 <€

O 0O Ul D WN R

Then the optimum solution is x* = ¢ = 0.4083 and f,,,,, = 4.85802

Ex: Use the bisection method to find the optimum solution for the following nonlinear

optimization problem.
1
Min f(x) =x2+ <

s;st 05<x<15 =102

1 1
Let f(x) = x? +;=> f'(x) =2x——

XZ
a b C f'(a) f'(b) f'(c) If' (o)
05 1.5 1 —3 2.5556 1 £e
0.5 1 0.75 -3 1 —0.27778 <€
0.75 1 0875 —027778 1 044388 <€

0.75 0875 0.8125 -0.27778 0.44388 0.11021 ¥ €
0.75 08125 0.7813 -—-0.27778 0.11021 -—-0.075590 <€
0.7813 0.8125 0.7969 —-0.075590 0.11021 0.01912 ¥ €
0.7813 0.7969 0.7891 —-0.075590 0.01912 -0.02776 * €
0.7891 0.7969 | 0.793 | —0.02776 0.01912 -0.0042069 <€

RO NONUL D WN RS

Then the optimum solution is x* = ¢ = 0.793 and f;;,, = 1.88988.
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Newton - Raphson
Suppose the function f: [a,b] = R is defined and continuous on its domain. In addition, its
derivative existed in the open interval (a, b).

Method steps for the root of a function:
Step 1: Guess the initial root x,.
Step 2: use the following recursive relation to get the other roots

f(x
Xn+1 = Xn - f,((Tn)); n= 0}1)2; ey f,(Xn) ¢ 0
n

Step 3: If [f(x,41)| < € then x* = X, is the best approximate root for the function.

Method steps for the optimum solution of a nonlinear optimization problem:
Suppose the following problem:
Max (or Min ) f(x)
s.t. as<x<b
Step 1: Guess the initial optimum solution at x,,.
Step 2: use the following recursive relation to get the other roots

f'(xy) "
Xn+1 = Xp — m; n=01.2,..,f (Xn) # 0
n
Step 3: If |f' (Xp41)| < € then x* = x,,,, is the best approximate optimum solution.
f'(x
Xpt1 = Xp — %; n=012,..f"(x,) #0
n

Ex: Find the approximate root for the function f(x) = e™ — sin (%) Assume that x, =1

with efficiency degree e = 107%.

v f(x) = e — sin (§) = /00 = —e™* ~ 5 cos (E)

2 2
o 5 e () - o S

Substituting in the recursive relation we get,

_ . (XTI
eXn—sm(rZ‘)

—emn — cos (47)

Xp+1 = Xp — ;n=0,12,..,f(x,)#0

[13]



_ . (XTI
eXO—sm(O)

2
X, = X =1- =1-————=2-¢
° —e‘Xo — %cos (X%n) —e 1 — gcos (g) —e1 =0
= —0.7183,|f(x,)| £ €
e *1 — sin (X‘;T) 07183 _ gip (2 x —0.7183 X @)
Xy = X4 — X, T = —0.7183 — = 180
—e X1 — 7COS( > ) —e0.7183 5 COS (2 X —0.7183 % —)
= 0.3666, |[f(x,)| £ €
e0-3666 _ gin (2 x 0.3666 X %)
x; = 0.3666 — . o = 0.4405,1f(x3)| £ €
—e~0.3666 _ > COS (2 X 0.3666 X —)
e~ 04405 _ qip (2 x 0.4405 x %)
x4 = 0.4405 — = (0.4436,

—e 04405 gcos (2 X 0.4405 X @)

If(x,)| = 0.000048866 < €

Then the approximate rootis x* = x, = 0.4436.

Ex: Find the approximate root for the function f(x) = x® — vx — 1. Assume that x, = 1.5
with efficiency degree e = 1074,

1
fx)=x3—-Vx=1 =X =3x*-——
&) ®) 2v/x
Substituting in the recursive relation we get,

B Xp—Vx,—1 ,
Xp+1 = Xp — = 0,12,..,f'(xy) #0
3xZ —

2y/Xn
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(1.5)3 —-vV15-1

X; = 15— T = 1.3186, If(x1)| £ €
3(1.5)? - —
(1.5) 2V1.5
(1.3186)3 —v1.3186 — 1
X, = 1.3186 — 1 = 1.2884, |f(x,)| = 0.003634 « €
3(1.3186)? - ——
( ) 2+/1.3186
1.2884)3 —/1.2884 — 1
X3 = 1.2884 — ( ) T = 1.2876, |f(x5)] = 0.000005 < €
3(1.2884)? — ———
( ) 2+/1.2884

Then the approximate rootis x* = x; = 1.2876.

Ex: Find an approximate value for v2. Assume that x, = 1.2 with efficiency degree € =
107%,

Let x=vV2=2x2=2=f(x) =x%—2,f'(x) = 2x

Then, |
Ny = (xn +1—‘> n=012,..
X+
m 2
X1 = 1.4333, [f(x1)| £ €
xz//>1.4143, |f(x,)| = 0.003634 £ €
%, ~ 1.4142, |f(x,)| = 0.00004 < €

So, the approximate value for V2 isx, = 1.4142.

Ex: Find the approximate root for the equation x3 — 2x — 5 = 0 . Assume that x, = 2 with
efficiency degree e = 1074,

[15]
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f(x)=x3-2x—5 =f'(x)=3x2-2
Substituting in the recursive relation we get,

Xn—2Xp—5  2x5+5

Xn+1 = Xp — 3x2 —2  3x2— 2’ = 0.L2,..
2(2)2+5
Xl = 3(2)—2_2 = 21, |f(X1)| $ €
2(21)3 +5
_ 2@ = 2.094568121, [f(x2)]| % €

X2 =301 -2

| 2(2.094568121)% + 5
3 = 3(2.094568121)% — 2

= 2.094551482, = |f(x3)| =6 x 1079 < ¢

Then the approximate rootis x* = x; = 2.094551482.

Ex: Find the approximate root for the equation e* = x + 5 . Assume that x, = 0.96 with
efficiency degree e = 1073,

v f(x) =e?*—x—=5 =f/(x)=2e*-1
Substituting in the recursive relation we get,

e’ —xp—5  (2xp—Deg*+1

Xnt1 = Xp — et — 1 P Ta— :n=20,1,2, ..
(2(0.96) — 1)e*®%® 41
X, = PGS ‘l : =~ 0.9710, If(x,)] < €
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(2(0.9710) — 1)e>©°71) 4 1
X2 = 2e2(0.9710) _ |

Then the approximate rootis x* = x, = 0.97009.

= 09709,  |f(x,)] =3.88x107*<¢

Ex: Find the approximate optimum solution for the following nonlinear optimization

problem.

Min S(x) = x2 +1n?(x),

s.t 05<x<1;x,=0.65¢€=10"8

+S(x) = x2 +1n?(x) = S'(x)

2%+ 2In(x) = 2 (2 + In(x), 8" (x) = 2 (1 fi lm(x))
B X X ’ B x2 @ x2

Substituting in the recursive relation we get,

2 5
X =X, — g(xn +In(xp)) _ Xn — 2xn In(xp) ‘n
n+l1 = “n - n = |
2<1 +l2_121n(xn)> 1+ x2 =In(x,)
Xn Xn

_0.65 — 2(0.65) In(0.65)
X1 = 1717(0.65)2 — In(0.65)

= 0.65290506,

~0.65290506 — 2(0.65290506) In(0.65290506)

X2 = T 1 (0.65290506)2 — In( 0.65290506)
IS"(x,)] = 3.64 X 1079 < €

=01,2,..,

IS'(x)] = 1.18 X 10™* £ €

= 0.65291864,

Then the optimum solution is x* = 0.65291864 and hence, S,,;;, = 0.60803679.

Ex: Find the approximate optimum solution for the following nonlinear optimization

problem.

Min f(x) =x+ 1/x,

s.t 05<x<15;x,=06,e=10"°

[17]


kooy
Pencil


1 1 2
) =x+-=2®=1-=5 ") ==
X X X

Substituting in the recursive relation we get,

1 1
T x2 —x,(x2-3
Xn+1 = Xn — an = n( Zn ),n = 0;1121 ey

Xn

—0.6[(0.6)2 —3
X, = LC > ) | = 0.792, If'(x1)]

= 0.5942250791 £ €

—0.792[(—0.792)% — 3] ,
X, = 5 = 0.939603456, I (x2)

= 0.1326892766 £ €

—0.939603456[(0.939603456)% — 3]
X3 = z = 0.9946385417, If' (x3)]

= 0.5942250791 £ €

—0.9946385417[(—0.9946385417)% — 3]

X, = > = 0.9999569592, |f'(x,)| = 8.61 x 10~°
fe€
—0.9999569592[(0.9999569592)% — 3]
Xg = . =0.9999999972,  |f'(xs)| = 5.6 X 10~°
fe€
—0.9999999972[(—0.9999999972)? — 3]
X = > =1, If'(x)| =0 <€

Then the optimum solution is x* = 1 and hence, f,,;, = 2.
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