Lecture notes on: Nonlinear optimality in one dimension

The main aim of this chapter is to:

- Calculate the roots of function and its derivative.
- Calculate the critical points of a function on where maximum or minimum value of the function occurred.
- Applying some mathematical procedures such as direct solution, Bisection and Newton Raphson to solve nonlinear programming problems in one variable.

Nonlinear function: It is a type of function that cannot be written in the following form:

$$f(\bar{x}) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n = \sum_{i=1}^{n} c_i x_i,$$

$$\bar{x} = (x_1, x_2, \dots, x_n)$$

Where, c_i , i = 1, 2, ..., n is constant.

Examples of nonlinear functions:

```
(i) f(x) = x \sin(x),

(ii) f(x) = x^2 + 2x - 1,

(iii) f(x) = \frac{1}{x} + \log(x^2 + 1),

(iv) f(x) = x \sin(x) + \cos(x) + e^x,

(v) f(x) = \ln(\sqrt{x}) + 3x^3 - \tan(x)
```

Nonlinear programming: Suppose we have the following program:

```
 \begin{array}{ll} \text{Max (or Min)} & f(x) \\ \text{s. t.} & g_i(x) \leq b_i; i = 1, 2, ..., m \\ & h_j(x) = a_j; j = 1, 2, ..., l \\ & a_j, b_i \geq 0. \end{array}
```

This program is called nonlinear if one of the following conditions is satisfied:

- The objective function f(x) is nonlinear.
- The objective function and one of the constraints are nonlinear.
- The objective function and constraints are nonlinear.

Types of Nonlinear programming

- Constrained programming: it has at least one constraint.
- Unconstrained programming: it has no constraints.

Nonlinear optimality in one variable

We study in this chapter the following type of unconstrained optimization problem

Max (or Min)
$$f(x)$$

s. t. $a \le x \le b$

We assume that the function f(x) is well-defined on the closed interval [a,b]. We assume also that it is continuous on its domain. Its derivatives are existed on the open interval (a,b).

local and global minimum/maximum points

Local minimum point: A point $x^* \in [a, b]$ is said to be a local minimum point for the function $f: [a, b] \to \mathbb{R}$ if $f(x^*) \le f(x) \ \forall \ x \in (c, d) \subseteq [a, b]$.

Local maximum point: A point $x^* \in [a, b]$ is said to be a local maximum point for the function $f: [a, b] \to \mathbb{R}$ if $f(x^*) \ge f(x) \ \forall \ x \in (c, d) \subseteq [a, b]$

Global minimum point: A point $x^* \in [a, b]$ is said to be a global minimum point for the function $f: [a, b] \to \mathbb{R}$ if $f(x^*) \le f(x) \ \forall \ x \in [a, b]$.

Global maximum point: A point $x^* \in [a, b]$ is said to be a local maximum point for the function $f: [a, b] \to \mathbb{R}$ if $f(x^*) \ge f(x) \ \forall \ x \in [a, b]$

Unimodal function: A function $f:[a,b] \to \mathbb{R}$ is said to be unimodal function if one of the following conditions is satisfied:

(i)
$$\exists x^* \in [a,b], \forall x_1, x_2 \in [a,b] \text{ if } x^* < x_1 < x_2 \Rightarrow f(x^*) < f(x_1) < f(x_2) \text{ or } (ii) \exists x^* \in [a,b], \forall x_3, x_4 \in [a,b] \text{ if } x^* > x_4 > x_3 \Rightarrow f(x^*) < f(x_4) < f(x_3)$$

and in this case the point x^* is global minimum point.

Or one of the following conditions is satisfied:

(i)
$$\exists x^* \in [a, b], \forall x_1, x_2 \in [a, b] \text{ if } x^* < x_1 < x_2 \Rightarrow f(x^*) > f(x_1) > f(x_2) \text{ or }$$

(ii)
$$\exists x^* \in [a, b], \forall x_3, x_4 \in [a, b] \text{ if } x^* > x_4 > x_3 \Rightarrow f(x^*) > f(x_4) > f(x_3)$$

and in this case the point x* is global maximum point.

Note: Unimodal function may be discontinuous, undifferentiable.

Important definitions

- (1) Root point: for a function f(x), $f: \mathbb{R} \to \mathbb{R}$ the value of the x that makes f(x)=0 is called a root point.
- (2) fixed point: for a function f(x), $f: \mathbb{R} \to \mathbb{R}$ the value of the x that makes f(x)=x is called a fixed point.
- (3) Stationary point: for a function f(x), $f: \mathbb{R} \to \mathbb{R}$ the value of the x that makes f'(x) = 0 is called a point Stationary
- (4) local minimum point: for a function f(x), $f:[a,b] \to \mathbb{R}$ the point $x_o \in (a,b)$ is a local minimum point if $f'(x_o) = 0$ and $f''(x_o) > 0$.
- (4) local maximum point: for a function f(x), $f:[a,b] \to \mathbb{R}$ the point $x_o \in (a,b)$ is a local maximum point if $f'(x_o) = 0$ and $f''(x_o) < 0$.
- (5) Saddle point: for a function f(x), $f:[a,b] \to \mathbb{R}$ the point $x_o \in (a,b)$ is a saddle point if $f'(x_o) = 0$ and it is neither minimum nor maximum.
- (6) Inflection point: for a function f(x), $f:[a,b] \to \mathbb{R}$ the point $x_o \in (a,b)$ is an inflection point if $f'(x_o) = 0$ and $f''(x_o \epsilon)f''(x_o + \epsilon) < 0$ where $\epsilon > 0$.

 $f'(x) = 2x - 2 \Rightarrow 2x - 2 = 0 \Rightarrow x = 1$

Theory: For the functions with one variable,

- (1) If x_0 is saddle point, then it is an inflection point.
- (2) If x_0 is an inflection point, then it is not necessary to be a saddle point.

Optimality conditions

For a function f(x), $f: [a, b] \to \mathbb{R}$, $x_o \in [a, b]$, $f'(x_o) = f''(x_o) = 0$ and $f^n(x_o) \neq 0$ where n is the high non-zero ranked derivative then:

- (1) x_o is saddle point if n is odd.
- (2) x_o is minimum point if n is even and $f^n(x_o) > 0$.
- (3) x_o is maximum point if n is even and $f^n(x_o) < 0$.

Ex: Discuss the properties of the following function: $f(x) = x^5 - 2x^3$

Let
$$f(x) = 0 \Rightarrow x^5 - 2x^3 = x^3(x^2 - 2) = 0 \Rightarrow$$
 So the roots are $x = 0, \pm \sqrt{2}$

Let
$$f(x) = x \Rightarrow x^5 - 2x^3 - x = x(x^4 - 2x^2 - 1) = 0 \Rightarrow x = 0 \text{ or } x^4 - 2x^2 - 1 = 0$$

 $x^4 - 2x^2 - 1 = 0 \Rightarrow x^2 = \frac{2 \pm \sqrt{8}}{2} = 1 \pm \sqrt{2} \Rightarrow x^2 = 1 + \sqrt{2} \text{ since } 1 - \sqrt{2} < 0 \Rightarrow x$
 $= \pm \sqrt{1 + \sqrt{2}}$

So, the fixed points are: $x = 0, \pm \sqrt{1 + \sqrt{2}}$

Let
$$f'(x) = 0 \Rightarrow 5x^4 - 6x^2 = x^2(5x^2 - 6) = 0 \Rightarrow x = 0 \text{ or } 5x^2 = 6 \Rightarrow x = \pm \sqrt{\frac{6}{5}}$$

The stationary points become $x = 0, \pm \sqrt{\frac{6}{5}}$

$$f''(x) = 20x^3 - 12x \Rightarrow f''(0) = 0 \Rightarrow f'''(x) = 60x^2 - 12 \Rightarrow f'''(0) = -12 \neq 0$$

$$f''\left(\sqrt{\frac{6}{5}}\right) \cong 13.15 > 0,$$

$$f''\left(-\sqrt{\frac{6}{5}}\right) \cong -13.15 < 0$$

The point x=0 is saddle point and hence it is inflection point. The point $x=\sqrt{6}/5$ is a minimum point while $x=-\sqrt{6}/5$ is a maximum point.

Ex: Discuss the properties of the following function: $f(x) = ax + \frac{b}{x}$ where x>0, a and b are constants.

Let $f(x) = 0 \Rightarrow ax + \frac{b}{x} = \frac{ax^2 + b}{x} = 0 \Rightarrow ax^2 + b = 0$. This equation has no real solutions. So, there are no real roots.

Let
$$f(x) = x \Rightarrow ax + \frac{b}{x} = x \Rightarrow (1 - a)x^2 - b = 0 \Rightarrow$$

 $\begin{cases} if & 0 < a < 1 \Rightarrow x = \sqrt{\frac{b}{1 - a}} \\ if & a > 1 \end{cases} \Rightarrow x \notin \mathbb{R}$

So, the function has no real fixed points at a>1. It has a unique fixed value at 0< a<1

Let $f'(x) = 0 \Rightarrow a - \frac{b}{x^2} = 0 \Rightarrow x^2 = \frac{b}{a} \Rightarrow x = \frac{4}{\sqrt{b/a}}$ which represents the unique stationary point.

$$f''(x) = \frac{2b}{x^3} \Rightarrow f''\left(\sqrt{\frac{b}{a}}\right) = 2a\sqrt{\frac{a}{b}} > 0$$

$$f_{\min} = a\left(\sqrt{\frac{b}{a}}\right) + \frac{b}{\sqrt{\frac{b}{a}}} = 2\sqrt{ab}$$

So, $x = \sqrt{b/a}$ is a minimum point. while $x = -\sqrt{b/a}$ is a maximum point.

Methods of solving nonlinear programming problems in one variable

- (1) Direct solution method.
- (2) Elimination methods: we focus on the Bisection method in this type.
- (3) Interpolation methos: we highlight only Newton-Raphson one.
- [1] Direct solution method: Suppose the following nonlinear programming problem:

Max (or Min)
$$f(x)$$

s. t. $a \le x \le b$

s. t. $a \le x \le b$ Where, f: $[a, b] \to \mathbb{R}$. The method's steps are given as follows.

Step1: Calculate all the stationary points for the function f(x), i.e., f'(x) = 0.

Step2: evaluate all the value of f(x) at the stationary points including f(a) and f(b).

Step3: The optimum solution is the solution giving minimum value or maximum value for the function (where the function is to be maximized or minimized).

Drawbacks of this method

- The method fails to attain the optimum solution if the objective function is not continuous on its domain.
- It also fails to get the optimum solution if the objective function is not differentiable.
- If the stationary points are impossible to obtain, we cannot apply the method.

Ex: Find the optimum solution for the following nonlinear optimization problem:

Max
$$f(x) = x(5\pi - x)$$

s.t $0 \le x \le 20$; $\pi \cong 3.14$

Let
$$f'(x) = 0 \Rightarrow 5\pi - 2x = 0 \Rightarrow x = \frac{5\pi}{2} \approx 7.85 \in [0,20]$$

X	x 0 7.8		20
f(x)	0	61.69	-85.84

$$\Rightarrow$$
 f_{max} = 61.69 at x \cong 7.85

Ex: Find the optimum solution for the following nonlinear optimization problem:

Max
$$f(x) = -x^3 + 3x^2 + 9x + 10$$

s.t $-2 \le x \le 4$

Let
$$f'(x) = 0 \Rightarrow -3x^2 + 6x + 9 = 0 \Rightarrow (x+1)(x-3) = 0 \Rightarrow x = -1,3 \in [-2,4]$$

X	-2	-1	3	4
f(x)	12	5	37	30

$$\Rightarrow$$
 f_{max} = 37 at x \cong 3

Ex: Find the optimum solution for the following nonlinear optimization problem:

Max
$$f(x) = x^4 - 16x^3 + 91x^2 - 216x + 180$$

s.t $3.2 \le x \le 5$

Let
$$f'(x) = 0 \Rightarrow f'(x) = 4x^3 - 48x^2 + 182x - 216 = 0$$

To get the roots for the above polynomial we test the factors of 216 as follows.

$$216 = 2 \times 3 \times 4 \times 9$$
 but 2,3,9 \notin [3.2,5] so, we have only x=4.

X	3.2	4	5
f(x)	1.2096	4	0

$$\Rightarrow$$
 f_{max} = 4 at x = 4

Ex: Find the optimum solution for the following nonlinear optimization problem:

Max
$$f(x) = (\ln(x))^3 - 2(\ln(x))^2 + \ln(x)$$
,
s.t $1 \le x \le e^3$; $e \cong 2.72$

Let
$$y = \ln(x) \Rightarrow \text{if } 1 \le x \le e^3 \Rightarrow 0 \le y \le 3$$
, $g(y) = y^3 - 2y^2 + y$,
 $\Rightarrow g'(y) = 3y^2 - 4y + 1$, $g''(y) = 6y - 4$,
Let $g'(y) = 0 \Rightarrow 3y^2 - 4y + 1 = (3y - 1)(y - 1) = 0 \Rightarrow y = \frac{1}{3}$, $1 \in [0,3]$
 $g''\left(y = \frac{1}{3}\right) = 2 - 4 < 0$, $g''(y = 1) = 6 - 4 > 0$
So, at $y = \frac{1}{3}$ $g(y)$ has maximum value.

у	0	$\frac{1}{3}$	1	3
g(y)	0	$\frac{4}{27}$	0	11

$$\Rightarrow$$
 g_{max} = 11 at y = 3, at y = 3 \Rightarrow 3 = ln(x) \Rightarrow x = e³ and f_{max}(e³) = 12

Bisection method

Finding the root of a function

Let us suppose that the function $f: [a, b] \to \mathbb{R}$ is defined and continuous on its domain [a, b]. It is also differentiable on the open interval (a, b). If f(a)f(b) < 0 then the function may have a root.

Bisection steps

Step 1: calculate the middle of the interval [a,b], say, $c = \frac{a+b}{2}$. If $|f(c)| \le \epsilon, \epsilon > 0$ (very small value) this means that we reach the root, $x^* = c$. But if $|f(c)| \le \epsilon$ we go to step 2.

Step2:

Case 1: if f(a)f(c) < 0 this means that the approximate root will be in the interval [a,c] and we reject the interval [b,c]. Then repeat step 1 until we reach the approximate root.

Case 2: if f(b)f(c) < 0 this means that the approximate root will be in the interval [c,b] and we reject the interval [a,c]. Then repeat step 1 until we reach the approximate root.

Ex: Find an approximate value for the root of $f(x) = x^2 - 3$ in [1,2] with $\epsilon = 10^{-2}$

a	b	С	f(a)	f(b)	f(c)	f (c)
1	2	3/2	-2	1	-3/4	3/4

It is clear that $|f(c)| \le \epsilon$ and hence $c = \frac{3}{2}$ is root. One can see that f(b)f(c) < 0 and then we exclude the interval [a, c].

a b 3 2 /2	c 1.75	f(a) -3 /4	f(b) 1	f (c) 0.0625	f(c) 5 0.0625		a=3/2 f(a)=-3	c=1. 3/4 f(c)=0	75 b=2 0.0625 f(b)=	
	b	c	f(a)	f(b)	f(c)	f(c)	a=3/2		625 b=1.7	· 5
1.5 1.	75 1.	625 (0.0625	1	-0.3594	1, 1	f(a)=-	c=1. ve f(c)=	020	
a 1.625	b 1.75	c 1.6875	f(a) $5 -0.3$		f(b) f (0.0625 -0		(c) a=1.6 1523 f(a)=-			
a	b	С	f	(a)	f(b)	f(c)	f(c)	a=1.6875	c=1.7188	b=1.75
1.6875	1.75	1.718	88 –	0.1523	0.0625	-0.0459	0.0459	f(a)=-ve	f(c)=-ve	f(b)=+ve
	·	•	·							
a	b	С	f	(a)	f(b)	f(c)	$ \mathbf{f}(\mathbf{c}) $	a=1.7188	c=1.7344	b=1.75
1.7188	1.75	1.73	344 –	0.0459	0.0625	0.00814	0.00814	f(a)=-ve	f(c)=+ve	f(b)=+ve

Now, $|f(c)| < \epsilon$ and then c = 1.7344 is an approximate root. The above solution can be summarized in the following table.

n	a	b	С	f(a)	f(b)	f(c)	f (c)
1	1	2	1.5	-2	1	-0.75	≰€
2	1.5	2	1.75	-0.75	1	0.0625	≰€
3	1.5	1.75	1.625	0.0625	1	-0.3594	≰€
4	1.625	1.75	1.6875	-0.3594	0.0625	-0.1523	≰€
5	1.6875	1.75	1.7188	-0.1523	0.0625	-0.0459	≰€
6	1.7188	1.75	1.7344	-0.0459	0.0625	0.00814	< ε

Important notes

- This approach is very slow in reaching the approximate root. The number of iterations is very large.
- The root in some problems can be missed.

Ex: Find the third approximate root for $f(x) = \sqrt{x} - \cos(x)$ in [0,1].

n	a	b	C	f(a)	f(b)	f(c)
1	0	1	0.5	-1	$\sqrt{1} - \cos\left(1 \times \frac{180}{\pi}\right) = 0.4597$	$ \sqrt{0.5} - \cos\left(0.5 \times \frac{180}{\pi}\right) \\ = -0.17048 $
2	0.5	1	0.75	-0.17048	0.4597	0.13434
3	0.5	0.75	0.625	-0.17048	0.13434	-0.02039

Then $p_3 = 0.625$.

Ex: Find the fourth approximate root for f(x) = 3(x+1)(x-0.5)(x-1) in [-2,1.5].

n	a	b	С	f(a)	f(b)	f(c)
1	-2	1.5	-0.25	-22.5	3.75	2.1094
2	-2	-0.25	-1.125	-22.5	2.1094	-1.2949
3	-1.125	-0.25	-0.6875	-1.2949	2.1094	-0.6875
4	-1.125	-0.6875	-0.9063	-1.2949	-0.6875	0.75358

Then $p_4 = -0.9063$

Now, let us use the above method to solve the following nonlinear programming problem.

Max (or Min)
$$f(x)$$

s. t. $a \le x \le b$

Bisection steps

Step 1: calculate the middle of the interval [a,b], say, $c = \frac{a+b}{2}$. If $|f'(c)| \le \epsilon, \epsilon > 0$ (very small value) this means that we reach the root, $x^* = c$. But if $|f'(c)| \le \epsilon$ we go to step 2.

Step2:

Case 1: if f'(a)f'(c) < 0 this means that the approximate root will be in the interval [a,c] and we reject the interval [b,c]. Then repeat step 1 until we reach the approximate root.

Case 2: if f'(b)f'(c) < 0 this means that the approximate root will be in the interval [c,b] and we reject the interval [a,c]. Then repeat step 1 until we reach the approximate root.

Ex: Use the bisection method to find the optimum solution for the following nonlinear optimization problem

Min
$$f(x) = \frac{1}{3}x^3 - 2x$$
,
s.t $1.4 \le x \le 1.42$; $\epsilon = 10^{-2}$

Let
$$f(x) = \frac{1}{3}x^3 - 2x \Rightarrow f'(x) = x^2 - 2$$

n	a	b	С	f '(a)	f ′(b)	f'(c)	$ \mathbf{f}'(\mathbf{c}) $
1	1.4	1.42	1.41	-0.04	0.0164	-0.0119	≰ε
2	1.41	1.42	1.415	-0.0119	0.0164	0.00223	< ε

Then the optimum solution is $x^* = c = 1.415$ and $f_{min} = -1.88561$

Ex: Use the bisection method to find the optimum solution for the following nonlinear optimization problem

Min
$$f(x) = x^3 - 3x^2 + 5$$
,
s.t $1 \le x \le 5$; $\epsilon = 10^{-2}$

Let
$$f(x) = x^3 - 3x^2 + 5 \Rightarrow f'(x) = 3x^2 - 6x$$

n	a	b	C	f'(a)	f'(b)	f'(c)	$ \mathbf{f}'(\mathbf{c}) $
1	1	5	3	-3	45	9	≰ϵ
2	1	3	2	-3	9	0	< ε

Then the optimum solution is $x^* = c = 2$ and $f_{min} = 1$

Ex: Use the bisection method to find the optimum solution for the following nonlinear optimization problem.

Min
$$f(x) = x + \frac{1}{x}$$
,
s.t $0.5 \le x \le 1.5$; $\epsilon = 10^{-2}$

Let
$$f(x) = x + \frac{1}{x} \Rightarrow f'(x) = 1 - \frac{1}{x^2}$$

n	a	b	С	f'(a)	f ′(b)	f'(c)	$ \mathbf{f}'(\mathbf{c}) $
1	0.5	1.5	1	-3	5/9	0	< ε

Then the optimum solution is $x^*=c=1\,$ and $\,f_{min}=2\,$

Ex: Use the bisection method to find the optimum solution for the following nonlinear optimization problem.

Max
$$f(x) = x^4 - 2x^3 - 4x^2 + 4x + 4$$
,
s.t $0 \le x \le 1$; $\epsilon = 10^{-2}$

Let
$$f(x) = x^4 - 2x^3 - 4x^2 + 4x + 4 \Rightarrow f'(x) = 4x^3 - 6x^2 - 8x + 4$$

n	a	b	С	f '(a)	f'(b)	f '(c)	$ \mathbf{f}'(\mathbf{c}) $
1	0	1	0.5	4	-6	-1	≰ε
2	0	0.5	0.25	4	-1	1.6875	≰ε
3	0.25	0.5	0.375	1.6875	41	0.36719	≰€
4	0.375	0.5	0.4375	0.36719	-1	-0.31348	≰€
5	0.375	0.4375	0.4063	0.36719	-0.31348	0.02795	≰€
6	0.4063	0.4375	0.4219	0.02795	-0.31348	-0.14281	≰€
7	0.4063	0.4219	0.4141	0.02795	-0.14281	-0.05764	≰€
8	0.4063	0.4141	0.4102	0.02795	-0.05764	-0.0151	≰€
9	0.4063	0.4102	0.4083	0.02795	-0.0151	0.0056156	< ε

Then the optimum solution is $x^* = c = 0.4083$ and $f_{max} = 4.85802$

Ex: Use the bisection method to find the optimum solution for the following nonlinear optimization problem.

Min
$$f(x) = x^2 + \frac{1}{x}$$
,
s.t $0.5 \le x \le 1.5$; $\epsilon = 10^{-2}$

Let
$$f(x) = x^2 + \frac{1}{x} \Rightarrow f'(x) = 2x - \frac{1}{x^2}$$

n	a	b	C	f '(a)	f ′(b)	f '(c)	$ \mathbf{f}'(\mathbf{c}) $
1	0.5	1.5	1	-3	2.5556	1	≰ϵ
2	0.5	1	0.75	-3	1	-0.27778	≰€
3	0.75	1	0.875	-0.27778	1	0.44388	≰€
4	0.75	0.875	0.8125	-0.27778	0.44388	0.11021	≰€
5	0.75	0.8125	0.7813	-0.27778	0.11021	-0.075590	≰€
6	0.7813	0.8125	0.7969	-0.075590	0.11021	0.01912	≰€
7	0.7813	0.7969	0.7891	-0.075590	0.01912	-0.02776	≰€
8	0.7891	0.7969	0.793	-0.02776	0.01912	-0.0042069	< ε

Then the optimum solution is $x^* = c = 0.793$ and $f_{min} = 1.88988$.

Newton - Raphson

Suppose the function $f: [a, b] \to \mathbb{R}$ is defined and continuous on its domain. In addition, its derivative existed in the open interval (a, b).

Method steps for the root of a function:

Step 1: Guess the initial root x_0 .

Step 2: use the following recursive relation to get the other roots

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}; n = 0,1,2,...,f'(x_n) \neq 0$$

Step 3: If $|f(x_{n+1})| \le \epsilon$ then $x^* = x_{n+1}$ is the best approximate root for the function.

Method steps for the optimum solution of a nonlinear optimization problem: Suppose the following problem:

Max (or Min)
$$f(x)$$

s.t. $a \le x \le b$

Step 1: Guess the initial optimum solution at x_0 .

Step 2: use the following recursive relation to get the other roots

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}; n = 0,1,2,...,f''(x_n) \neq 0$$

Step 3: If $|f'(x_{n+1})| \le \epsilon$ then $x^* = x_{n+1}$ is the best approximate optimum solution.

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}; n = 0,1,2,...,f''(x_n) \neq 0$$

Ex: Find the approximate root for the function $f(x) = e^{-x} - \sin\left(\frac{x\pi}{2}\right)$. Assume that $x_o = 1$ with efficiency degree $\epsilon = 10^{-4}$.

$$f(x) = e^{-x} - \sin\left(\frac{x\pi}{2}\right) \qquad \Rightarrow f'(x) = -e^{-x} - \frac{\pi}{2}\cos\left(\frac{x\pi}{2}\right)$$

$$\therefore f(x_n) = e^{-x_n} - \sin\left(\frac{x_n\pi}{2}\right) \Rightarrow f'(x_n) = -e^{-x_n} - \frac{\pi}{2}\cos\left(\frac{x_n\pi}{2}\right)$$

Substituting in the recursive relation we get,

$$x_{n+1} = x_n - \frac{e^{-x_n} - \sin\left(\frac{x_n\pi}{2}\right)}{-e^{-x_n} - \frac{\pi}{2}\cos\left(\frac{x_n\pi}{2}\right)}; n = 0,1,2,...,f'(x_n) \neq 0$$

$$\begin{aligned} x_1 &= x_0 - \frac{e^{-x_0} - \sin\left(\frac{x_0\pi}{2}\right)}{-e^{-x_0} - \frac{\pi}{2}\cos\left(\frac{x_0\pi}{2}\right)} = 1 - \frac{e^{-1} - \sin\left(\frac{\pi}{2}\right)}{-e^{-1} - \frac{\pi}{2}\cos\left(\frac{\pi}{2}\right)} = 1 - \frac{e^{-1} - 1}{-e^{-1} - 0} = 2 - e \\ &\cong -0.7183, |f(x_1)| \le \epsilon \end{aligned}$$

$$x_{2} = x_{1} - \frac{e^{-x_{1}} - \sin\left(\frac{x_{1}\pi}{2}\right)}{-e^{-x_{1}} - \frac{\pi}{2}\cos\left(\frac{x_{1}\pi}{2}\right)} = -0.7183 - \frac{e^{-0.7183} - \sin\left(\frac{\pi}{2} \times -0.7183 \times \frac{180}{\pi}\right)}{-e^{0.7183} - \frac{\pi}{2}\cos\left(\frac{\pi}{2} \times -0.7183 \times \frac{180}{\pi}\right)}$$

$$\approx 0.3666, |f(x_{2})| \le \epsilon$$

$$x_3 = 0.3666 - \frac{e^{-0.3666} - \sin\left(\frac{\pi}{2} \times 0.3666 \times \frac{180}{\pi}\right)}{-e^{-0.3666} - \frac{\pi}{2}\cos\left(\frac{\pi}{2} \times 0.3666 \times \frac{180}{\pi}\right)} \cong 0.4405, |f(x_3)| \nleq \epsilon$$

$$\begin{aligned} x_4 &= 0.4405 - \frac{e^{-0.4405} - \sin\left(\frac{\pi}{2} \times 0.4405 \times \frac{180}{\pi}\right)}{-e^{-0.4405} - \frac{\pi}{2}\cos\left(\frac{\pi}{2} \times 0.4405 \times \frac{180}{\pi}\right)} &\cong 0.4436, \\ |f(x_4)| &\cong 0.000048866 < \varepsilon \end{aligned}$$

Then the approximate root is $x^* = x_4 = 0.4436$.

Ex: Find the approximate root for the function $f(x) = x^3 - \sqrt{x} - 1$. Assume that $x_0 = 1.5$ with efficiency degree $\epsilon = 10^{-4}$.

$$f(x) = x^3 - \sqrt{x} - 1 \qquad \Rightarrow f'(x) = 3x^2 - \frac{1}{2\sqrt{x}}$$

Substituting in the recursive relation we get,

$$x_{n+1} = x_n - \frac{x_n^3 - \sqrt{x_n} - 1}{3x_n^2 - \frac{1}{2\sqrt{x_n}}}; n = 0,1,2,...,f'(x_n) \neq 0$$

$$x_1 = 1.5 - \frac{(1.5)^3 - \sqrt{1.5} - 1}{3(1.5)^2 - \frac{1}{2\sqrt{1.5}}} \cong 1.3186,$$
 $|f(x_1)| \le \epsilon$

$$x_2 = 1.3186 - \frac{(1.3186)^3 - \sqrt{1.3186} - 1}{3(1.3186)^2 - \frac{1}{2\sqrt{1.3186}}} \cong 1.2884, \quad |f(x_2)| \cong 0.003634 \le \epsilon$$

$$x_3 = 1.2884 - \frac{(1.2884)^3 - \sqrt{1.2884} - 1}{3(1.2884)^2 - \frac{1}{2\sqrt{1.2884}}} \cong 1.2876, \qquad |f(x_3)| \cong 0.000005 < \epsilon$$

Then the approximate root is $x^* = x_3 = 1.2876$.

Ex: Find an approximate value for $\sqrt{2}$. Assume that $x_0 = 1.2$ with efficiency degree $\epsilon = 10^{-4}$.

Let
$$x = \sqrt{2} \Rightarrow x^2 = 2 \Rightarrow f(x) = x^2 - 2$$
, $f'(x) = 2x$

Then,

$$x_{n+1} = \left(\frac{x_n}{2} + \frac{1}{x_n}\right); n = 0,1,2,...$$
 $x_1 \cong 1.4333, \qquad |f(x_1)| \nleq \epsilon$
 $x_2 \cong 1.4143, \qquad |f(x_2)| \cong 0.003634 \nleq \epsilon$
 $x_2 \cong 1.4142, \qquad |f(x_2)| \cong 0.00004 < \epsilon$

So, the approximate value for $\sqrt{2}$ is $x_2 = 1.4142$.

Ex: Find the approximate root for the equation $x^3-2x-5=0$. Assume that $x_o=2$ with efficiency degree $\epsilon=10^{-4}$.

$$f(x) = x^3 - 2x - 5 \Rightarrow f'(x) = 3x^2 - 2$$

Substituting in the recursive relation we get,

$$x_{n+1} = x_n - \frac{x_n^3 - 2x_n - 5}{3x_n^2 - 2} = \frac{2x_n^3 + 5}{3x_n^2 - 2}; n = 0,1,2,...$$

$$x_1 = \frac{2(2)^3 + 5}{3(2)^2 - 2} = 2.1,$$
 $|f(x_1)| \le \epsilon$

$$x_2 = \frac{2(2.1)^3 + 5}{3(2.1)^2 - 2} = 2.094568121,$$
 $|f(x_2)| \le \epsilon$

$$x_3 = \frac{2(2.094568121)^3 + 5}{3(2.094568121)^2 - 2} = 2.094551482, |f(x_3)| = 6 \times 10^{-9} < \epsilon$$

Then the approximate root is $x^* = x_3 = 2.094551482$.

Ex: Find the approximate root for the equation $e^{2x}=x+5\,$. Assume that $\,x_o=0.96\,$ with efficiency degree $\,\epsilon=10^{-3}$.

$$f(x) = e^{2x} - x - 5$$
 $\Rightarrow f'(x) = 2e^{2x} - 1$

Substituting in the recursive relation we get,

$$x_{n+1} = x_n - \frac{e^{2x_n} - x_n - 5}{2e^{2x_n} - 1} = \frac{(2x_n - 1)e_n^{2x} + 1}{2e^{2x_n} - 1}; n = 0,1,2,...$$

$$x_1 = \frac{(2(0.96) - 1)e_n^{2(0.96)} + 1}{2e^{2(0.96)} - 1} \cong 0.9710, \qquad |f(x_1)| \le \epsilon$$

$$x_2 = \frac{(2(0.9710) - 1)e_n^{2(0.9710)} + 1}{2e^{2(0.9710)} - 1} \cong 0.9709, \quad |f(x_2)| \cong 3.88 \times 10^{-4} < \epsilon$$

Then the approximate root is $x^* = x_2 = 0.9709$.

Ex: Find the approximate optimum solution for the following nonlinear optimization problem.

Min
$$S(x) = x^2 + \ln^2(x)$$
,
s.t $0.5 \le x \le 1$; $x_o = 0.65$, $\epsilon = 10^{-8}$

$$S(x) = x^2 + \ln^2(x) \Rightarrow S'(x)$$

$$= 2x + \frac{2}{x}\ln(x) = \frac{2}{x}(x^2 + \ln(x)), S''(x) = 2\left(1 + \frac{1}{x^2} - \frac{2}{x^2}\ln(x)\right)$$

Substituting in the recursive relation we get,

$$x_{n+1} = x_n - \frac{\frac{2}{x_n}(x_n^2 + \ln(x_n))}{2\left(1 + \frac{1}{x_n^2} - \frac{2}{x_n^2}\ln(x_n)\right)} = \frac{x_n - 2x_n\ln(x_n)}{1 + x_n^2 - \ln(x_n)}; n = 0,1,2,...,$$

$$x_1 = \frac{0.65 - 2(0.65)\ln(0.65)}{1 + (0.65)^2 - \ln(0.65)} = 0.65290506, \qquad |S'(x_1)| \cong 1.18 \times 10^{-4} \le \epsilon$$

$$x_2 = \frac{0.65290506 - 2(0.65290506) \ln(0.65290506)}{1 + (0.65290506)^2 - \ln(0.65290506)} = 0.65291864,$$

$$|S'(x_2)| \cong 3.64 \times 10^{-9} < \epsilon$$

Then the optimum solution is $x^* = 0.65291864$ and hence, $S_{min} \cong 0.60803679$.

Ex: Find the approximate optimum solution for the following nonlinear optimization problem.

Min
$$f(x) = x + 1/x$$
,
s.t $0.5 \le x \le 1.5$; $x_0 = 0.6$, $\epsilon = 10^{-9}$

:
$$f(x) = x + \frac{1}{x} \Rightarrow f'(x) = 1 - \frac{1}{x^2}$$
, $f''(x) = \frac{2}{x^3}$

Substituting in the recursive relation we get,

$$x_{n+1} = x_n - \frac{1 - \frac{1}{x_n^2}}{\frac{2}{x_n^3}} = \frac{-x_n(x_n^2 - 3)}{2}$$
; $n = 0,1,2,...,$

$$x_1 = \frac{-0.6[(0.6)^2 - 3]}{2} = 0.792,$$

$$\approx 0.5942250791 \le \epsilon$$

$$x_2 = \frac{-0.792[(-0.792)^2 - 3]}{2} = 0.939603456,$$

$$|f'(x_2)|$$

$$\approx 0.1326892766 \le \epsilon$$

$$x_3 = \frac{-0.939603456[(0.939603456)^2 - 3]}{2} = 0.9946385417, |f'(x_3)|$$

\$\approx 0.5942250791 \pm \epsilon\$

$$x_4 = \frac{-0.9946385417[(-0.9946385417)^2 - 3]}{2} = 0.9999569592, \quad |f'(x_4)| \cong 8.61 \times 10^{-5}$$

$$x_5 = \frac{-0.9999569592[(0.9999569592)^2 - 3]}{2} = 0.9999999972, \quad |f'(x_5)| \cong 5.6 \times 10^{-9}$$

$$x_6 = \frac{-0.9999999972[(-0.9999999972)^2 - 3]}{2} = 1, |f'(x_6)| = 0 < \epsilon$$

Then the optimum solution is $x^* = 1$ and hence, $f_{min} = 2$.